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ABSTRACT

Replication of telomeres requires the action of
telomerase, the semi-conservative replication
machinery and the stabilization of the replication
fork during passage through telomeric DNA.
Whether vertebrate telomeres support initiation of
replication has not been experimentally addressed.
Using Xenopus cell free extracts we established a
system to study replication initiation within linear
telomeric DNA substrates. We show binding of
TRF2 to telomeric DNA, indicating that exogenous
DNA exclusively composed of telomeric repeats is
recognized by shelterin components. Interaction
with telomere binding proteins is not sufficient to
prevent a DNA damage response. Notably, we
observe regulated assembly of the pre-replicative
complex proteins ORC2, MCM6 and Cdc6 to
telomeric DNA. Most importantly, we detect
origin-dependent replication of telomeric sub-
strates under conditions that inhibit checkpoint
activation. These results indicate that pre-
replicative complexes assemble within telomeric
DNA and can be converted into functional origins.

INTRODUCTION

In vertebrates, telomeric DNA is composed of 5–50 kb of
repetitive arrays of TTAGGG. These sequences are
recognized by a protein complex called ‘shelterin’, which
is essential for telomere end-protection and length regula-
tion (1). Loss of telomeric proteins or shortening of
telomeres beyond a critical length triggers a DNA
damage response characterized by the recruitment of
DNA damage response proteins to telomeric ends and
the activation of checkpoints, which lead to senescence
or apoptosis (1). Complete and faithful replication of
telomeric DNA is essential to maintain chromosome
stability and for cell cycle progression. However, little is

known about the molecular mechanisms that underlie
replication initiation and progression of the semi-
conservative replication machinery through telomeric
DNA. Telomeres are challenging structures to replicate
due to their repetitive sequences and the structures they
can adopt including G-quadruplexes and heterochromatin
(2). In yeast and human cells, replication forks naturally
stall at telomeric DNA (3,4), indicating that telomeric
DNA is replicated slowly. TRF1 and TRF2 inhibit repli-
cation fork progression in an in vitro replication system of
SV40 DNA, (5), whereas in fission yeast, absence of Taz1
induces replication fork stalling and entanglement of
telomeres (4). In Saccharomyces cerevisiae, replication is
initiated within autonomously replicating sequences
(ARS), which are bound by the origin recognition
complex (ORC) in a sequence specific manner (6). The
origins used to replicate telomeric DNA lie in the
subtelomeric region and origins are not fired within
telomeric sequences (7,8). In contrast, initiation of DNA
replication in humans, Drosophila and Xenopus, is mostly
sequence independent and multiple factors including
sequence bias, chromatin structure, DNA methylation
patterns, transcriptional activities and protein chaperones
participate in the selection of replication origins (9).
Notably, binding of transcription factors increase site-
specific origin firing, indicating that the local chromatin
structure significantly affects origin selection (12). A
number of DNA substrates containing random DNA
sequences injected in Xenopus leavis eggs initiates replica-
tion efficiently at random locations (10,11). However, it
has not been shown that DNA templates adopting a
non-canonical chromatin structure including centromeric
or telomeric DNA replicate in Xenopus eggs. Recent
findings from studies in mammalian cells show that pre-
replicative complex (pre-RC) proteins localize to
telomeres through interaction to TRF2 (13,14). Whether
these pre-RCs represent functional origins is not known.
Cell-free extracts from X. laevis unfertilized eggs

contain nuclear and cytoplasmic proteins to support 12
cell divisions in the absence of transcription and have
been instrumental to the study of DNA transactions
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including DNA damage response and DNA replication
(15,16). When supplemented with sperm chromatin,
cytosolic extracts support nuclear assembly followed by
one round of cell cycle regulated, semi-conservative
DNA replication (17). Origin assembly starts with
binding of ORC proteins followed by Cdc6- and Cdt1-
dependent loading of MCM helicase. Geminin, a protein
that sequesters Cdt1 prevents origin assembly and origin-
dependent DNA replication (18). Protein kinases activate
this pre-RC to permit Cdc45, MCM10, GINS and
polymerases to load.
Xenopus embryonic cells replicate their genome in less

than 20min and a replication fork should not travel more
than 12 kb at a synthesis rate of 10 nt/s (19,20). Xenopus
telomeres range from 10 kb to over 50 kb (21), making
their replication originating uniquely from subtelomeric
origins problematic. Given their length and inherent diffi-
cult replication, it would be beneficial to establish active
origins within telomeric DNA.
To test this possibility, we used X. laevis cell-free

extracts supplemented with exogenous linear DNA
substrates containing exclusively telomeric repeats. We
show that these substrates are specifically bound by
TRF2, support the regulated assembly of pre-RC
components and undergo origin-dependent DNA replica-
tion. Binding of shelterin components, however, is not
sufficient to prevent a DNA damage response induced
by the relatively short telomeric substrates. We establish
that telomeric DNA supports the assembly and activation
of functional origins.

MATERIALS AND METHODS

Cell free extracts

Cell-free extracts from unfertilized Xenopus eggs were
prepared as described (28).

Cloning of non-telomeric substrate

A non-telomeric (NT) control plasmid pRST5_NT was
generated by PCR amplification of positions 666–1254
of Xenopus XLX gene and cloned into the HindIII and
BamHI restriction sites of pRST5.

Preparation of biotinylated substrates

One microgram of telomeric or NT DNA fragment (gel
extracted from BsmBI and HindIII digested pRST5 or
pRST5_NT, respectively) was end-labeled with 1U T4
polymerase in the presence of 33 mM each of dATP,
dGTP, dTTP and biotin-dCTP for 15min at 12�C.
Reactions were stopped by addition of 50mM EDTA
and incubated at 76�C. Labelled DNA was purified
using PCR purification kit (Qiagen) and quantified by
photospectrometry.

Pull-down experiments

Three hundred nanograms of end-labeled 0.6 kb
linear NT or exclusively telomeric DNA was bound
to 10 ml Streptavidin-bound magnetic beads according to
the supplier (Dynal). Washed beads were resuspended in

11 ml dH2O. One microliter was analyzed on gel
electrophoresis using SYBR-gold to visualize bound
DNA to quantify binding efficiency. In total, 5–10ml
beads were incubated with 90 ml egg cytosol (LSS) at a
final concentration of 3x109 double strand breaks
(DSB)/ml for 20min at 22�C. Beads were pelleted in a
table top centrifuge for 10 sec at 1500 rpm prior to sepa-
ration from the supernatant on a magnet. Beads were
washed four times with 200 ml ELB, 0.2% Triton-X and
resuspended in 10 ml Laemmli buffer for SDS-PAGE
analysis. Pull-down experiments in the NPE system were
performed by incubating 2 ml membrane-free egg cytosol
(HSS) supplemented with energy mix (10mM Creatin
phosphate, 10 mg/ml Creatin kinase, 2mM ATP, 2mM
MgCl2, 5mM HEPES, pH 7.5, 1mM DTT) for 30min
in the presence of 150 ng bead-bound 0.6 kb linear DNA
and either buffer control or 100 ng/ml geminin. Two-fold
volumes of NPE extract supplemented with energy mix
was added and incubation continued for 25min prior to
processing as described above.

Western blot analysis

One microliter of extract was diluted in loading buffer,
electrophoresed, transferred to nitrocellulose and probed
with polyclonal antibodies specific for Xenopus TRF2
(a generous gift from Dr Ishikawa), Cdc6, Orc2, MCM6
(48), Mre11 (25), ATM (26), Nbs1 (a generous gift of
Dr H. Lindsay) and human Ku70 (MMS-263R,
Covance) and P-Chk1 (Ser345 polyclonal, Cell
Signaling). Bead bound substrates were directly dissolved
in 10 ml loading buffer.

Preparation of NHEJ substrates

In total, 0.6 kb of telomeric substrate was excised from
pRST5 by DdeI and BsmBI digestion. NT fragment was
excised by HindIII and BsmBI. Digested products were gel
extracted.

NHEJ assays

A typical NHEJ reaction consisted of 9 ml egg cytosol
(LSS) and 1 ml DNA substrate. Samples were incubated
at 17�C for 2.5 h. Reactions were stopped by the addition
of 200 ml stop solution (10mM Tris, pH 7.5, 5mM
EDTA and 1% SDS) and digested with 1mg/ml
proteinase K (Roche) at 50�C for 1 h. DNA was Phenol-
Chloroform extracted and Ethanol precipitated. DNA
pellets were resuspended in 10 ml TE, pH 7.5. 2–5 ml
of extracted DNA was separated on a 0.7% native
Agarose gel.

Southern blot analysis

Agarose gels were depurinated in 0.2M HCl for 10min
and washed briefly with dH2O. DNA was denatured
by incubating the gel in 100ml 1.5M NaCl, 0.5M
NaOH for twice 15min and neutralized in 1.5M NaCl,
1M Tris, pH 7.4 for twice for 15min. DNA was trans-
ferred on Nylon membranes (Hybond-XL, Amersham) by
capillary blotting in 10� SSC and membranes were UV-
crosslinked. NT probes were prepared by random labeling
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of 10 ng of pRST5_NT in the presence of 50 mCi
(a-32P)dCTP and hybridized in Hybridisation buffer at
60�C overnight. Telomeric probes were generated by
50-end-labelling of 100 pmol of a (C3TA2)6 oligonucleotide
with 5U of PNK in the presence of 50 mCi of (g-32P)dATP.
Hybridisation was for 3 h at 50�C. Membranes were
rinsed with 2� SSC, 0.1% SDS and washed twice
with 0.5� SSC, 0.1% SDS for 20min and once with
0.1� SSC, 0.1% SDS. Membranes were exposed
to a phosphorimager and signals quantified using
ImageQuant. For quantification, the mean value from
three independent experiments of the ratio between LD
and LM was calculated from dilutions 3� 109, 109 and
3� 109 DSB/ml.

Replication assays

Caffeine (Sigma) was dissolved in 10mM PIPES. Five
nanograms of pRST5_NT linearized with BsmBI or 5 ng
of a 0.6 kb NT or telomeric fragment excised with HindIII
and BsmBI from pRST5 or pRST5_NT, respectively, was
incubated with membrane-free egg cytosol (HSS) supple-
mented with energy mix for 30min in the presence of
either buffer control, 5mM caffeine, 100 ng/ml geminin
or caffeine and geminin together at 22�C. Two-fold
volumes of NPE extract supplemented with energy mix
and 0.1ml (a-32P)dCTP was added and incubation
continued for 1 h. Reactions were stopped by addition of
200 ml stop solution (10mM Tris, pH 7.5, 5mM EDTA
and 1% SDS) and incubated with 1mg/ml proteinaseK at
50�C for 1 h. Samples were phenol-chloroform extracted
and ammonium acetate precipitated in the presence of 5 mg
Glycogen. Precipitated DNA was resuspended in 10 ml TE
and half of the reaction was separated on a 1% native
Agarose gel and fixed in 50% TCA for 30min before
squeezing the gel and drying under vacuum. Gels were
exposed to a phosphorimager screen and signals were
quantified using a phosphorimager and ImageQuant
software.

RESULTS

Generation and characterization of telomeric substrates

Because telomeres only represent a minor part of chromo-
somal DNA and are composed of the same repeated
sequence elements, mapping telomeric sites of DNA rep-
lication initiation using current technologies has been
challenging. To circumvent this limitation, we established
a system to monitor replication of linear DNA substrates
with defined sequence compositions and to characterize
the proteins they are associated with. To prepare telomeric
DNA substrates, the 96 telomeric repeats present in
pRST5 were excised by restriction digest with HindIII/
BsmBI (Figure 1A). This generates 0.6 kb long linear
substrates, which contain exclusively telomeric DNA. To
characterize proteins bound to DNA, the 50 overhangs
were filled-in with T4 DNA polymerase, dNTP’s and
biotinylated dCTP, which labels the 30-end of the C-rich
strand and leaves the opposite end blunt and unlabeled.
Biotinylated substrates were immobilized on streptavidin
beads before addition to extracts. A control plasmid

(pRST5_NT) yields a NT DNA sequence of similar
length upon restriction digest.
Using these short biotinylated NT or telomeric (T)

DNA substrates immobilized on beads, we first monitored
binding of associated proteins. The telomere binding
protein TRF2 was specifically enriched on the telomeric
substrate (Figure 1B, lane 5), indicating that these
templates are recognized as telomeric DNA. The conser-
vation of a stable multiprotein telomeric complex
throughout different species (1,22) and the high
homology between Xenopus and human TRF1 and
TRF2 (23) supports the idea that a stable multisubunit
telomeric complex also exist in Xenopus and that other
components of the TRF2 complex were bound to
telomeric sequences. Notably, incubation of bead-bound
DNA did not deplete TRF2 from the supernatant
(Figure 1B, lane 2), indicating that the amount of TRF2
present in extracts is not rate-limiting for the amount of
DNA used. Our observations are consistent with the
reported binding of 35S-labeled xTRF1 protein to
telomeric DNA in cell-free extracts (23).
Linear DNA substrates incubated in cytosolic extracts

are recognized as DNA double-strand breaks (DSBs) and
induce a rapid DNA damage response, which is
characterized by recruitment of the Mre11/Rad50/Nbs1
(MRN) complex to DNA ends followed by activation of
ATM at sites of DSBs, cell cycle checkpoint activation
and repair of broken DNA through NHEJ (24–26).
Interestingly, a number of DNA damage response
proteins including ATM, MRN, Ku70/80 heterodimer,
DNA-PKcs, ERCC1 and RAD51 associate with telomeres
during a normal cell cycle and are important for telomere
protection and telomere length homeostasis (1,27). We
monitored binding of DNA damage proteins to the
0.6 kb linear telomeric substrates compared to NT
control DNA. As expected, we observed ATM, Mre11
and Ku70 assembly on NT DNA (Figure 1B) and consis-
tent with previous observations, the binding of repair
proteins to telomeric DNA, which occurred with similar
efficiency.

Origin-dependent assembly of pre-RC components
on telomeric DNA

Next, we wanted to determine whether components of the
pre-replicative complex assemble onto telomeric DNA.
We incubated the immobilized 0.6 kb biotinylated
telomeric and NT DNA substrates in cytosolic extracts
for 20min and monitored binding of pre-RC components.
ORC2, Cdc6 and MCM6 proteins loaded on NT and
telomeric DNA with similar efficiency (Figure 2A, lanes
4 and 5), indicating that neither the structure and
the sequence of the DNA, nor the presence of the
shelterin component TRF2 influence significantly pre-
RC assembly.
Next, we wanted to determine whether the assembled

pre-RC proteins could be converted into pre-initiation
complexes that support origin firing and DNA replication.
Cytosolic extracts faithfully recapitulate DNA damage
signaling and pre-RC assembly but fail to support
origin-dependent replication of small DNA templates.
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We therefore turned to a two-step cell-free extract system
that uses concentrated nuclear extract (NPE), which
contains high kinase activities to support conversion of a
pre-RC into a functional initiation complex on plasmid
DNA templates (28). Previous studies showed that
MCM3 and ORC2 load on linear dsDNA templates as
short as 100 bp in length and addition of NPE converts
DNA templates into functional pre-initiation complexes
as seen by binding of Cdc45 (29). This suggests that the
relatively short length of our substrates (600 bp) should
allow us to assess DNA replication initiation. We moni-
tored the binding of pre-RC proteins following incubation
of immobilized DNA substrates in NPE (Figure 2B).
Consistent with the results obtained with cytosolic
extracts (Figures 1B and 2A), TRF2 was enriched on
telomeric substrates and similar levels of ORC2 and
MCM6 assembled on both templates (Figure 2B, lanes 4
and 5) A non specific protein signal from the Ponceau
stain was used to normalize the signals for quantification
(Figure 2C). Importantly, treatment with geminin, which
prevents the assembly of MCM proteins through seques-
tering Cdt1 (18), abolished MCM but not ORC loading,
as anticipated (Figure 2B, lanes 7 and 8). Our observations
establish that the presence of TRF2 on DNA does not
interfere with assembly of a pre-RC and suggest that cell
cycle regulated loading of MCMs to telomeric DNA and

to bona fide origins are regulated by similar mechanisms.
It further indicates that pre-RC assembly to telomeric
DNA is not due to non-specific binding to telomeric
chromatin. We consistently observe increased ORC2
loading in geminin treated extracts, with a more pro-
nounced ORC2 association on NT DNA substrates
(Figure 2C). It is possible that TRF2 or other shelterin
components are modulating some of the steps during
pre-RC assembly. Overall, our data are consistent with
in vivo studies showing cell cycle regulated assembly of
pre-RC proteins to telomeres (13) and with the recent
report of active origins within telomeres in mouse
embryo fibroblasts (30).

A number of components of the DNA damage response
including ATM, Nbs1/Mre11/Rad50 or PARP1 harbor a
conserved FxLxP motif and bind TRF2 via its TRFH
protein docking site (31). To assess a potential role for
these DNA damage response proteins in pre-RC
assembly, we immunodepleted Mre11 and ATM from
cytosolic extracts and monitored binding of MCM6,
ORC2 and Cdc6 to immobilized substrates. ATM or
Mre11 depletion did not affect the assembly of pre-RC
components (Supplementary Figure S1). Due to the lack
of antibodies to quantitatively deplete TRF2 from
extracts, we were not able to test whether TRF2 is
involved in assembly of a pre-RC.
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Linear DNA substrates can replicate in Xenopus extracts

To assess the functional significance of pre-RC assembly
we sought to establish conditions that support initiation-
dependent DNA replication of linear DNA substrates
in Xenopus extracts. Small circular plasmids can be
replicated in the two-step cell-free NPE extract system
but it has not been reported whether this system also
supports replication of linear DNA substrates. We
anticipated that the ends of linear DNA templates
would be sensed as DSBs. Broken DNA triggers a DNA
damage response that interferes with origin firing due to
activation of ATM/ATR checkpoint kinases, which
inhibit the S-phase kinase Cdk2 (32). When a 3.5 kb
linear NT DNA substrate was incubated in NPE in the
presence of 32P-dCTP, we detected incorporation of
radiolabelled nucleotides (Figure 3A, lane 1). Treatment
with caffeine, an inhibitor of the ATM/ATR protein
kinases, significantly enhanced the signal as predicted
(Figure 3A, lane 2 and Figure 3B). This strongly
suggests that nucleotide incorporation was restricted by
checkpoint activation and that the caffeine-sensitive
signal is the result of origin-dependent DNA replication.
Geminin, which specifically inhibits origin assembly and
firing but does not affect DNA repair, abolished the
caffeine-sensitive DNA synthesis (Figure 3A, lanes 3 and
4 and Figure 3B). The high molecular weight molecules
that appeared in addition to the linear plasmid suggest
that DNA ligation, most likely through NHEJ, was

taking place in extracts (25). Electrophoresis of the repli-
cation products on denaturing gels partially resolves the
labeled products (Figure 3A, bracket on the left) into
discrete bands, similar to products detected in NHEJ
reactions (see below and data not shown), indicating
that repair through end-joining contributes to formation
of the high molecular weight products. Quantification of
replicated DNA substrates revealed that 23% of input
linear DNA substrate was replicated, compared to 50%
of input circular plasmids (data not shown). Nucleotide
incorporation was inhibited by treatment with the Cdk2
inhibitor Roscovitine, confirming that nucleotide synthesis
resulted from origin-dependent DNA replication
(Supplementary Figure S2, lanes 3 and 4). DNA replica-
tion was strictly dependent on exogenous DNA templates
(Supplementary Figure S2, lane 5). Taken together, our
results show that linear DNA substrates can replicate in
this Xenopus extract system.

Origin-dependent replication of telomeric DNA

Next, we performed replication assays using untagged
linear 0.6 kb NT or telomeric DNA templates. Both
substrates incorporated radiolabelled nucleotides (Figure
4A, lanes 1 and 5) and caffeine treatment reproducibly
enhanced the signal significantly (Figure 4A, lanes 2 and
6; 4B), suggesting that DNA synthesis was restricted by
checkpoint activation, as observed in Figure 3. Next, we
wanted to confirm that a caffeine-sensitive checkpoint
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affecting origin-dependent DNA replication was limiting
DNA synthesis. Indeed, addition of geminin largely
abolishes incorporation of 32P-dCTP (Figure 4A, lanes 4
and 8; Figure 4B). This strongly suggests that active
origins assemble and fire within DNA composed
exclusively of telomeric repeats and that, under our exper-
imental conditions, their activity is limited by a caffeine
sensitive DNA damage checkpoint. We observed that the
caffeine-insensitive nucleotide incorporation (Figure 4A,
lanes 1 and 5) was not decreased by geminin treatment
(Figure 4A, lanes 3 and 7). We propose that this origin-
independent DNA synthesis could be due to processing
events at DNA termini. Quantification of the replication
efficiency reveals that 5% (NT) and 7% (T) of the 0.6 kb
substrates replicated, compared to 23% for the linear
3.5 kb substrates. Thus, origin-driven DNA replication is
less efficient for small than for long linear templates and
the geminin-resistant signal represents a larger fraction of
nucleotide incorporation for short templates. End

processing and ligation of the linear substrates by NHEJ
could also account for the more complex pattern of
nucleotide incorporation of short substrates (compare
Figures 3A and 4A and also see Figure 5A). We also
observe �1.4 fold higher efficiency of replication of
telomeric versus NT short substrates. The reason for this
difference is not entirely clear but could indicate a role of
shelterin components in stabilization of the replication
fork on passage through telomeric DNA.

Short telomeric DNA substrates are repaired by NHEJ
and induce a DNA damage response

To test the possibility that initiation-independent
DNA synthesis was coupled to repair by non-homologous
end-joing (NHEJ), we monitored the formation of
repair products by Southern blot analysis. Linear DNA
templates are efficiently repaired by NHEJ in Xenopus
extracts (33). End-joining is very robust and independent
of the nature of the end termini (25). Upon incubation of
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the linear 0.6 kb unlabelled DNA substrates in cytosolic
extracts, we observed formation of linear dimer (LD) and
multimer (M) products with similar efficiency for NT and
telomeric DNA (Figure 5A). Dilution of the DNA did not
affect the repair patterns, suggesting that depletion of
telomere binding proteins is not the explanation for the
failure to protect telomeres. Quantification of the ratios
between linear dimers (LD) and linear monomers (LM)
indicated that ligation was at least as efficient for telomeric
as for NT substrates (Figure 5A). These findings differ
from recent experiments in mammalian cell extracts
where stretches of 12 telomeric repeats at the ends of
linear plasmid DNA were sufficient to protect linear
substrates from NHEJ (34). Next, we performed NHEJ
assays with 3.5 kb DNA substrates that harbor a stretch
of 75 TTAGGG repeats at one end only (Supplementary
Figure S3). We observed efficient intra- and intermolec-
ular end-joining, regardless of the sequence of the
substrate. The difference between our observations and
previously described results could reflect the fact that
Xenopus cytosolic extracts support efficient NHEJ regard-
less of end termini unlike mammalian cell-free extracts
that repair primarily compatible ends with lower efficiency
(35). In addition, it has been shown that intra-molecular
end-joining in Xenopus extracts is dependent on Ku70
(25,36), whereas inter-molecular end-joining in Xenopus
is not (25) and might reflect non-canonical (i.e. alternative)
NHEJ pathways.

Telomeric substrates generated less sharp repair
products possibly due to processing events occurring spe-
cifically at telomeric DNA and is consistent with the
appearance of higher molecular bands appearing in the
replication gels in Figure 4A. These events could include
microhomology-directed end-joining (MMEJ) favored

by the high degree of homology along the telomeric
DNA templates (37). Priming events on a single
stranded overhang generated by telomerase (23) could
also contribute to the extension of telomeric substrates
(Figure 5A) and geminin-insensitive nucleotide incorpora-
tion (Figure 4).
Our observation that telomeric DNA could be

repaired by NHEJ prompted us to determine whether
these telomeric substrates could trigger a DNA damage
response. As predicted, NT DNA substrates induced
phosphorylation of Nbs1 and Mre11 at concentrations
higher than 108 ends/ml (Figure 5B, lanes 1–4). Notably,
we observed a similar response induced from telomeric
ends (Figure 5B, lanes 5–8). We also observed caffeine
sensitive phosphorylation of Chk1 (Figure 5C), suggesting
that ATM/ATR kinases are involved in the signal
transduction. Overall, our data indicate that assembly of
telomeric proteins on a 0.6 kb telomeric DNA-only
fragment is not sufficient to establish telomere protection
in Xenopus cell extracts. This suggests that other process-
ing events such as the generation of a single stranded
overhang are required to establish a protective end-
structure. We propose that the short substrates used
here might reflect a deprotected state as it is often linked
to critically short telomeres (38,39). The induction of a
DNA damage response however, does not interfere with
the assembly of a pre-RC (Figure 2).

DISCUSSION

Xenopus cell-free extracts can support assembly and repli-
cation of at least 10 000 nuclei/ml. Given a telomere length
of 50 kb, this represents 4�107 kb telomeric sequences/ml
and would correspond to 8�107 DNA molecules/ml for a
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– – –

1 2 3 4 5 6 7
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3x107
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3x109
109 1083x108

3x107
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LD/LM 0.460.31
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109 1083x108
3x107

109 1083x108
3x10

7

NT T

B DSB

Nbs1
P-Nbs1

DSB/µl

Mre11
P-Mre11

ATM

1 2 3 4 5 6 7 8 9 10

Figure 5. Short telomeric substrates activate a DSB response and are repaired by NHEJ. (A) Southern blot analysis of NHEJ-mediated repair
products. In total, 0.6 kb of untagged NT or telomeric DNA was added to cytosolic extracts for 150min. Reactions were processed for native agarose
gel electrophoresis before transfer onto a Nitrocellulose membrane. Telomeric substrates are hybridized with a 50 32P-labeled (CCCTAA)6
oligonucleotide and NT substrates with random labeled pRST5_NT. LM linear monomer, LD linear dimer, M multimers. Signals from three
independent experiments were quantified by phosphorimager analysis and expressed as ratios of the LD to LM. (B) Immobilized NT or telomeric
DNA was incubated with cytosolic extracts at indicated concentrations and activation of DNA damage response proteins in the soluble fraction was
monitored by western blotting. Lane 9, buffer control, lane 10, 2 ng/ml HaeII-digested pBS was added. (C) Immobilized NT or telomeric DNA was
incubated with cytosolic extracts at 2� 109DSB/ml and checkpoint activation in the soluble fraction was monitored by western blotting using an
antibody against phosphorylated Chk1. Beads only, lane 5, 2 ng/ml HaeII digested pBS, lane 6, buffer control, lane 7.
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600 bp long DNA substrate. Here, we have developed a
system to study proteins assembled on telomeric DNA
substrates independent from other sources of DNA and
at concentrations close to these physiological levels of
telomeric DNA (Figure 5). Exogenous telomeric DNA
fragments can be added to X. laevis cell-free extracts
and are specifically bound by TRF2 (Figures 1 and 2),
an aspect of telomere biology that is fully recapitulated.
Furthermore, Xenopus extracts support origin-dependent
DNA replication of linear DNA substrates (Figures 3 and
4). Therefore, this system represents a powerful tool to
study various aspects of telomere biology by allowing to
use physiological amounts of telomeric DNA substrates
in a soluble environment that contains nucleoplasmic
proteins.
Using this approach we investigated whether telomeric

DNA supports replication initiation. Our data show that
DNA templates containing uniquely telomeric sequences
and bound by TRF2 support origin-dependent initiation
of DNA replication in Xenopus cell-free extracts
under conditions close to physiological levels of natural
telomeres. We also show that ATM and Mre11, two
shelterin accessory factors, are not involved in the regula-
tion of pre-RC assembly. These novel observations
suggest that in Xenopus and possibly in other organisms
harboring long telomeres, origins of DNA replication can
assemble and could fire within telomeric DNA (Figures 2
and 4). Indeed, origin firing within telomeres was recently
reported in mouse embryo fibroblasts by single molecule
analysis of replicated telomeres. The fraction of telomeres
that displayed active origins was small (3%), suggesting
that in mouse embryo fibroblasts the majority of replica-
tion forks travel from subtelomeric origins into telomeric
DNA (30).
It has been proposed that the localization of a pre-RC

to telomeres is cell cycle regulated and could be influenced
by telomere structure (14). We find that localization of
pre-RC components to telomeric DNA does not require
a native telomere structure, e.g. the presence of a single
stranded overhang or the formation of a T loop. This
would permit assembly of pre-RCs away from the ends
of natural telomeres that represent only a minor fraction
of total telomeric DNA. Indeed, within a native 5–50 kb
long vertebrate telomere, the 30 overhang and/or the for-
mation of a D-loop only accounts for a small portion of
the total telomeric complex.
The exact functional relationships between TRF2 or

other shelterin components and pre-RC assembly and acti-
vation are not fully understood. TRF2 is associated to
telomeres throughout the cell cycle (23,40). Here, we
show that pre-RC assembly on telomeric DNA is inhibited
by geminin and therefore regulated in a cell cycle depen-
dent manner, as in human cells (13). Human ORC1 phys-
ically interacts with the amino terminal domain of TRF2
and down-regulation of either TRF2 or ORC1 results
in lower levels of pre-RC assembly within telomeric
DNA (13,14). The former suggests that pre-RC assembly
is influenced by the formation of proper telomeric
chromatin. Conversely, ORC2 depletion by siRNA or
hypomorphic cell lines for ORC2 display loss of telomere
repeat DNA (14), indicating that pre-RC components are

involved in telomere length homeostasis. Telomere insta-
bility in the absence of ORC could also be explained by
collapsed replication forks within telomeres, which cannot
be rescued by a neighboring origin. While our results dem-
onstrate cell cycle regulated assembly of a pre-RC, we
cannot exclude that shelterin components are involved in
some of the steps of pre-RC assembly or the stabilization of
a replication fork that travels through telomeric DNA. In
fact, recent data in mammalian cells demonstrate that
TRF1 is required for efficient replication through telomeric
DNA and prevents replication fork arrest (30).

The genome in Xenopus eggs replicates within 20min,
which requires a very efficient and fast duplication of
the 5–50 kb long Xenopus telomeres. Mammalian
telomeres, in contrast, replicate their telomeres through-
out S phase in an average of 6–8 h (41). Therefore,
Xenopus chromosomes must have the ability to complete
faithful replication of their telomeres in a short amount of
time. This task is complicated by the fact that the repeti-
tive G-rich regions within telomeric DNA are difficult
stretches to replicate and result in higher frequencies of
stalled replication forks (3,4). Consequently, additional
factors including DNA helicases that stabilize passage of
a replication fork and prevent secondary structure forma-
tion are required for telomere replication (4,42). In vivo
studies in other eukaryotes showed that one single short
telomere induces cell cycle arrest (43), which indicates a
tight requirement for complete replication of telomeric
DNA. Stalled replication forks within chromosomal
DNA can be repaired by several pathways including
break-induced replication or homologous recombination.
However, the recombinogenic potential within the repeti-
tive sequence of telomeres is repressed by the action of
shelterin components (44) in order to prevent recombina-
tion events that could yield short telomeres, which can
affect the proliferative life span of cells. Furthermore,
unlike other chromosomal regions, where DNA synthesis
from a collapsed polymerase can be completed by adjacent
replication forks, a stalled polymerase traveling from
subtelomeric regions towards the end of the telomeres
could not. Therefore, restoring of stalled replication
forks is likely to occur through a different mechanism.
In a NT DNA context, replication fork stalling triggers
the activation of surrounding dormant origins (45,46), a
mechanism that could apply to telomeres to solve the
‘random completion’ problem there (47). Our data dem-
onstrate that the levels of pre-RC components recruited to
telomeric DNA and the efficiency of replication is compa-
rable to substrates containing a random DNA sequence.
Thus, in Xenopus, origin firing within telomeric DNA may
occur at least as efficient as in NT DNA. The presence of
multiple origins within telomeric DNA should provide a
mechanism to replicate telomeres more rapidly and/or
to compensate for failing replication forks originating in
sub-telomeric regions.
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Supplementary Data are available at NAR Online.
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