
178
  © 2011 S. Karger AG, Basel

 Original Paper 

 Nephron Extra 2011;1:178–189 

 Crosstalk between Smad and Mitogen-
Activated Protein Kinases for the 
Regulation of Apoptosis in Cyclosporine A-
Induced Renal Tubular Injury

  Hideyuki Iwayama    a     Tatsuo Sakamoto    a     Akihiro Nawa    b     

Norishi Ueda    c 

  Departments of  a  
  Pediatrics,  b  

  Gynecology and Obstetrics, and  c  
  Developmental Pediatrics, 

Nagoya University Graduate School of Medicine,  Nagoya , Japan

  
 

 Key Words

  Apoptosis  �  Cyclosporine nephrotoxicity  �  Epidermal growth factor  �  Mitogen-activated 

protein kinases  �  Smad

  Abstract

   Background/Aims:  It remains elusive whether there is a crosstalk between Smad and mitogen-

activated protein kinases (MAPKs) and whether it regulates cyclosporine A (CyA)-induced apo-

ptosis in renal proximal tubular cells (RPTCs).  Methods:  The effect of CyA on nuclear transloca-

tion of Smad2/3 and MAPKs (measured by Western blotting or immunofluorescence) and 

apoptosis (determined by Hoechst 33258 staining) was examined in HK-2 cells.  Results:  CyA in-

duced apoptosis at 24 h and nuclear translocation of phosphorylated (p)-Smad2/3 at 3 h, which 

was continued till 24 h. CyA enhanced the expression of p-ERK at 1 h, which was continued till 

24 h, and of p-p38MAPK at 1–6 h, which returned to control level at 12 h. CyA did not affect JNK. 

An inhibitor of ERK, PD98059, prevented CyA-induced nuclear translocation of Smad2/3 and 

apoptosis. An inhibitor of p38MAPK, SB202190, deteriorated CyA-induced nuclear translocation 

of p-Smad2/3. Epidermal growth factor (EGF) activated ERK and p38MAPK but not JNK. EGF-

induced activation of MAPKs ameliorated CyA-induced nuclear translocation of p-Smad2/3 and 

apoptosis. Inhibition of p38MAPK but not of ERK abolished the protective effect of EGF on CyA-

induced nuclear translocation of p-Smad2/3 and apoptosis.  Conclusion:  Crosstalk between 

R-Smad and p38MAPK/ERK, but not JNK differentially regulates apoptosis in CyA-induced RPTC 

injury.   Copyright © 2011 S. Karger AG, Basel
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  Introduction

  Cyclosporine A (CyA) has been used for the treatment of various diseases and transplan-
tation. Nephrotoxicity is one of the major adverse events of CyA. Acute CyA nephrotoxicity 
is caused by renal vasoconstriction, resulting in renal dysfunction, and reversible when CyA 
administration is diminished or withdrawn  [1] . Chronic nephrotoxicity is irreversible and 
associated with interstitial cell infiltration, fibrosis, or apoptosis in renal proximal tubular 
cells (RPTCs)  [2, 3] . The Bcl-2 family members and caspases have been shown to play a role 
for CyA-induced apoptosis in RPTCs  [3] . However, other cellular and molecular mechanisms 
of CyA-induced RPTC injury remain elusive, and thus no therapeutic modality preventing 
the nephrotoxicity is available.

  Binding of transforming growth factor- �  (TGF- � ) to TGF � RII, its type II membrane 
receptor, activates type I receptors, resulting in phosphorylation of receptor-activated Smad 
(R-Smad, Smad2/3) in the cytoplasm  [4, 5] . Phosphorylated (p)-R-Smad binds to common 
mediator Smad, Smad 4, and these complexes translocate into the nucleus, where they induce 
transcription of many genes, resulting in the regulation of cell growth, proliferation, and 
apoptosis  [5] . TGF- �  has been postulated to play a role in CyA-induced nephrotoxicity  [1, 2]  
since CyA increased the expression of TGF- �  in rat kidneys  [2]  and renal biopsy specimens 
from patients with CyA nephrotoxicity  [4]  and release of TGF- �  1  from RPTCs  [6] . In addi-
tion, TGF- � -neutralizing antibody ameliorated CyA-induced apoptosis  [2] .

  Mitogen-activated protein kinases (MAPKs), consisting of extracellular signal-regulated 
kinases 1 and 2 (ERK1/2), p38MAPK, and c-Jun N-terminal kinases (JNK1/2/3), can regulate 
apoptosis in a variety of cells  [5] . Recent studies have shown a crosstalk between Smad and 
MAPKs in various cells  [5] . For example, ERK phosphorylates R-Smad, resulting in inhibi-
tion or enhancement of nuclear translocation of R-Smad  [5] . p38MAPK phosphorylates 
R-Smad, resulting in increased transcription of R-Smad  [7] . In addition, JNK regulates nu-
clear translocation of R-Smad or indirectly affects its phosphorylation  [8] .

  On the other hand, CyA has been shown to reduce the expression of epidermal growth 
factor (EGF) in rat kidneys  [9]  and dysfunctioning allograft kidneys  [10] , suggesting a role 
for EGF in CyA nephrotoxicity. Binding of EGF to its receptor, EGFR, activates the intrinsic 
protein tyrosine kinase of EGFR, which regulates downstream cascades, including MAPKs 
 [11] . In fact, EGF can protect apoptosis through activation of MAPKs in various cells in re-
sponse to stimuli  [9, 11] .

  It remains elusive whether there is a crosstalk between Smad and MAPKs, and if so, 
whether it regulates apoptosis in CyA-induced RPTC injury. It is also unknown whether EGF 
regulates apoptosis through a crosstalk between Smad and MAPKs in CyA-induced RPTC 
injury. The present study was undertaken to examine the role of crosstalk between Smad and 
MAPKs and its modulation by EGF in the regulation of CyA-induced apoptosis in RPTCs. 

  Materials and Methods

  Materials
  CyA was a gift from Novartis Pharma (Tokyo, Japan). The following reagents and anti-

bodies were purchased: fetal bovine serum, Dulbecco’s modified Eagle’s medium/nutrient 
mix F12 (DMEM/F12) and Alexa Fluor �  488 goat anti-rabbit antibody (Invitrogen, Carlsbad, 
Calif., USA); p38MAPK inhibitor, SB202190, and Hoechst 33258 (Sigma, St. Louis, Mo.,
USA); antibodies for p-Smad2, p-Smad3, Smad2, Smad3, p-ERK1/2, ERK1/2, p-p38MAPK, 
p38MAPK, p-JNK1/2/3, histone H3, and an inhibitor of ERK, PD98059 (Cell Signaling Tech-
nology, Beverly, Mass., USA); recombinant human EGF (R&D Systems, Minneapolis, Minn., 
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USA); Fluoromount (Diagnostic Biosystems, Pleasanton, Calif., USA); protein assay kit (Bio-
Rad, Hercules, Calif., USA); Amersham ECL Western blotting detection reagents (GE Health-
care, Little Chalfont, UK), and Lab-Tek II 8-chamber glass slides (Nunc, Naperville, Ill., USA).

  Cell Culture
  HK-2 cells (American Type Culture Collection, Manassas, Va., USA), human RPTCs, 

were maintained at 37   °   C and 5% CO 2  in DMEM/F12, containing 10% fetal bovine serum, 
 L -glutamine (2 m M ), hydrocortisone (36 ng/ml), and HEPES (20 m M ). Cells of passages 4–20 
were used. 

  CyA Treatment
  CyA was prepared as a stock solution (21 m M ) in DMSO. The concentration of CyA 

(0.42–42  �  M ) was chosen because it is relevant to that in the kidney  [6] . Cells were main-
tained in a serum-free medium for 1 h and exposed to CyA in the same condition. The final 
concentration of DMSO, 0.2% (v/v), did not induce apoptosis in HK-2 cells.

  Measurement of Apoptosis
  Cells cultured on 8-chamber glass slides were washed with phosphate-buffered saline 

(PBS), fixed with 4% (v/v) paraformaldehyde in PBS, and stained with Hoechst 33258 (1.0  � g/
ml). The cells were then washed in PBS and mounted with Fluoromount. A minimum of 100 
cells per well was counted in a blind fashion. The percentage of apoptotic cells with nuclear 
condensation and fragmentation was calculated using a confocal fluorescence microscopy.

  Immunofluorescence Analysis for Nuclear Translocation of R-Smad
  Cells grown on 8-chamber slides were washed with PBS, fixed with 4% (v/v) paraformal-

dehyde in PBS, and permeabilized with 0.2% (v/v) Triton X-100 in PBS for 10 min, followed 
by blocking with 0.5% (v/v) bovine serum albumin in PBS for 20 min. The primary antibod-
ies for p-Smad2/3 (dilution: 1:   100) were added and incubated at 4   °   C overnight. The cells were 
washed with PBS and incubated with Alexa Fluor 488 goat anti-rabbit antibody (dilution: 
1:   100) at room temperature for 1 h. After washing with PBS, the slides were mounted with 
Fluoromount and analyzed using a confocal fluorescence microscopy.

  Preparation of Cell Lysates
  Cells cultured on 6-well plates were washed with PBS and a cytosolic extraction buffer 

[0.1% (v/v) Nonidet-40, 10 m M  HEPES, 1.5 m M  MgCl 2 , 10 m M  KCl, 1 m M  sodium orthovan-
adate; Na 3 VO 4 , 50 m M  sodium fluoride; NaF, 2.5 m M  sodium pyrophosphate; Na 4 P 2 O 7 ,
1 m M   � -glycerophosphate, and 1:   50 dilution of a protease inhibitor cocktail] was added to 
each well. The cells were scraped off the wells, transferred into tubes and centrifuged at 
18,000  g  for 5 min at 4   °   C. The supernatants were stored as a cytosolic fraction at –80   °   C un-
til use. 

  The remaining pellets were lysed in a nuclear extraction buffer (20 m M  HEPES, 420 m M  
NaCl, 1.5 m M  MgCl 2 , 1 m M  EDTA, 1 m M  Na 3 VO 4 , 50 m M  NaF, 2.5 m M  Na 4 P 2 O 7 , 1 m M  
 � -glycerophosphate, and 1:   50 dilution of a protease inhibitor cocktail) on ice for 30 min, and 
the samples were centrifuged at 18,000  g  for 30 min at 4   °   C. The resulting supernatants were 
snap-frozen and stored as a nuclear fraction at –80   °   C until use. Protein concentrations were 
measured by the Bio-Rad protein assay kit. 

  Western Blotting
  Protein (20  � g) in Laemmli buffer (62.5 m M  Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 5% 

 �  2 -mercaptoethanol, and 0.01% bromophenol blue) was loaded onto each well. After electro-
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phoresis, the proteins in the gels were transferred to nitrocellulose membrane. The blots were 
blocked for 1 h at room temperature in Tris-buffered saline, containing 0.1% (v/v) Tween-20, 
and 5% (w/v) nonfat dry milk, and then incubated with primary antibodies (1:   1,000 dilution) 
at 4   °   C overnight. The blots were washed with Tris-buffered saline, incubated with secondary 
HRP-conjugated antibodies (1:   1,000 dilution) for 1 h at room temperature, and detected us-
ing Amersham ECL Western blotting detection reagents.

  The ethical committee of our institution approved the study.

  Statistical Analysis
  Data are expressed as means  8  SEM and analyzed by one-way ANOVA or by unpaired 

t test. A value of p  !  0.05 was considered significant. 

  Results

  CyA Induces Apoptosis in HK-2 Cells
  CyA induced apoptosis in a dose-dependent manner ( fig. 1 ), whereas low concentrations 

of CyA (0.42  �  M ) failed to induce apoptosis. Based on these data, 42  �  M  of CyA was used in 
the following experiments if not otherwise indicated. 

  CyA Induces Nuclear Translocation of R-Smad before Apoptosis 
  CyA induced nuclear translocation of p-Smad2/3, measured by Western blotting, at 3 h, 

which was still noted at 24 h, compared to control cells ( fig. 2 a). Immunofluorescence anal-
ysis confirmed that CyA induced nuclear translocation of p-Smad2 compared to control cells 
( fig. 2 b).

  CyA Activates ERK and p38MAPK but Not JNK
  CyA enhanced the expression of p-ERK at 1 h in a dose-dependent manner, preceding 

nuclear translocation of R-Smad and apoptosis, which was still present at 24 h ( fig. 3 a). Sim-
ilarly, CyA increased the expression of p-p38MAPK at 1–6 h in a dose-dependent manner, 
which returned to control level at 12 h ( fig. 3 b). The expression of non-p-ERK or -p38MAPK 
was similar between control and CyA-treated cells. CyA did not affect the expression of 
p-JNK (data not shown).

  Fig. 1.  Effect of CyA on apoptosis. CyA induced 
apoptosis at 24 h, measured by Hoechst 33258 
staining, in a dose-dependent manner. Data are ex-
pressed as means  8  SEM. n = 3,  *  p  !  0.05,  **  p  !  
0.005, vs. control cells. 
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  Inhibition of p38MAPK Deteriorates but That of ERK Ameliorates CyA-Induced Nuclear 
Translocation of R-Smad
  As previously shown, CyA increased the expression of p-Smad2 compared to control 

cells ( fig. 4 , lane 2). An inhibitor of ERK, PD98059, ameliorated CyA-induced nuclear trans-
location of p-Smad2 ( fig. 4 , lane 7). In contrast, an inhibitor of p38MAPK, SB202190, dete-
riorated nuclear translocation of p-Smad2 in control and CyA-treated cells ( fig. 4 , lanes 4, 5). 
We confirmed that PD98059 and SB202190 inhibited the expression of p-ERK and 
p-p38MAPK, respectively, in control and CyA-treated cells (data not shown). 

  Fig. 2.  CyA induces nuclear 
translocation of R-Smad.  a  CyA 
(42  �  M ) induced nuclear trans-
location of phosphorylated 
(p)-Smad2/3 at 3 h, measured by 
Western blotting, preceding 
apoptosis, which persisted till 
24 h, compared to control cells. 
 b  Immunofluorescence analysis 
confirmed that CyA induced nu-
clear translocation of p-Smad2 at 
6 h (CyA, right panel), compared 
to control cells (left panel). Ar-
rows indicate CyA-induced nu-
clear translocation of p-Smad2. 
Data are representative of 3 inde-
pendent experiments.   b  

  a  

  Fig. 3.  Time- and dose-depen-
dent effect of CyA on MAPK ac-
tivity.  a  CyA (10.5–42  �  M ) dose-
dependently enhanced p-ERK 
expression at 1 h, preceding nu-
clear translocation of Smad2/3, 
which persisted till 24 h, com-
pared to control cells (C).  b  CyA 
increased the expression of p-
p38MAPK at 1–6 h in a dose-de-
pendent manner, which returned 
to control level at 12 h. The ex-
pression of non-p-ERK and 
-p38MAPK did not differ be-
tween control and CyA-treated 
cells. Data are representative of 3 
independent experiments. 
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  Inhibition of ERK but Not of p38MAPK Ameliorates CyA-Induced Apoptosis
  An inhibitor of ERK, PD98059, ameliorated CyA-induced apoptosis ( fig. 5 ), suggesting 

that inhibition of ERK prevents CyA-induced apoptosis through inhibition of R-Smad. In 
contrast, an inhibitor of p38MAPK, SB202190, failed to prevent CyA-induced apoptosis. 

  EGF Activates ERK and p38MAPK but Not JNK 
  To determine whether enhanced activation of MAPKs modulates CyA-induced apop-

tosis in RPTCs, we first examined whether EGF activates MAPKs in HK-2 cells. EGF en-
hanced the expression of p-ERK and p-p38MAPK in control and CyA-treated cells ( fig. 6 a, 
b). However, EGF did not affect JNK activity in control and CyA-treated cells (data not 
shown).

  Fig. 4.  Effect of inhibition of MAPKs in the presence or absence of EGF on CyA-induced nuclear translo-
cation of R-Smad. CyA (42  �  M ) increased the expression of p-Smad2 (lane 2) at 6 h, measured by Western 
blotting, compared to control cells (C, lane 1). SB202190 (SB; 20  �  M ) deteriorated nuclear translocation of 
p-Smad2 in both control (lane 4) and CyA-treated cells (lane 5), whereas PD98059 (PD; 20  �  M ) amelio-
rated nuclear translocation of p-Smad2 in CyA-treated cells (lane 7). EGF (20 ng/ml) ameliorated CyA-
induced nuclear translocation of p-Smad2 (lane 3), which was abolished by SB202190 (lane 6) but not by 
PD98059 (lane 8). 

 

  Fig. 5.  Effect of inhibition of 
MAPKs on CyA-induced apo-
ptosis. PD98059 (PD; 20  �  M ) but 
not SB202190 (SB; 20  �  M ) ame-
liorated CyA (42  �  M )-induced 
apoptosis at 24 h. Data are ex-
pressed as means  8  SEM. n = 3, 
 *  p  !  0.02,  **  p  !  0.001. 
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  EGF Ameliorates CyA-Induced Apoptosis through Activation of p38MAPK in a
Smad-Dependent Pathway
  EGF ameliorated CyA-induced nuclear translocation of p-Smad2, measured by Western 

blotting ( fig. 4 , lane 3). This was confirmed by immunofluorescence analysis ( fig. 7 c). The 
protective effect of EGF on CyA-induced nuclear translocation of p-Smad2/3 was not abol-
ished by inhibition of ERK ( fig. 4 , lane 8,  fig. 7 f). In contrast, it was abolished by inhibition 
of p38MAPK ( fig.  4 , lane 6,  fig.  7 e), suggesting that p38MAPK inhibits R-Smad in CyA-
induced RPTC injury. 

  EGF significantly prevented CyA-induced apoptosis ( fig. 8 ). Inhibition of p38MAPK but 
not of ERK abolished the protective effect of EGF on CyA-induced apoptosis, suggesting that 
EGF prevents CyA-induced apoptosis in RPTCs through activation of p38MAPK in a Smad-
dependent pathway.

  Discussion

  The effect of CyA on activation of MAPKs varies with the type of renal tubular cells in 
response to stimuli. CyA activated ERK in LLC-PK1 cells  [12] , and both ERK and p38MAPK 
in cortical collecting duct cells  [13] , whereas it activated ERK but not p38MAPK in Madin-
Darby canine kidney cells  [6] . CyA inhibited parathyroid hormone-induced ERK activa-
tion in mouse distal convoluted tubule cells  [14] . Preconditioning of rat kidneys with CyA 
followed by exposure to ischemia/reperfusion increased ERK activity, but decreased 
p38MAPK and JNK activity  [15] . In the present study, we found that CyA activated both 
ERK and p38MAPK but not JNK, preceding nuclear translocation of R-Smad and apopto-
sis in RPTCs.

  Fig. 6.  Effect of EGF on MAPK 
activity. EGF (20 ng/ml) en-
hanced the expression of p-ERK 
( a ) and p-p38MAPK ( b ) at 3–6 h 
in control (C) and CyA-treated 
cells. Data are representative of 
3 independent experiments. 
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  It is well known that ERK functions as antiapoptotic and p38MAPK as proapoptotic in 
a variety of cells in response to stimuli  [16] . It has recently been shown that ERK functions 
as proapoptotic and p38MAPK as antiapoptotic  [17, 18] . Crosstalk between R-Smad and 
MAPKs differentially regulates apoptosis in various cells  [5] , including kidney cells  [19, 20] , 
in response to TGF- �  1 . ERK functions as antiapoptotic by inhibiting R-Smad in other cells 
 [5] . Regarding crosstalk between R-Smad and ERK in RPTCs, ERK did not affect TGF- �  1 -

  Fig. 7.  Immunofluorescence analysis for the effect of EGF on CyA-induced nuclear translocation of 
R-Smad and its modulation by inhibition of MAPKs. Immunofluorescence analysis showed that CyA in-
duced nuclear translocation of p-Smad3 at 6 h ( d , arrows) compared to control cells ( a ). EGF did not affect 
nuclear translocation of p-Smad3 in control cells ( b ). EGF ameliorated CyA-induced translocation of 
p-Smad3 ( c ), which was abolished by SB202190 ( e , arrows) but not by PD98059 ( f ). Data are representative 
of 3 independent experiments.

  Fig. 8.  Effect of EGF in the pres-
ence or absence of inhibition of 
MAPKs on CyA-induced apo-
ptosis. EGF (20 ng/ml) rescued 
CyA (42  �  M )-induced apoptosis 
at 24 h. SB202190 (SB; 20  �  M ) but 
not PD98059 (PD; 20  �  M ) abol-
ished the protective effect of EGF 
on CyA-induced apoptosis. Data 
are expressed as means  8  SEM. 
n = 3,  *  p  !  0.02,  **  p  !  0.001. 
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induced nuclear translocation of p-Smad3 in human HK-2 cells  [21]  or rat RPTCs  [22] . How-
ever, it remains elusive whether there is a crosstalk between R-Smad and MAPKs and its role 
for the regulation of apoptosis in CyA-induced RPTC injury. Our data show that inhibition 
of ERK ameliorates CyA-induced apoptosis by inhibiting nuclear translocation of Smad2/3, 
suggesting that ERK functions as proapoptotic through activation of R-Smad in CyA-in-
duced RPTC injury. This is further supported by the fact that inhibition of ERK did not abol-
ish the protective effect of EGF, which activated ERK and p38MAPK  [23, 24] , on CyA-in-
duced Smad signaling and apoptosis in RPTCs. Our finding is compatible with the studies 
showing that inhibition of ERK ameliorated apoptosis by inhibiting nuclear translocation of 
R-Smad in other cells in response to different stimuli  [25, 26] . Inhibition of ERK also down-
regulated TGF- �  1 -induced Smad2 mRNA expression in mesenchymal stem cells  [27] . Our 
data, together with previous data, suggest a crosstalk between R-Smad and ERK and that 
ERK functions as proapoptotic by activating R-Smad in CyA-induced RPTC injury.

  In many cells, p38MAPK phosphorylates R-Smad, resulting in enhanced transactiva-
tional potential of R-Smad  [5] , and induces apoptosis  [16] . It has recently been shown that 
p38MAPK functions as antiapoptotic in response to stimuli  [16, 18] . We found that inhibi-
tion of p38MAPK deteriorated nuclear translocation of p-Smad2 in both control and CyA-
treated cells, suggesting a crosstalk between R-Smad and p38MAPK in RPTCs. In addition, 
EGF-induced MAPK activation ameliorated CyA-induced nuclear translocation of Smad2/3 
and apoptosis, which was abolished by inhibition of p38MAPK but not of ERK. Taken to-
gether, our data suggest that p38MAPK functions as antiapoptotic by inhibiting nuclear 
translocation of both Smad2 and Smad3 in CyA-induced RPTC injury. Inhibition of 
p38MAPK has been shown to upregulate TGF- �  1 -induced mRNA expression or nuclear 
translocation of Smad2, but downregulate those of Smad3 in other cells  [27, 28] . Our data, 
together with previous data, suggest that p38MAPK may differentially regulate R-Smad, de-
pending on the cell type and stimuli. Another explanation of our data may be that p38MAPK 
may inhibit nuclear translocation of R-Smad by upregulating inhibitory Smad  [29] . 

  It is unknown why the control cells treated with an inhibitor of p38MAPK, which showed 
increased nuclear translocation of p-Smad2, did not undergo apoptosis. They may have a 
higher threshold for triggering Smad signaling cascades than that under stimulated condi-
tion  [30, 31] . The endogenous Smad2/Smad3 ratio  [31, 32]  and the balance between R-Smad 
and inhibitory Smad  [33]  or other antiapoptotic machineries  [34] , which can regulate apo-
ptosis, may be well maintained in the cells under unstimulated conditions. These factors may 
account for the observation that the control cells treated with an inhibitor of p38MAPK did 
not undergo significant apoptosis.

  Regarding RPTC injury, TGF- �  1 -induced activation of p38MAPK failed to affect 
R-Smad in HK-2 cells maintained in a 2-day serum-free condition  [21] . Long-term serum 
deprivation may influence cellular behavior. An inhibitor of p38MAPK, FR167653, counter-
acted glomerulosclerosis and interstitial fibrosis in CyA-induced allograft nephropathy in 
the rat, with donor kidneys being subjected to ischemic injury before CyA treatment  [35] . 
The study used the different experimental conditions and did not evaluate apoptosis. Since 
cellular response varies with cell type, species, or stimulus, these factors may be attributable 
to the contradictory results.

  Our study suggests that EGF prevents CyA-induced Smad signaling and apoptosis 
through activation of p38MAPK in RPTCs. In fact, CyA failed to induce apoptosis in human 
RPTCs in serum containing growth factors such as EGF  [36] . EGF ameliorated apoptosis 
through ERK-dependent but p38MAPK-independent pathways in rat hepatocytes  [37] . Re-
garding the effect of EGF on Smad signaling, EGF phosphorylated R-Smad in various cells 
 [38, 39] , and inhibition of MEK1 (MAPK/ERK kinase 1), upstream of ERK pathways, pre-
vented EGF-induced phosphorylation of R-Smad  [38] . EGF induced TGF � RII expression, 
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which may enhance Smad signaling, and this effect was ameliorated by inhibition of 
p38MAPK but not of ERK in human dermal fibroblasts  [40] . On the other hand, EGF failed 
to affect R-Smad, but rather stabilized Smad corepressor TGIF  [41] . In support of our find-
ings, EGF ameliorated TGF- �  1 -induced nuclear translocation of p-Smad3 in granulosa cells 
 [42] . EGF also upregulated inhibitory Smad  [43] , which may inhibit R-Smad. Our data, to-
gether with these data, suggest that EGF antagonizes CyA-induced Smad signaling through 
activation of p38MAPK and that the administration of exogenous survival growth factors, 
such as EGF, or the modality of regulating EGFR may be the successful strategy for prevent-
ing CyA nephrotoxicity  [3] . In fact, EGF accelerated regeneration of RPTCs after exposure 
to other nephrotoxic agents  [44] , and inhibition of EGFR induced apoptosis in renal collect-
ing duct cells  [45] .

  In summary, our study suggests a crosstalk between R-Smad and ERK/p38MAPK, but 
not JNK, in the regulation of apoptosis and that p38MAPK functions as an antiapoptotic 
factor by inhibiting R-Smad, whereas ERK functions as proapoptotic by activating R-Smad 
in CyA-induced RPTC injury. EGF, which activates ERK and p38MAPK, but not JNK, ame-
liorates CyA-induced nuclear translocation of R-Smad and apoptosis through activation of 
p38MAPK in RPTCs.
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