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Background: Thailand is home to around 69 million individuals. Dengue is hyper-endemic and all 4 serotypes are
in active circulation in the country. Dengue outbreaks occur almost annually within Thailand in at least one
province but the spatio-temporal and environmental interface of these outbreaks has not been studied.

Methods: We develop Bayesian regime switching (BRS) models to characterize outbreaks, their persistence and
infer their likelihood of occurrence across time for each administrative province where dengue case counts are
collected. BRS was compared against two other classification tools and their agreement is assessed. We further
examine how these spatio-temporal clusters of outbreak clusters arise by comparing reported dengue case counts,
urban population, urban land cover, climate and flight volumes on the province level.

Results: Two dynamic dengue epidemic clusters were found nationally. One cluster consists of 47 provinces and is
highly outbreak prone. Provinces with a large number of case counts, urban population, urban land cover and
incoming flight passengers are associated to the epidemic prone cluster of dengue. Climate has an effect on
determining the probability of outbreaks over time within provinces, but have less influence on whether provinces
belong to the epidemic prone cluster. BRS found high agreement with other classification tools.

Conclusions: Importation and urbanization drives the risk of outbreaks across regions strongly. In provinces
estimated to have high epidemic persistence, more resource allocation to vector control should be applied to
those localities as heightened transmission counts are likely to occur over a longer period of time. Clustering of
epidemic and non-epidemic prone areas also highlights the need for prioritization of resource allocation for disease

Background

Thailand is home to around 69 million individuals [1],
with dengue considered to be hyper-endemic due to all
four serotypes being in active circulation within the
country. Each of the 77 provinces in Thailand have on
average, non-zero reported dengue case counts over the
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past 10 years, which create considerable health and eco-
nomic burdens. Widespread urbanization, favourable cli-
matic conditions and increased human mobility across
provinces are ideal for dengue transmission [2]. Vector
control has been and continues to be the primary con-
trol method for the two dominant dengue mosquito vec-
tors, Aedes aegypti and Aedes albopictus as other control
methods such as Dengvaxia (CYD-TDV) vaccination
face issues of low seropostive rates, especially among the
younger age groups [3]. The resources allocated for vec-
tor control are unfortunately limited even for the case of
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high income countries. A deep understanding of the epi-
demiological factors leading to dengue epidemics is
therefore necessary, for appropriate resource planning
and effective public health policy making. The identifica-
tion of high risk, epidemic prone areas with frequent
outbreaks would help allocate resources to these zones
to reduce the public health burdens of dengue — which
is especially important for countries which are vast, such
as Thailand.

Considerable work has been conducted to understand
the temporal behaviour of dengue in Thailand, ranging
from peri-urban settings [4, 5], provincial level studies
analyzing province specific trends [6-8] as well as na-
tional level transmission patterns [3, 9-13]. At the na-
tional level, studies often split reported counts at the
province level in order to reconstruct suitable inference
on how dengue is transmitted and the ways surveillance
can be implemented on different frequencies [9]. A sub-
stantial number of studies also focus on understanding
predicting dengue incidence in Thailand [14-16].

A key gap however, is understanding the patterns of
disease outbreaks, instead of the number of reported
cases. This is less frequently attempted due to the inher-
ent difficulty in classifying what an outbreak is, or when
an outbreak starts or ends. This difficulty in ascertaining
outbreak patterns and understanding the drivers of out-
breaks, is further compounded for a hyper-endemic dis-
ease such as dengue in Thailand, where case counts are
consistently reported over time. Yet, as is estimated that
early detection and in-time clinical care will drastically
reduce the dengue fatality rates [17], the identification of
outbreaks, their patterns and where they occur is essen-
tial to public health decision making for medical re-
source allocation and staffing. This will help optimize
medical care delivery in an outbreak scenario and pro-
vide substantial gains in population health.

In this study, we therefore aim to understand the pat-
terns and biological reasons for dengue outbreaks in
Thailand, by first developing suitable methods to
characterize outbreaks and infer their likelihood of oc-
currence across time for each administrative province
where dengue case counts are collected. We further ex-
amined whether spatio-temporal clusters of outbreak
clusters arise, and whether human population and bio-
logically relevant factors such as reporting rate, urban
land cover, population and climatic forcing affect these
outbreaks over a large spatial scale.

Methods

Dengue case count data

Monthly dengue case count data in Thailand is collected
by the Ministry of Public Health, Thailand with
mandatory notification of virologically confirmed or
laboratory-confirmed cases. To account for difference in
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population sizes among different regions and further
allow interpretability of the regression coefficients, we
normalized each province’s dengue case count time
series to a scale of 0 to 1 for the analysis by subtracting
each province’s timepoint by the province’s minimum
observed value and divide them by the range of values
observed across time. Data is available for 76 regions in
Thailand from 2007 to 2018. We removed Bueng Kan
from analysis as it was split from Nong Khai province in
2011. Dengue case count data was used to infer dengue
outbreak patterns across provinces from 2007 to 2018.

Climate data

Climate data was obtained from ERAS5, published by the
European Centre for Medium-Range Weather Forecasts.
ERA5 provides hourly estimates across a 30km grid
[18], which we have aggregated over a monthly timescale
and spatially averaged for provinces of Thailand. Mean,
minimum and maximum air temperature at 2 m was cal-
culated to represent thermal forcing and stress on vector
population growth, and total rainfall for the weekly
interval obtained for breeding site availability [19]. Air
temperature and dewpoint temperature were utilized to
calculate saturation vapor pressure and actual vapor
pressure using Teten’s formula, where relative and abso-
lute humidity could then be estimated using standard
formula [20]. Absolute and relative humidity are used to
represent the impacts of ambient moisture on breeding
potential [21]. Climate data was used to determine
whether climate is a driver of dengue outbreaks.

Human population data

Human population data for Thailand was obtained from
Thailand’s Official Statistics Registration Systems web-
site, published by the Office of Registration Administra-
tion, Department of Local Administration. The
population data provided is available for 77 regions in
Thailand from 2007 to 2018, with the inclusion of Bueng
Kan only after 2011. The yearly total population and
births for each province were obtained for the required
time period to determine the reporting rate of dengue
via time series susceptible-infected recovered analysis
[22]. Urban population and land cover data was used to
determine whether outbreak prone clusters have higher
rates of urbanization.

Flight data

Monthly number of air ticket bookings during 2015-6
was obtained from OAG for every origin-destination
route with up to two connections. The number of in-
coming flight passenger numbers for each airport within
each province was then used to determine whether out-
break prone clusters have higher numbers of incoming
flight passengers.
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Identifying outbreaks

Bayesian regime switching models (BRS) (1-2) are used to
analyse recorded disease case counts over time which have
characteristic changes in transmission behavior. It has
been successfully applied for outbreak inference for sea-
sonal and endemic diseases [23, 24]. This method provides
a classification of the time series as separable regimes, as
well as the probabilities of each regime to stay or transi-
tion to another regime over time. BRS is used to deter-
mine when dengue outbreaks occur for each province.

Y
Y, = /’Jst,o + Zi:lﬁst,iyt —ites (1)

BRS (1) first models the observed dengue case counts
Y; as an evolution of past i month dengue case counts
Y,_; and an autoregressive factor S, ;. With e5,~N(0, 0%,
) representing white noise. The intercept term fg ,, de-
notes the mean level of dengue transmission over time
and may vary within each regime S, as well as the auto-
regressive and variance terms f ; for a maximum of p
lags and oét respectively. Separate models are thus fitted
depending on the regime classification at the current
time point. The labelling of S, as an epidemic or en-
demic regime is done post-hoc after estimation of S,
over all time points, based on each province’s dengue
case count behaviour at the corresponding time points.

P

()

In the case of dengue, the transition probability matrix
(2) describes the persistence and evolution of separable
endemic (S,=0) and epidemic regimes (S,=1) — these
correspond to non-outbreak and outbreak periods of den-
gue respectively. The likelihood of transitioning from a
non-outbreak period to an outbreak period is given by 1 -
P and the likelihood of staying within an outbreak period
given that the past month is classified as an outbreak
period is Q. All parameters, including the regimes, are es-
timated using a Gibbs sampling framework, with full com-
putational details provided in the Additional file 1.

The ability for BRS to classify outbreaks is assessed in
a rolling manner, where we fit the BRS specification (1)
sequentially from around 1/3 of the data set at the 40th
month onwards and increase the information set pro-
vided to the BRS by 1 more month in each refitting. The
contemporaneously classified regime from the regime
fitted to the final timepoint in each model iteration is
compared against the classification where BRS is esti-
mated on the full dataset. Two other commonly used
outbreak classification tools were also used to assess
classification stability of the BRS model. Namely, the cu-
mulative sum framework of [25] and simple regression

P(S, =0[S;-1=0)=P P(S;=0|S;-1=1) =
P(sIs, 1) = | B =081 =0) (5 =08-1=1)=

1-
P(S=18-1=0)=1-Q P(S§=1IS,-1=1)=Q
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framework of [26] were used to further validate the re-
sults of BRS classification. Agreement between classifica-
tion tools is measured using the area under the receiver
operating curve, across 76 provinces of Thailand.

Identifying dynamic clusters

We then assessed the tendency for outbreaks to be clus-
tered across space and time, by using the graphical dis-
similarity approach [27]. After which, we classified
provinces into dynamic clusters using the partitioning
around medoids (PAM) algorithm. This analysis allows
us determine whether province-level dynamic clusters of
epidemic prone areas exist over time. Dynamic time
warped distances are used to determine the clusters each
province are in and to account for possible temporal de-
pendence between outbreak probabilities between prov-
inces. We preset the number of clusters to 2 to 20
sequentially and ran the PAM algorithm, computing
cluster validity indices to determine the optimal number
of clusters for the classified outbreaks. The full assess-
ment details for the optimal number of dynamic clusters
is described in the Additional file 1.

Inferring climatic forcing on outbreak probability

Finally, we looked at whether climate affects the prob-
ability for outbreaks to occur. However, as climatic vari-
ables are numerous, highly collinear and may affect
outbreaks only after long time lags, inefficient parameter
estimation may result using standard least squares ap-
proach [28]. We thus conduct inference using the least
absolute shrinkage and selection operator (LASSO) for
each province p, due to its ability to provide both model
parsimony and regularization to enhance predictive ac-
curacy and interpretability. In brief, the LASSO (3) was
fitted with independent, province-level climatic variables
X:—i j, pon p(S; ,=1), the estimated epidemic probabil-
ity obtained from (1). Where j denotes climate variables
for i number of lags across p provinces. Factors consid-
ered were previous air temperature, precipitation, abso-
lute and relative humidity of up to 4 months so that
possibly long-term climatic fluctuations could be taken
into account. These factors were normalized 0 to 1 by
subtracting each factor by its maximum value and divid-
ing each differenced factor by the range of values each
factor observes. Normalization was conducted to ac-
count for the different units of measurement and the
non-invariance of LASSO regularization to scale [28].

P(St,p = 1) = ﬁO,p + Z Z ﬁi,/,pXt—i«,/’,pv (3)

jeClimate i€Lags
subject to|| ﬁp | <A, for some penalty term A

Five-fold cross validation was first conducted to yield
test error rates which do not suffer from unreasonably



Lim et al. BMC Infectious Diseases (2020) 20:927

high bias or variance [28]. The cross-validation step op-
timizes the regularization parameter A using the area
under curve of the receiving operator characteristic as
the tuning criterion. We then refitted our data using the
optimal regularization parameter A” to produce probabil-
ities for being in each regime at each timepoint. Next,
bootstrapping was conducted over 200 iterations to re-
cover bootstrap confidence intervals and bootstrap mean
estimates [29] for each of our LASSO dependent vari-
ables. The bootstrap also allows computation of LASSO
inclusion probabilities, which provides a measure of each
climate variable’s importance in influencing outbreak
probabilities. Analyses were done in R version 3.6.2.

Results
2 dynamic dengue epidemic clusters revealed
Two dynamic dengue epidemic clusters were found,
after conducting cluster analysis and assessment of the
optimal number of clusters. The full results of these as-
sessment checks are reported in the Additional file 1.
Cluster analysis indicates that cluster 1 (C1) consists
of 29 provinces compared to cluster 2 (C2), which has
47. C1 is less prone to outbreaks compared to C2, with a
concentration of outbreaks for C1 around 2013 to 2014,
while C2 has outbreaks occurring almost yearly, asides
from 2017 (Additional file 1). Spatially, the outbreak
prone C2 is concentrated around the Northern region of
Thailand, while the less outbreak prone C1 dispersed
around the central and southern regions of Thailand
(Fig. 1). Substantial variation in the persistence of the
epidemics is estimated at the province-level, varying
from 82% for Chon Buri province (C1) to 73% for Sing
Buri province (C1) for staying in an epidemic. Likewise,
for the baseline endemic regime, Phitsanulok (C2) prov-
ince has the highest level of persistence at 99% and Pra-
chuap Khiri Khan (C1) has the lowest level of
persistence at 87%. In general, the likelihood of transi-
tions from an epidemic regime into the endemic regime
are in general higher compared to the likelihood of tran-
sitions from an endemic regime to an epidemic regime.
The likelihood of staying within an epidemic regime is
also lower, as compared to the likelihood of staying
within an endemic regime. Jointly, this indicates that the
epidemic regimes are less persistent compared to the en-
demic regimes across provinces (Fig. 2). C2 which is
more outbreak prone, is also observed to have a larger
group of provinces having a higher likelihood of staying
within an epidemic regime, compared to the less out-
break prone C1 group (Fig. 2, Additional file 1).
Geographically, Chiang Rai, Chiang Mai, Mae Hong
Son, Lamphun and Nan form a high confidence continu-
ous spatial north western aggregation for C2 (Fig. 1,
AUC-ROC: 0.76-0.94). This clustering continues across
northern Thailand to the East at Nakhon Phnom (Fig. 1,
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AUC-ROC: 0.74—0.98) with less confidence observed at
Khon Kaen (Fig. 1, AUC-ROC = 0.67). At the very East,
Amnat Charoen and Ubon Ratchathani forms another
discrete cluster (Fig. 1, C1, ROC: 0.88-0.94). Overall,
Uttaradist and Non Bua Lamphu are distinct outliers
within the dominant C2 zone in Northern Thailand
(Fig. 1, C1 AUC-ROC 0.76, 0.90). A C1 belt exists across
the central region, interspersed with C2 anomalies, not-
ably Uthaithani, Ang Thong and Saraburi (Fig. 1, ROC:
0.86, 0.94 and 0.9). A mid C2 exists with Samut Prakan,
Bangkok, Nonthaburi, Samut Sakhon and Samut
Songkhram (Fig. 1, AUC-ROC: 0.87-0.93) where
Phetchaburi is part of this cluster with weaker confi-
dence (Fig. 1, AUC-ROC: 0.66). Prachuap Khiri Khan
and Chumphon are a distinct C1 located in the mid cor-
ridor (Fig. 1, AUC-ROC: 0.76—0.98). In the south, Phang
Nga, Surat Thani and Nakhon Si Thammarat form a C2
group with low confidence (Fig. 1, AUC-ROC = 0.44),
with Pattani, Yala and Narathiwat at the very southern
tip (Fig. 1, 0.63-0.65). In between these two C1 group-
ings, Krabi, Trang, Songkhla and Phattalung exist as a
group (Fig. 1, AUC-ROC: 0.51-0.88).

Dynamic clusters associated to endogenous and
exogenous factors

The epidemic prone C2 cluster consists of regions which
have the highest number of reported dengue case counts
over 2007 to 2018, including that of Bangkok (Fig. 1a,
Case Counts/Yr: 4080), Chiang Mai (Fig. la, Case
Counts/Yr: 2478), Chiang Rai (Fig. 1a, Case Counts/Yr:
1809) and Si Sa Ket (Fig. la, Case Counts/Yr: 1335).
These regions also have estimated reporting rates which
are highly spread out compared to the mean levels expe-
rienced throughout the whole of Thailand. Bangkok
province for example, has a dengue reporting rate of
0.5%, which does not deviate from the mean reporting
rate of 0.7%, as compared to Si Sa Ket (C2), at the high-
est reporting rate of 5.7% (Fig. 1h). These 3 regions, also
have the largest number of incoming flight passengers
yearly as compared to other provinces in Thailand, at
over 36 million for Bangkok, 4 million for Chiang Mai
and 1 million for Chiang Rai (Fig. 1i).

Notably, the epidemic prone C2 consists of Bangkok
and its adjacent/nearby provinces, Samut Prakan, Samut
Songkhram, Nonthaburi and Ayutthaya which has the
highest percentage of urban land cover in Thailand, at
63, 36, 41 and 19% respectively (Fig. 1d). It also corre-
sponds to the highest percentage of each province’s
population residing in urban regions at 100, 63, 23.4, 66
and 46% respectively (Fig. le). Conversely, the north-
western corridor with a large number of provinces
within the less outbreak prone C1 consists of the least
urbanized regions. Namely, Tak, Kachanaburi and Mae
Hong Son have urban population percentages at 24, 23
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Fig. 1 a Dengue case counts from 2008 to 2017. b Baseline (C1) and epidemic cluster (C2) classifications from cluster analysis. ¢ AUC-ROC from
post-hoc classification exercise for the BRS model. d Urban land cover percentage. @ Municipal population percentage. f Endemic regime
persistence probabilities estimated from the BRS model. g Epidemic regime persistence probabilities estimated from the BRS model. h Reporting
rate of dengue as estimated from the canonical time series subsceptible-infected-recovered model. i Number of incoming flight passengers
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and 10% respectively (Fig. 1le), with only 23, 19 and 14%
of urban land cover (Fig. 1d). This trend persists for a
large proportion of provinces, where lower levels of
urban land cover and urban populations correlate to
lower levels of dengue case counts and epidemic persist-
ence probabilities (Fig. 1a, Fig. 2).

Lastly, a duality in climatic forcing on regimes is indi-
cated between the two clusters, with climatic forcing on
dengue epidemics more notable in the epidemic prone

C2 compared to the baseline C1 under LASSO analysis.
To belabor, in C1, inclusion probabilities for climatic
variables cross the 0.5 bound less than variables in C2,
however, the inclusion probability interval for C2 were
far wider which may be due to more provinces being
classified within the cluster. In particular, absolute hu-
midity, total precipitation, relative humidity, average
temperature followed by total precipitation were in-
cluded in increasing order across 1 to 4 lags for CI,
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(See figure on previous page.)

Fig. 2 Probabilities of transitioning to an endemic regime if the past month estimated regime was endemic and the corresponding probabilities
of transitioning to an epidemic regime if the past month estimated regime was epidemic. Lines represent 95% credible intervals, points represent
the posterior mean estimate of persistence probabilities across all provinces of Thailand. Red and blue lines which overlap denote crossing 95%
credible intervals. Red and blue points which are closer to each other denote more similar epidemic and endemic persistence probabilties

while total precipitation, absolute humidity, average
temperature, followed by relative humidity were in-
cluded in increasing order across 1 to 4 lags for C2
(Fig. 3). Absolute humidity was included the least, with
only 7 provinces having inclusion probabilities above the
0.5 cutoff, followed by relative humidity, total precipita-
tion and average temperature. Average inclusion prob-
abilities between clusters also indicate that absolute and
relative humidity are more important in C1 for explain-
ing epidemics, while average temperature and total pre-
cipitation are more important in explaining epidemics in
C2 (Fig. 3). Lastly, reconstructing LASSO to only in-
sample performance indicates good in-sample fit, with
an average area under the ROC being 0.82 across
provinces.

Model assessment

Fitting the BRS indicated that a 3 lag specification was
sufficient to account for residual autocorrelation in den-
gue time series across all regions. In general, the BRS
specification was able to detect breakpoints which pre-
cede large rises in dengue case counts across provinces
when estimated using the full set. It was able to detect
these breakpoints even when restricting observations to
only contemporaneous and past timepoints (Fig. 1lc,
Additional file 1). Concordance as measured by the area
under the receiver operating characteristic curve (AUC-
ROC) showed that there is agreement between other
outbreak detection measures with an average AUC-ROC
of 0.840 across provinces with more than 60% provinces
producing an AUC-ROC larger than 0.8, indicating good
outbreak classification concordance in the majority of
provinces [30]. The full results for classification stability
are provided in the Additional file 1.

Discussion

Results indicate two dynamic epidemic clusters in
Thailand from 2007 to 2018; a baseline cluster 1 (C1),
with a large majority of epidemics occurring sporadic-
ally, and an epidemic prone cluster 2 (C2), where out-
breaks occur on an almost yearly basis. In epidemic
prone C2, results indicate that epidemics are more per-
sistent and estimated epidemic persistence probabilities
are higher (Fig. 2), compared to the baseline C1, where
epidemics are less likely to persist over time. This result
is consistent with a study analysing dengue outbreaks in
dengue hyper-endemic Singapore, where epidemics are

found to be less persistent compared to the baseline
state [24].

For Thailand, central to policy planners are four sug-
gestions. In provinces estimated to have high epidemic
persistence, more resource allocation to vector control
should be applied to those localities as heightened trans-
mission counts are likely to occur in C2 over a longer
period of time compared to Cl. Minimizing dengue
transmission in areas which have higher urban land
cover and possess larger importation risk is also import-
ant, due to their epidemic prone nature, as elaborated
below.

Clusters as estimated in this study showed key en-
dogenous and exogenous drivers. Urban land cover and
urban population, are especially prominent in Bangkok
and its adjacent areas, where it is assigned to the epi-
demic prone C2 and there may be several ecological rea-
sons for its occurrence. Urbanization is strongly
associated with increased dengue incidence [31], and in-
creased population density from urbanization leads to an
increase in viral diversity and the number of possible
dengue transmission chains [32]. Urban practices such
as storing water in plastic containers also increase the
breeding potential for the Aedes aegypti vector [31],
which thereby increases the vector’s viability in these re-
gions. The tendency of Aedes aegypti to live in human
homes [31], also compounds transmissibility, due to the
higher density of urban centers as compared to peri-
urban and rural settings in other provinces. Our results
corroborate with trends which have emerged from other
dengue endemic countries such as Vietnam, where den-
gue transmission is concentrated in large, urbanized
areas such as Ha Noi and Ho Chi Minh [33]. In totality,
these factors may have induced the epidemic prone con-
ditions in Bangkok and the surrounding locations.

The classification of Bangkok, Chiang Mai and Chiang
Rai to epidemic prone C2, which are the provinces
which correspondingly have the largest number of in-
coming flight passengers and largest number of case
counts reported is also notable. Several key pathways
may have led to elevated dengue transmission and out-
break risk within the region. Increased risk of dengue
epidemics may result from importation of viraemic mos-
quitoes due to air travel from Thailand’s status as an air
traffic hub [34]. Viraemic individuals may similarly result
in dengue importation, as showed from the co-
circulation of dengue serotypes within South East Asia
and the importation of different serotypes into Thailand
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Fig. 3 Variable importance of climatic variables on their effects on dengue epidemic potential across all provinces by epidemic cluster
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[34, 35]. As a result, the status of Bangkok, Chiang Mai
and Chiang provinces being air travel hubs may have
further heightened the importation risk of new dengue
serotypes or genotypes, increase viral diversity, cause se-
lection of strains of higher fitness which the local popu-
lation are not exposed to previously and potentially seed
new epidemics [36].

The influence of climate on mosquito breeding poten-
tial and the transmissibility of dengue is well-studied
[37, 38]. In this paper, varying levels of importance are
ascribed to climatic factors in determining dengue epi-
demic probability, with 1-4 months lagged average
temperature and total precipitation having the highest
level of inclusion. This constrasts prior results of climate
not being able to substantially explain dengue epidemics
in Singapore [24] and may be due to the limited geo-
graphical range of Singapore as compared to Thailand.
In Thailand, the importance of climate on dengue epi-
demics is observed across both epidemic prone C2 and
baseline C1, which suggests that climatic factors do
affect probabilities of epidemics occurring with some de-
gree (Fig. 3, Additional file 1). However, as inclusion
probability intervals overlap across both C1 and C2 for
variables on all lags, there is only evidence that climate
provides a signal to dengue epidemic risk temporally, ra-
ther than affect said risk through the epidemic clusters
as classified. Studies have also shown the effects of longi-
tude and latitude on dengue transmission potential,
through climate and thus vector breeding potential [14].
Although the epidemic clusters detected do have some
geographical patterns (Fig. 1), the dispersion of prov-
inces through the entirety of the Thailand may have
written off potential distinguishing climatic factors be-
tween clusters.

Our study centrally extends previous work conducted
on dengue in Thailand [9, 14] by examining dengue epi-
demic probabilities and outbreaks over time as the quan-
tity of interest, rather than dengue case counts.
Compared to standard outbreak classification tools, BRS
as developed in this paper, can be used to infer separable
regimes and crucially, provide information on the dur-
ation and persistence of epidemics without pre-specified
thresholds, even when only limited information on re-
ported dengue cases at the provincial level is provided. It
can capture the growth and decline of monthly dengue
transmission counts across provinces in Thailand, and
outbreak classification using BRS is also concordant with
other benchmark methods in outbreak classification,
which further validates the framework (Additional file
1). Cluster analysis is also robust, according to majority
consensus of cluster validity indices in our analysis,
which then allows us to draw links between our analysis
and biologically relevant factors. Lastly, climate is associ-
ated with dengue epidemics but with varying levels of

Page 9 of 11

importance; there are inclusions of at least one lagged
climatic variable being associated to epidemics across
time in all provinces.

Several limitations are present in this paper. First,
using monthly dengue case counts as demonstrated in
this paper, would not be suitable for vector control pur-
poses as policy planners would want to ramp up vector
control as soon as an outbreak is classified or forecasted.
Forecasting outbreaks under only 1 step or more ahead
monthly frequencies is only possible due to monthly fre-
quencies being the model input for BRS in this study
and hence would not be timely enough for surveillance
purposes. However, BRS could easily be applied to
weekly nowcasts, forecasts and inference as demon-
strated by other infectious disease applications [23, 24].
The reporting rate of dengue case counts may have been
driven by province level variations in healthcare accessi-
bility, which may affect our estimates of epidemic per-
sistence and classifications. However, these estimates are
likely skewed towards the null due to under-reporting
likely to occur rather than over-reporting of dengue case
counts. The variations in reporting rate are also minimal
as estimated within this paper. Number of asymptomatic
dengue cases are also not available, but is not likely to
affect the results as the primary parameters of interest
are regimes, rather than predicted case counts. Reported
number of dengue haemorrhagic fever and dengue shock
syndrome cases, while also available, was not used as a
dependent due to zero-inflation. Further work should
develop and assess models which can generalize the BRS
to such settings. Serotype composition and number of
individuals travelling across land routes are important
factors which may influence dengue outbreaks, but are
not available. Future studies should attempt to study the
relation between outbreaks and these covariates. Lastly,
as data on biologically relevant factors such as urban
land cover, urban population, and flight passengers are
not available at the same frequency as dengue case
counts, their effects on regimes and outbreak clusters
can only be conducted post estimation of BRS.

Conclusion

Being able to classify and infer the risk and persistence
of dengue outbreaks is important, as significant health
risks surface from these events. Contemporaneously
classifying outbreaks, understanding outbreak character-
istics and the drivers of these outbreaks is important for
public health policy, as it provides policy makers with an
indicator to ramp up the delivery of care and vector con-
trol to those localities. Our study found that provinces
with a large number of case counts, urban population,
urban land cover and incoming flight passengers are as-
sociated to the outbreak prone cluster of dengue. Cli-
mate has an effect on determining outbreak
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probabilities, but have less influence on whether they be-
long to the outbreak prone cluster. To the best of the
authors’ knowledge, this is the first study to classify den-
gue outbreaks, estimate transition probabilities and show
the clustering of epidemics on a national level in
Thailand. The methods developed are also easily extend-
able to any infectious disease with case counts recorded
over a substantial period of time.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512879-020-05666-4.
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