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Abstract

 

During the innate response to many inflammatory and infectious stimuli, dendritic cells (DCs)
undergo a differentiation process termed maturation. Mature DCs activate antigen-specific naive
T cells. Here we show that both immature and mature DCs activate resting human natural killer

 

(NK) cells. Within 1 wk the NK cells increase two– to fourfold in numbers, start secreting

 

interferon (IFN)-

 

�

 

, and acquire cytolytic activity against the classical NK target LCL721.221.
The DC-activated NK cells then kill immature DCs efficiently, even though the latter express
substantial levels of major histocompatibility complex (MHC) class I. Similar results are seen
with interleukin (IL)-2–activated NK cell lines and clones, i.e., these NK cells kill and secrete
IFN-

 

�

 

 in response to immature DCs. Mature DCs are protected from activated NK lysis, but
lysis takes place if the NK inhibitory signal is blocked by a human histocompatibility leukocyte
antigen (HLA)-A,B,C–specific antibody. The NK activating signal mainly involves the NKp30
natural cytotoxicity receptor, and not the NKp46 or NKp44 receptor. However, both imma-
ture and mature DCs seem to use a NKp30 independent mechanism to act as potent stimula-
tors for resting NK cells. We suggest that DCs are able to control directly the expansion of
NK cells and that the lysis of immature DCs can regulate the afferent limb of innate and
adaptive immunity.
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Introduction

 

Dendritic cells (DCs)

 

*

 

 are sentinels for the immune system.
Located in the periphery in an immature form, DCs take
up substrates from the surrounding environment such as
proteins and dying cells. Upon encounter of microbial anti-
gens or proinflammatory cytokines, the DCs mature, pro-
cess, and present the internalized antigens on MHC mole-
cules. Mature DCs then prime naive T cells, selected from
the recirculating T cell pool in secondary lymphoid organs,

producing for example active antigen-specific MHC class
I–restricted CTLs (1–3).

Viruses and tumors often escape the CTL response, by
downregulating MHC class I presentation, but a “back up”
protective mechanism is provided by NK cells. NK cells
share much of the killing machinery with CTLs, except
that NK cells are able to recognize targets that have down-
regulated their MHC class I molecules, the “missing self”
mechanism (4, 5). To do so, NK cells use two groups of re-
ceptors, inhibitory and activating (6). Inhibitory NK recep-
tors prevent NK activation upon encounter of normal
MHC class I levels (7–9). Activating NK receptors recog-
nize diverse ligands. A well-characterized activating system

 

involves the Fc receptor CD16 (10, 11) and killing of
antibody-opsonized cells. Other activating receptors are
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termed NKp30, NKp44, and NKp46, but their (non-
MHC) ligands have not been identified so far (12–14).
MHC class I or MHC class I–related molecules can also act
as activating NK ligands, engaging NKG2D or various
killer activating receptors (KARs) that are highly homolo-
gous in sequence to the corresponding inhibitory NK re-
ceptors (15). Finally, there are two molecules 2B4 and
NKp80 that seem to act as activating coreceptors, enhanc-
ing the function of the above mentioned NK receptors
(16). While the ligand for NKp80 is unknown, CD48 ap-
pears to be the major ligand for 2B4. Most of these recep-
tor studies involved the use of NK cells activated by IL-2
or antibody-mediated Fc

 

�

 

 receptor cross-linking.
However, during the course of infection in vivo, NK re-

activity peaks before T cell responses (17), the latter being a
major source of IL-2 and help for antibody production.
Thus, the prior literature on the properties of NK cells pri-
marily reflects NK activation in the wake of adaptive im-
mune responses. The early or innate activation of resting
NK cells needs to be addressed.

In this paper we study the potential linkage between two
innate responses, the maturation of DCs and the activation
of resting NK cells. We will demonstrate that resting NK
cells, isolated from human peripheral blood, are activated
and expanded directly upon interaction with DCs. The
state of NK and DC activation required for these interac-
tions, as well as the underlying NK activating receptor, are
characterized in the present work. We will first describe a
positive interaction whereby resting NK cells are efficiently
expanded and activated by both mature and immature
DCs. Then we will outline features of what seems to be a
regulatory loop. Activated NK cells, which typically recog-
nize MHC class I–negative targets, selectively kill MHC
class I–expressing immature DCs. This recognition relies
almost entirely on the NKp30 activating receptors. Mature
DCs trigger the same receptor, but escape NK lysis by high
MHC class I surface expression. These data demonstrate
that the NK response to DCs involves a strong direct re-
sponse to DC mobilization as well as a potential feedback
control limiting the supply of DCs.

 

Materials and Methods

 

Generation of DCs.

 

Whole blood from lab donors and leuco-
cyte concentrates served as sources of PBMCs, isolated by density
gradient centrifugation on Ficoll-Paque (Amersham Pharmacia
Biotech). Positive selection for CD14

 

�

 

 PBMCs was performed
using 

 

�

 

CD14-MicroBeads, MS

 

�

 

/RS

 

�

 

 columns, and MiniMACS
separator (Miltenyi Biotec). DCs were generated from CD14

 

�

 

PBMCs. 5 

 

�

 

 10

 

5

 

 CD14

 

�

 

 PBMCs/ml were plated in 6-well
plates with RPMI-1640, plus 1% single donor plasma, glutamine,
and gentamicin. rhIL-4 (R&D Systems or Euroclone) and
rhGM-CSF (Immunex or Euroclone) were added to a final con-
centration of 500 and 1,000 U/ml, respectively, at day 0, 2, and 4
in 500 

 

�

 

l of fresh medium/well. On day 5 or 6, the floating im-
mature DCs were transferred to new plates at 3 

 

�

 

 10

 

5

 

 cells/ml
and half of the medium was replaced with fresh medium contain-
ing IL-1

 

�

 

/IL-6/TNF

 

�

 

/PGE

 

2

 

 (all from Euroclone or R&D Sys-
tems except PGE

 

2 

 

from Sigma-Aldrich) to mature the DCs for

 

2 d (18). The maturation cytokines were added to a final concen-
tration of IL-1

 

�

 

, 10 ng/ml, IL-6, 1,000 U/ml, TNF

 

�

 

, 10 ng/ml,
and PGE

 

2

 

, 1 

 

�

 

g/ml.

 

Isolation and Culture of NK Cells.

 

PBMCs were allowed to
adhere to plastic, and nonadherent lymphocytes were then exten-
sively washed, treated with 

 

�

 

CD3, 

 

�

 

CD4, 

 

�

 

CD8, and 

 

�

 

CD19
mAbs (Beckman Coulter) for 30 min at 4

 

�

 

C. After two washings,
cells were incubated with magnetic immunobeads (Immunotech)
coated with anti–mouse IgG. After 15 min, the cells were col-
lected and a highly purified negatively selected population of NK
cells was isolated using a Cobalt-Samarium magnet. Alternatively,
the NK Cell Isolation Kit (Miltenyi Biotec) was used in which
NK cells were negatively selected using 

 

�

 

CD3, 

 

�

 

CD14, 

 

�

 

CD19,

 

�

 

CD36, and 

 

�

 

IgE depletion. The percentage of NK cells in that
population was evaluated using FITC-conjugated 

 

�

 

CD3 and PE-
conjugated 

 

�

 

CD56 mAbs (Beckman Coulter) and flow cytome-
try. Recombinant IL-2 (rIL-2, 100 IU/ml; Proleukin; Chiron
Corp.) and PHA (1 

 

�

 

g/ml) were added in order to obtain poly-
clonal NK cell population or, after limiting dilution, NK cell
clones. Resting NK/DC cocultures were performed in RPMI-
1640 plus 5% human serum in 96 U-bottom well plates.

 

Flow Cytometric Analysis.

 

Analysis of DC surface markers on
live cells was performed using the following mAbs in immuno-
fluorescence assays: PE-conjugated anti-CD86 (HA5.2B7,
IgG2b), FITC-conjugated anti-CD80 (MAB104, IgG1), PE-
conjugated anti-CD1a (BL6, IgG1), FITC-conjugated anti-
CD83 (HB15A, IgG2b), FITC-conjugated anti-ICAM-1
(CD54), PE-conjugated anti-CD83 (HB15a, Beckman Coulter),
FITC-conjugated anti-HLA-A,B,C (BD PharMingen), FITC-
conjugated anti-HLA-DR (BD PharMingen), PE-conjugated
anti-CD11c (BD PharMingen), FITC-conjugated anti-CD40,
and FITC-conjugated anti-CD25 (both from Immunotech).
Anti-CD14 (63D3, IgG1) was provided by D. Vercelli, (Hospital
San Raffaele-Dipartimento di Biotecnologie, Milan, Italy). Anti
HLA-DR (D1.12,IgG2a) was provided by G. Frumento, Istituto
Nazionale Ricerca sul Canero, Genoa, Italy. To analyze the phe-
notype of NK cells, we used the following FITC-labeled mono-
clonal antibodies: anti-CD16, anti-CD2, anti-CD7, anti-CD8,
anti-CD56, obtained from Beckman Coulter. Anti-NKp30
(A76, IgG1), anti-NKp46 (BAB281, IgG1), anti-NKp44 (Z231,
IgG; provided by A. Moretta, University of Genoa, Genoa, Italy)
and anti-CD161 (NKRP1A; 191B8, IgG2a; provided by A.
Poggi and D. Pende, Istituto Nazionale Ricerca sul Canero)
mAbs were also analyzed on NK cell surface. Anti-ULBP2
(M311, IgG1; provided by Immunex Corporation, Seattle, WA)
and anti-CD48 (TU145, IgM; BD PharMingen) mAbs were em-
ployed in order to identify possible NKG2D and 2B4 ligands on
DCs. Direct immunofluorescence procedure was performed by
diluting fluorochrome-labeled mAb with 1 mg/ml human 

 

�

 

-glo-
bulin (human therapy grade from a commercial source), in order
to block nonspecific Fc-receptor binding. Cells were then
washed and the flow cytometric analysis was performed. Indirect
immunofluorescence assays were performed as follows: cell non-
specific binding sites were saturated with human 

 

�

 

-globulin and
then the relevant mAb was added and incubated for 30 min at
4

 

�

 

C. After extensive washings, FITC-conjugated isotype-specific
goat anti–mouse antibodies (GAM; Southern Biotechnology As-
sociates, Inc.) were added and incubated for 30 min at 4

 

�

 

C. Neg-
ative controls included directly labeled or unlabeled isotype-
matched irrelevant mAbs. Cells were then washed and analyzed
by flow cytometry.

 

51

 

Cr Release Assay.

 

To evaluate the cytolytic activity of NK
cells against DCs, we used autologous or allogeneic DCs at differ-
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ent degree of maturation and the LCL 721–221 cell line (19) as
target cells as described (20). Briefly, 10

 

6

 

 target cells were incu-
bated with 100 

 

�

 

Ci of Na

 

2
51

 

CrO

 

4

 

 for 60 min at 37

 

�

 

C and then
extensively washed. Supernatants were collected and radioactivity
counted on a gamma-counter (Beckman or 1450 MicroBeta Tri-
Lux; Wallac). “Specific” 

 

51

 

Cr release was calculated on the basis
of the ratio ([sample release 

 

	

 

 spontaneous release]/[total release 

 

	

 

spontaneous release]). Assays were performed in triplicate at the
indicated effector/target ratios. To analyze the role of NK cell ac-
tivating receptors and coreceptors in this lysis, anti-p30 (F252,
IgM) (12), anti-p44 (KS38, IgM) (13), anti-p46 (KL247, IgM)
(14), anti-NKG2D (BAT221, IgG1), anti-2B4 (MA344, IgM),
anti-p80 (MA152, IgG1), and anti-HLA class I (A6136, IgM)
mAbs (provided by A. Moretta, University of Genoa) were added
in saturating amounts in some experiments.

 

Cytokine Assays.

 

To detect the production of IFN-

 

�

 

 by NK/
DC cultures, cells were cultured in RPMI 1640 plus 5% human
serum in 96-well round bottom microtiter plates. The superna-
tants of the cultures were collected after 48 h or 7 d and assayed in
commercial ELISA (Biosource International or Endogen). Simi-
larly to cytolytic assay, the involvement of natural cytotoxicity re-
ceptor

 

 (

 

NCR) was investigated by mAb-mediated masking of
anti-p30, anti-p44, and anti-p46.

 

Proliferation Assay.

 

10

 

5

 

 NK cells were incubated with DCs at
the indicated ratios for 5 d in RPMI-1640 plus 5% human se-
rum in 96-well round bottom microtiter plates. 1 

 

�

 

Ci [

 

3

 

H]thy-
midine was added per well overnight and harvested with a Har-
vester Mach IIIM (Tomtec) and counted in a 1450 MicroBeta
TriLux (Wallac). Counts represent mean values of duplicates or
triplicates.

 

Results

 

DCs Can Stimulate Proliferation of Resting NK Cells.

 

Several reports recently described interactions between
“in vitro” cytokine-activated NK cells and DCs. To eval-
uate the ability of DCs to stimulate resting NK cells, the
latter were purified from peripheral blood by negative se-
lection. When autologous monocytes, immature DCs or
mature DCs were compared as stimulators of NK cells,
the responses were different (Fig. 1). Monocytes were un-
able to induce DNA synthesis in NK cells (Fig. 1 A) or
expand NK cell numbers (Fig. 1 B). Mature and immature
DC/NK cocultures on the other hand induced active
DNA synthesis and NK cell expansion. Just 1–10% autol-
ogous DCs could stimulate high levels of DNA synthesis
(Fig. 1 A) and two- to fourfold increases in NK cell num-
bers by day 7 (Fig. 1 B). Cultures without the addition of
NK cells showed no proliferation above background (data
not shown).

The number and the surface phenotype of NK cells and
DCs recovered from 7 d cultures were verified by FACS

 

®

 

.
The NK cells retained the NKp30

 

�

 

, NKp46

 

�

 

, NKG2D

 

�

 

,
CD161

 

�

 

, CD56

 

�

 

CD3

 

	

 

 phenotype. Slight increases of ex-
pression of the inducible molecules NKp44, CD25, and
HLA-DR were detected after coculture with either imma-
ture or mature DCs (data not shown). The numbers of ma-
ture DCs did not substantially change upon culture, and
their surface phenotype was retained, as assessed by surface
expression of CD83 and CD25. In contrast, 70% of the im-

 

mature DCs were lost during culture, and among the sur-
viving cells, only 

 

�

 

10% had acquired the CD83 and CD25
markers, typical of mature DCs (Fig. 2). The small fraction
of mature DCs by itself probably does not account for the
proliferative response of NK cells detected in NK/imma-
ture DC coculture, as mature DCs were not 10 times more
efficient than immature DCs in the induction of NK prolif-
eration (Fig. 1). Instead, the proliferative responses of NK
cells to mature or immature DCs were comparable (Fig.1).
DC cultures in the absence of NK cells showed no change
in phenotype (Fig. 2). We conclude that DCs are able to
induce NK proliferation and that this stimulatory capacity
of DCs is maturation independent.

 

Resting NK Cells Expanded by DCs Secrete IFN-

 

�

 

 and Ac-
quire Cytolytic Activity.

 

Apart from proliferation and ex-
pansion, the NK cells also secreted IFN-

 

�

 

 and acquired cy-

Figure 1. DCs stimulate proliferation and expansion of NK cells. (A)
Small numbers of mature (mDC) and immature DCs (iDC) stimulate
proliferation of negatively selected, peripheral blood NK cells, whereas
monocytes had little or no stimulating activity. (B) Immature and mature
DCs expand NK cell numbers by two- to fourfold, whereas monocytes
sustain the initial number of added NK cells (105). Count of viable cells
was performed by trypan blue exclusion. Similar results were obtained in
five independent experiments.
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mature DCs were protected from this cytolytic activity.
Monocyte cocultured NK cells developed no cytolytic ac-
tivity against either target. Although not shown, neither
mature nor immature DCs could directly kill against
LCL721.221, thus ruling out any possible effect of these
cells on the observed cytolytic activity. NK acquisition of
cytolytic capacity was mirrored in the amount of IFN-

 

�

 

 se-
creted into the medium. NK cells secreted IFN-

 

�

 

 in re-
sponse to both immature and mature DCs, but not mono-
cytes (Fig. 3 B). These data suggest that in addition to
expansion, NK cells also acquire effector (cytokine plus cy-
tolytic) functions after coculture with DCs.

 

NK Cells Activated with IL-2 Also Kill Immature DCs.

 

In a second set of experiments we analyzed the interac-
tion occurring between IL-2–activated NK cells and ma-
ture or immature DCs. Purified polyclonal NK cell, gen-
erated in the presence of IL-2 for 10–30 d, were tested
for their ability to lyse autologous or allogeneic DCs.
Both immature (i.e., cultured 7 or 8 d in GM-CSF plus
IL-4) and mature (cultured for 5 or 6 d in GM-CSF plus
IL-4 and 2 additional days in IL-1

 

�

 

, TNF

 

�

 

, IL-6, and
PGE

 

2

 

) DCs were analyzed. A substantial difference was
again evident in the susceptibility to NK lysis of mature
versus immature DCs, in that only immature DCs were
lysed with high efficiency (Fig. 4). NK-mediated lysis of
DCs was comparable to the lysis of MHC class I–negative
lymphoblastoid cell line LCL721.221, known to be a
highly susceptible target for NK cells. Similar data have
been obtained in six additional experiments using differ-
ent donors. Autologous and allogeneic immature DCs
were both lysed by NK cell populations. Likewise, the
analysis of four NK cell clones confirmed that maximal
NK-mediated cytotoxicity was exerted on immature
DCs, while mature DCs were relatively resistant (not
shown). Thus, our data confirm the ability of NK cells to
kill DCs and clearly indicate that immature DCs are more
susceptible to NK-mediated attack than their mature
counterparts.

Figure 2. The phenotype of DCs after coculture with autologous
freshly isolated NK cells. NK cells and DCs were cultured under the same
conditions described in Materials and Methods for proliferation assay. The
NK/DC ratio in the coculture was 10:1. Surface expression of two DC
maturation markers, CD25 (A) and CD83 (B), is shown for DCs gated ei-
ther as large (FSC, A) or CD11c� (B) cells. Left column: phenotype of the
immature (iDC) and mature DCs (mDC) added to the NK/DC cocul-
tures. Mature DCs were all positive for CD11c and CD83, and 70–80%
were CD25high. Immature DCs had low expression of CD83 and CD25.
Middle column: immature and mature DCs after 7 d without NK cells.
Right column: immature and mature DCs after 7 d with NK cells.
Around 10% of immature DCs expressed the mature DC phenotype
upon NK coculture. These data are representative of two experiments.

Figure 3. DCs induce cytolytic
function and IFN-� secretion by
DC-activated NK cells isolated from
blood. (A) NK cells were cocultured
with immature (iDC) or mature DCs
(mDC) for 7 d (the two panels to the
left) and then tested for cytolytic ac-
tivity against DCs and the standard
NK target, LCL721.221. The latter
and immature DCs were lysed com-
parably. In contrast, NK cells cocul-
tured with monocytes did not de-
velop any cytolytic activity. (B) NK
cells secreted IFN-� in response to
immature and mature DCs, but not
monocytes. Similar results after 7 d
coculture were obtained in three ex-
periments. The E/T ratio in these
experiments was 30:1.

 

tolytic activity, lysing the MHC class I–negative target,
LCL721.221 (Fig. 3 A). Immature DCs were lysed compa-
rably to the LCL (Fig. 3 A), even though the immature
DCs had high levels of MHC class I as reported (21), but
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The NKp30 Receptor Primarily Mediates the Activating Sig-
nal in DC Recognition by IL-2–activated NK Cells.

 

As the
NK-mediated killing of tumor as well as normal cells can
utilize a number of triggering receptors and coreceptors,
we analyzed whether mAb-mediated masking of these
receptors could affect the NK-mediated cytolysis of imma-
ture DCs. As shown in Fig. 5 A, the addition of anti-
NKp44 mAb had no effect on cytolysis, while some de-
gree of inhibition could be observed with anti-NKp46 and
anti-NKG2D mAbs. In contrast, a marked inhibition was
detected upon addition of anti-NKp30 mAb. Indeed, in
the presence of this mAb the NK-mediated cytolysis was
virtually abrogated. 2B4 and NKp80 have been shown to
function as coreceptors, rather than as true receptors, for
NK-mediated lysis. This coreceptor activity has been pri-
marily documented in association with NKp46. Although
immature DCs used as targets did not appear to express
CD48, i.e., the major ligand for 2B4, we could not ex-
clude the presence of still undefined ligand(s). Thus, we
further investigated whether the simultaneous addition of
mAbs to 2B4 or NKp80 to anti-NKp46 mAb could lead
to a more marked inhibitory effect. Fig. 5 A shows that
these coreceptors did not play any functional role in lysis
of immature DCs.

We also demonstrated that mature DCs after blocking of
MHC class I molecules with a HLA-A,B,C specific mAb,
were lysed by NK cells as efficiently as immature DCs (Fig.
5 B). Again the activation of IL-2–activated NK cells was
mediated by NKp30 and could be blocked by anti-NKp30
mAb (Fig. 5 B).

Then we tested if anti-NKp30 could block the expan-
sion of resting NK cells by DCs. Saturating amounts of an-
tibody were added to cultures at day 0, 2, and 4. Prolifera-
tion was assessed at day 4. Although this antibody reliably
ablated the lysis of DCs by activated NK cells (Fig. 5), it
did not block DC-induced expansion of resting NK cells
(not shown).

 

Activated NK/DC Interaction Leads to the Production of
IFN-

 

�

 

.

 

As important biological effects of NK cell trigger-
ing may also be related to cytokine production, we further
investigated whether IL-2–cultured NK cells also secrete
IFN-

 

�

 

 upon interaction with DCs. To this end, we ana-
lyzed both polyclonal NK cell populations and NK cell
clones. As shown in Fig. 6 A, activated NK cells exposed to
immature DCs released amounts of IFN-

 

�

 

 comparable to
those induced by NK cell interaction with K562, i.e., a tar-
get cell highly susceptible to NK-mediated lysis. Note that
neither NK cells nor DCs alone released substantial amounts
of IFN-

 

�

 

. Again, addition of anti-NKp30 mAb virtually ab-
rogated IFN-

 

�

 

 production. On the other hand, addition of
anti-NKp46 mAb had only a marginal inhibitory effect,
while anti-NKp44 mAb had no effect. Fig. 6 B shows data
obtained with a representative autologous NK cell clone.
Allogeneic NK clones that detect MHC class I levels

Figure 4. NK-mediated lysis of mature vs. immature DC. IL-2–acti-
vated autologous NK cells were tested in standard 51Cr release assay at
various E/T ratios. Both mature (mDC) and immature DC (iDC) were
analyzed. MHC class I	 LCL721.221 cells were used as an NK-sensitive
control. The data shown were obtained with a polyclonal NK population
cultured for 20 d in the presence of IL-2 (mean of triplicates).

Figure 5. Role of activating NK receptors and coreceptors in the lysis of
DCs. (A) IL-2–activated NK cells were analyzed for their cytolytic activity
against autologous immature DCs in the absence or in the presence of the
indicated mAb. The E/T ratio was 20:1. The experiment shown is repre-
sentative of six independent experiments and data are mean of triplicates.
(B) Black bars represent lysis of mature DCs; the white bar refers to the ly-
sis of immature DCs. Mature DCs display a higher susceptibility to NK-
mediated lysis after coating with anti-HLA class I mAb (A6136, IgM) and
NKp30 plays a major role in this lysis. The E/T ratio was 20:1. Data are
representative of two independent experiments performed in triplicates.
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through the CD94/NKG2A receptor and therefore differ-
ent HLA haplotypes with similar efficiency behaved the
same way (data not shown). Again a sharp inhibitory effect
could be documented only by the addition of anti-NKp30
mAb. Although not shown, mature DCs failed to induce
IFN

 

�

 

 production by activated NK cell lines and clones.

 

Discussion

 

In the mouse, there is recent evidence that DCs are able
to activate NK cells which in turn can retard the growth of
experimental tumors (22). We now find that human DCs
also have a major effect on resting NK cells from human
blood. DCs were able to induce proliferation and cytolytic
function for MHC class I low targets. Activated NK cells
also could kill MHC class I–positive DCs, but only imma-
ture DCs. This NK cell recognition was primarily through
the activatory NK receptor NKp30. In contrast to the in-
teraction of activated NK cells with DCs, NKp30 does not
seem to be involved in activation of resting NK cells by

mature or immature DCs. The costimulatory molecule
B7–1/CD80 (23–26) and several cytokines (IL-12 [27–29];
IL-15 [30–33]; and IFN�/� [34–38]) have been implicated
in NK activation, and early during infection, DCs can act
as a major source of these stimuli (39, 40). We consider cell
contact important in NK activation by DCs, as separation
of DC and NK populations in transwells inhibited the in-
teraction (data not shown). This is consistent with findings
in the mouse (22, 41).

Where does this NK activation take place in vivo? DCs
typically migrate from peripheral tissue to secondary lym-
phoid organs (1), whereas resting NK cells have been
found in peripheral blood, spleen and bone marrow (17,
42). We suggest that resting NK cells may be activated by
DCs in these compartments, rather than in the usual sites
for T cell activation, in lymph nodes. An increase of DCs
in peripheral blood would therefore signal inflammation or
pathogen encounter in the periphery and alarm NK cells.
In contrast, monocytes which are found in peripheral
blood in high numbers do not activate resting NK cells
(Figs. 1 and 3). After expansion and activation, the NK
cells can home to sites of infection in peripheral tissues. In-
deed, NK cells have been detected early in inflamed tissues
and are known to migrate in response to a number of
chemokines (17).

Activated NK cells can destroy virus-infected cells and
tumor cells that have downregulated MHC class I products
in order to escape T cell recognition (17, 22, 43–45). Espe-
cially in human Herpesvirus infections, low NK reactivity
has been associated with increased susceptibility to infec-
tion (46–48). The Herpesviruses, especially HSV and
CMV, encode gene products that interfere with MHC class
I antigen presentation escaping T cell surveillance (49).
Therefore, NK cells seem to be crucial in the immune con-
trol of these viruses and MHC class Ilow tumor cells. Our
findings suggest that mature DCs are able to activate NK
cells in vivo, although their site of action (or route of ad-
ministration in the case of DC-based immunotherapy)
needs to be worked out, as mentioned above.

Several groups have reported that activated NK cells can
kill immature, but to a lesser extent, mature DCs (50–53).
We could confirm these observations (Figs. 4 and 5) and
demonstrate that activated NK cells also secrete IFN-� in
response to immature DCs (Fig. 6). Recognition of imma-
ture DCs seems to be mainly mediated through the NK ac-
tivating receptor NKp30 and to a lesser extent by NKp46,
NKp44, and NKG2D (Figs. 4 and 5). In contrast the three
activating NK receptors NKp30, NKp44, and NKp46 syn-
ergize in tumor cell recognition (12) and the recognition of
mouse target cells by human NK cells is mainly mediated
by NKp46 (12, 54). Recently, NK recognition of mature
DCs has been reported to be mediated by NKp30 and
NKp46 (55). However, as mature DCs are protected from
NK lysis by high MHC class I surface expression (53; Fig. 5
B) and high MHC class I surface expression is actually a
characteristic of mature DCs (1, 56), we attribute the dif-
ferences between the study of Spaggiari and colleagues and
ours mainly to the different DC culturing conditions,

Figure 6. Activated NK cells produce IFN-� upon interaction with
autologous immature DCs. Polyclonal (A) or clonal (B) NK cell popula-
tions were cocultured with DCs in the absence or in the presence of the
indicated mAbs. The E/T ratio was 20:1. The K562 cell line was used as
positive control, IFN-� in the supernatants was detected by ELISA after
48 h. iDC: immature DCs; NK bulk: polyclonal NK population; clone
38: a representative NK cell clone; iDC � NK: NK cells cocultured with
DCs alone or in the presence of the indicated mAbs. Data shown are the
mean of triplicates. Similar results were obtained in five independent ex-
periments.
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achieving under the influence of only TNF� (55) a lower
degree of maturation.

Our data imply that DCs express one or more ligands for
NKp30. Lysis of immature DCs by IL-2 activated NK cells
is nearly completely abrogated by antibody blocking of
NKp30, while NKp44, NKp46, and NKG2D have only
little effect. These findings are also consistent with the pres-
ence of low levels of ligands for NKp46 and NKG2D.
While the NKp46 ligand is still unknown, we could ana-
lyze the expression of MICA and ULBP2, two of the
known ligands of NKG2D receptor. We found that imma-
ture DCs are MICA- and ULBP2-negative (unpublished
data). However, they could express low levels of other
known NKG2D ligands like MICB or ULBP1. Moreover,
immature DCs did not express CD48, the major 2B4
ligand (unpublished data). In this respect, DCs differ from
the other hematopoietic mononuclear cell populations. As
immature DCs have substantial MHC class I surface ex-
pression levels, the density of NKp30 ligand has to be
sufficiently high to overcome KIR-mediated inhibition of
IL-2–activated NK cells by immature DCs. We also dem-
onstrated that NK-mediated lysis of mature DCs is compa-
rable to the lysis of immature DCs after antibody blocking
of MHC class I molecules, disrupting the KIR/MHC class
I interaction. As in the case of immature DCs, lysis of ma-
ture DCs was NKp30 dependent. Taken together, these
data suggest that both immature and mature DCs express
high levels of NKp30 ligand and should be exploited for
the identification of this molecule.

Activation of resting NK cells by immature and mature
DCs could serve several purposes. Steady-state migration of
immature DCs could be involved in NK homeostasis,
while increased migration from inflammation sites of
mainly mature DCs would lead to fast NK cell expansion
and influx of activated NK cells. Killing of MHC class I ex-
pressing immature DCs by activated NK cells could have
several implications for the continuing immune response.
One possible function is to limit the generation of mature
DCs by removal of their precursors, the immature DCs.
This could limit the supply of DCs terminating the im-
mune responses after clearance of the infection. Another
possible outcome relates to recent information that imma-
ture DCs may induce IL-10–producing regulatory T cells
(57, 58). These T cells can suppress effector T cell func-
tions and could be counterproductive to clearance of the
pathogen or tumor. Removal of immature DCs by acti-
vated NK cells might be a way to prevent induction of sup-
pressor T cells specific for antigen at the site of inflamma-
tion. This study suggests a regulatory circuit between NK
cells and DCs, in which resting NK cells require DCs for
activation, and then limit DC function selectively at the
level of immature DCs.
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