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Abstract: The prediction of the viscosity of suspensions is of fundamental importance in several
fields. Most of the available studies have been focused on particles with simple shapes, for example,
spheres or spheroids. In this work, we study the viscosity of a dilute suspension of fractal-shape
aggregates suspended in a shear-thinning fluid by direct numerical simulations. The suspending
fluid is modeled by the power-law constitutive equation. For each morphology, a map of particle
angular velocities is obtained by solving the governing equations for several particle orientations.
The map is used to integrate the kinematic equation for the orientation vectors and reconstruct the
aggregate orientational dynamics. The intrinsic viscosity is computed by a homogenization procedure
along the particle orbits. In agreement with previous results on Newtonian suspensions, the intrinsic
viscosity, averaged over different initial orientations and aggregate morphologies characterized by
the same fractal parameters, decreases by increasing the fractal dimension, that is, from rod-like to
spherical-like aggregates. Shear-thinning further reduces the intrinsic viscosity showing a linear
dependence with the flow index in the investigated range. The intrinsic viscosity can be properly
scaled with respect to the number of primary particles and the flow index to obtain a single curve as
a function of the fractal dimension.

Keywords: rheology; shear-thinning fluids; intrinsic viscosity; fractal aggregates; numerical
simulations

1. Introduction

Suspensions of solid particles are encountered in a variety of industrial and biological systems.
The knowledge of the viscosity and, more in general, of the rheological properties of these materials is
fundamental for correctly designing the processing stage and predicting the hydrodynamic resistance.
It is well-known that the addition of solid particles in a fluid increases the viscosity as compared with
the suspending liquid [1]. Particle shape and size, as well as the solid concentration strongly alter the
suspension viscosity giving rise to non-Newtonian phenomena such as shear-thinning and normal
stresses [1–3].

For the simplest case of a dilute suspension of spherical particles in a Newtonian fluid, Einstein
calculated that the suspension viscosity is related to the fluid viscosity ηs according to the formula
ηs(1+ Bφ) where φ is the solid volume fraction and the factor B, usually referred as ‘intrinsic viscosity’,
is equal to 2.5 [4,5]. Einstein’s calculation was extended by Jeffery to spheroidal particles [6], finding
that the intrinsic viscosity depends on the particle orientation and aspect ratio. Specifically, the
minimum and maximum average viscosities are obtained for particles aligned along the vorticity axis
or tumbling on the flow-gradient plane, respectively. For randomly-oriented particles, integration of
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the instantaneous intrinsic viscosity for several initial orientations over the corresponding orbits leads
to an average value of B higher than the Einstein’s coefficient for both prolate and oblate spheroids [7].

In many processes, however, the suspended particles have a complex and irregular shape, without
symmetry axes or planes. This is, for instance, the case when primary spherical particles undergo
an aggregation process and form clusters with fractal-like morphology [8–10]. As for the spheroidal
particle case, the prediction of the intrinsic viscosity requires the calculation of the orientational
dynamics of the particles subjected to an external shear flow. This approach is carried out in the
work by Harshe and Lattuada [11] where the average rigid body resistance matrix of arbitrary shaped
clusters made of uniform sized spheres is computed through the Stokesian dynamics method and
Brownian dynamic simulations. The intrinsic viscosity was found to be similar to the spherical
particle case for clusters with high fractal dimension, indicating no preferential orientation in the
flow. Deviations from the Einstein’s coefficient was, instead, found for aggregates with low fractal
dimension due to their more anisotropic shape.

All the aforementioned works deal with Newtonian suspensions. In several applications, however,
the suspending fluid shows non-Newtonian properties such as shear-thinning and viscoelasticity.
A typical example is in the tire industry where, during the processing stage, particles of carbon black or
silica are added to a polymer melt and can agglomerate and form complex structures. It is well-known
that fluid non-Newtonian properties alter the suspension rheology as compared to the Newtonian
case [12,13]. For instance, for a dilute suspension of spherical particles in a power-law fluid, it has been
shown that shear-thinning reduces the intrinsic viscosity [14,15]. Concerning more complex particle
shapes, the rheology of a dilute suspension of spheroids in a generalized Newtonian fluid is recently
investigated by numerical simulations [16]. Different flows of a Carreau fluid around spheroidal
particles are simulated and a homogenization procedure is adopted to obtain the intrinsic viscosity of
the suspension as function of the applied rate of deformation, thinning exponent and particle aspect
ratio. The results show that the intrinsic viscosity strongly depends on the particle aspect ratio along
with the rheological parameters of the constitutive equation [16]. Very recently, these calculations have
been extended to a dilute suspension of rigid rods in a power-law fluid showing no similarity of the
rheological coefficients between rods and spheroids with large aspect ratio [17]. Similar studies for
dilute suspensions of particles with irregular shape, such as fractal-like morphologies, are not available.

In this paper, we investigate the rheology of a dilute suspension of aggregates with complex shape
suspended in a shear-thinning fluid by direct numerical simulations. Aggregates made of primary
spherical particles are built through a fractal-like model. The fluid is modeled by the power-law
constitutive equation. The dynamics of a single particle in an unbounded shear flow field is first
computed. To this aim, finite element simulations are employed to calculate the angular velocity of the
particle for several orientations on the unity sphere. The orientational dynamics is then reconstructed
by integrating the kinematic equations for the orientation vector interpolating the angular velocity field.
The first-order contribution to the viscosity is computed by means of a homogenization procedure and
time-averaged over the particle orbits. The effect of particle morphology and power-law index on the
ensemble-average intrinsic viscosity is investigated.

2. Mathematical Model and Numerical Method

2.1. Governing Equations

We consider a dilute suspension of rigid, non-Brownian aggregates in a continuous shear flow.
The computational domain consists in a single aggregate placed at the center of a spherical domain
with radius much larger than the maximum size of the aggregate. A Cartesian reference frame is
selected with x, y, and z denoting the flow, gradient, and vorticity directions, respectively. Shear flow
boundary conditions are applied on the spherical surface whereas a rigid-body motion is imposed on
the particle boundary. For the investigated problem (unbounded shear flow) the only relevant particle
kinematic quantity is the angular velocity denoted by ωp = dθp/dt with θp the rotation angle.
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The aggregate is made by primary spherical particles with radius a. The morphology is described
by the following fractal equation [18]:

Np = kf

(
Rg

a

)Df

, (1)

where Np is the number of primary particles, Rg is the radius of gyration, Df is the fractal dimension
(between 1 and 3), and kf is the fractal pre-factor. Low or high values of the fractal dimension
correspond to more rod-like or spherical-like particles, respectively. Several algorithms have been
proposed to build morphologies obeying the fractal equation [19–22]. In this work, we adopt the
procedure proposed in References [23,24] based on a particle–cluster aggregation method, which
has been verified to generate structures that fulfill the fractal equation also for very few primary
particles [24]. We point out that real fractal aggregates can be approximated by coarsened structures
where each sphere already represents an agglomerate of smaller real primary particles. In Figure 1,
two examples of aggregate morphologies with Np = 20, kf = 1.3, and Df = 1.5 (Figure 1a) or Df = 2.5
(Figure 1c) are shown. Notice that the algorithm for aggregate generation is based on a sequence of
pseudo-random numbers. Hence, by changing the random seed, different morphologies are obtained
for the same set of parameters of the fractal equation. Due to the asymmetric shape of the particle,
two orthogonal vectors, p and q, are needed to track its orientation. The selection of these orientation
vectors will be discussed later. Finally, we denote by Ω and P(t) the fluid and particle domain,
respectively. The particle boundary is denoted by ∂P(t) and the surface of the external spherical
domain by Σ.

Figure 1. Examples of aggregate shapes obtained from the particle-cluster method for Np = 20, kf = 1.3,
and Df = 1.5 (a) or Df = 2.5 (c). To avoid numerical issues in the region between tangent particles, the
centers of the spheres in contact are connected with a set of cylinders with radius 0.732a. In panels
(b) and (d) the final geometry of the aggregates and the surface mesh are shown.

Assuming inertialess conditions and negligible gravity effects, the governing equations for the
fluid domain, Ω− P(t), read as follows:
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∇ · u = 0 (2)

∇ · σ = 0 (3)

σ = −pI + 2η(γ̇)D, (4)

where u, σ, p, I, η, and D are the velocity vector, the stress tensor, the pressure, the 3× 3 unity tensor,
the viscosity, and the rate-of-deformation tensor D = (∇u + (∇u)T)/2, respectively. The viscosity is
assumed to be a function of the effective deformation rate defined as γ̇ =

√
2D : D. Equations (2)–(4)

are the mass balance (continuity), the momentum balance and the expression for the total stress,
respectively.

In this work, we consider a power-law constitutive equation for the fluid given by:

η(γ̇) = mγ̇n−1, (5)

with m the consistency index and n the flow index. This model predicts shear-thinning for n < 1. For
n = 1, a Newtonian fluid with (constant) viscosity m is recovered.

Concerning the boundary conditions, we impose shear flow at the external spherical surface of
the domain:

u = (γ̇exty, 0, 0) on Σ, (6)

with γ̇ext the imposed shear flow. No-slip boundary conditions are set on the particle surface resulting
in the rigid-body motion equation:

u = ωp × (x− xc) on ∂P(t), (7)

where x is a point of the surface ∂P(t) and xc is the particle center of volume. As remarked above, the
particle translational velocity is irrelevant for the problem under investigation.

To close the set of equations, the hydrodynamic torque acting on the particle needs to be specified.
Under the assumptions of inertialess particle and no ‘external’ torques, such balance equation is
given by:

T =
∫

∂P(t)
(x− xc)× (σ · n) dS = 0, (8)

where T is the total torque on the particle boundary ∂P(t) and n is the unit vector normal to the particle
surface pointing from the fluid to the boundary.

The solution of the governing equations gives the fluid velocity and pressure fields, and the
particle angular velocity. The orientational dynamics can be computed by integrating the following
equation:

dθp

dt
= ωp, (9)

with initial condition θp|t=0 = θp,0.
The governing equations can be conveniently made dimensionless by choosing appropriate

characteristic quantities for time, length, and stress. As characteristic length, we select the effective
radius of the particle, defined as the radius of a sphere with equivalent volume V of the aggregate,
Reff = ( 3V

4π )
1/3. The inverse of the external shear rate 1/γ̇ext is chosen as characteristic time (giving

Reffγ̇ext as characteristic velocity) and mγ̇n
ext as characteristic stress.

With these characteristic quantities, the dimensionless governing equations and boundary
conditions read as:
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∇∗ · u∗ = 0 (10)

−∇∗p∗ +∇∗ ·
(

2γ̇∗,n−1D∗
)
= 0 (11)

u∗ = (y∗, 0, 0) on Σ (12)

u∗ = ω∗p × (x∗ − x∗c ) on ∂P(t) (13)

T∗ =
∫

∂P(t)
(x∗ − x∗c )× (σ∗ · n) dS∗ = 0 (14)

dθp

dt∗
= ω∗p, (15)

where the starred symbols denote dimensionless quantities. Hence, the only dimensionless parameter
appearing in the governing equations is the flow index n. Of course, we need also to consider the
parameters related to the aggregate morphology appearing in Equation (1), that are the number of
particles Np, the fractal dimension Df, and the fractal pre-factor kf. Notice that the radius of the
primary particles a is related to Reff through Np. Also, the radius of gyration Rg is determined once
the aforementioned three parameters are specified. In what follows, all the symbols (without stars)
will refer to dimensionless quantities.

Aim of this work is to predict the viscosity of a dilute suspension of fractal-like aggregates in a
power-law fluid. In the dilute regime, the suspension viscosity can be expressed as:

η = ηs (1 + B φ) , (16)

where ηs is the matrix viscosity defined by Equation (5), φ is the (low) particle volume fraction, and B
is the intrinsic viscosity. Once the local stress field is calculated by solving the governing equations,
the intrinsic viscosity is computed through the numerical homogenization procedure as described in
References [16,25]. In brief, this procedure consists in evaluating first the average power density:

〈P〉 = 〈σ : D〉 = 1
V0

∫
Vf

σ : D dV, (17)

where V0 and Vf are the suspension and fluid volumes. The suspension viscosity is, then, evaluated as:

η =
〈P〉

2Dext : Dext
=
〈P〉
γ̇2

ext
, (18)

with Dext the rate-of-deformation at the external boundaries of the domain that, for a simple shear
flow, reduces to the last term of Equation (18). From the suspension viscosity, we can readily evaluate
the intrinsic viscosity B as:

B =
η − ηs

ηs φ
. (19)

Due to the anisotropic particle shape, the intrinsic viscosity depends on the particle orientation.
As we will show later, the orientational dynamics is rather complex and neither a steady-state nor a
simple periodic regime is achieved. Hence, we integrate the instantaneous intrinsic viscosity over the
particle orbit for a sufficiently long time T so that the average value, defined as:

B =
1
T

∫ T

0
B(t)dt, (20)

does not change within a tolerance (chosen as 1%). For each particle morphology, we run several
simulations for different initial orientations. The time-average intrinsic viscosity is, then, averaged
over M initial orientations to get:
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〈B〉 = 1
M∑

M

B. (21)

Finally, to make the results independent of the seed used to generate the aggregates, we
repeat the simulations for different seeds for fixed values of the fractal parameters, and define the
ensemble-average intrinsic viscosity as:

〈B〉m =
1

Nseed
∑

Nseed

〈B〉, (22)

with Nseed the number of seeds.
In this work, we fix the fractal pre-factor kf = 1.3, which is a value commonly used in the literature

to describe realistic aggregate morphologies [26]. The suspension intrinsic viscosity is, then, studied
by varying the power-law index, the number of primary particles forming the aggregate, and the
fractal dimension.

2.2. Numerical Method

Except for the simplest case of spherical particles, the intrinsic viscosity is a function of the
particle orientation. Hence, the calculation of B in Equation (20) requires the knowledge of the
evolution of the particle orientation dynamics. To this aim, starting from an initial orientation, the
governing Equations (10)–(14) should be solved at each time step followed by the integration of
the kinematic Equation (15). This procedure is time-consuming since, as we will see later, the final
integration time must be 3–4 orders of magnitude higher than the characteristic time in order to
get an accurate estimate of the intrinsic viscosity. Furthermore, for each aggregate morphology, the
procedure should be repeated for several initial orientations. However, since no time-derivatives
appear in Equations (10)–(14), a strategy to speed-up the simulations has been recently proposed [27].
We run single-step simulations for several orientations of the particles (i.e., without performing any
time-integration). From these simulations, we build a look-up table containing the particle angular
velocity and the intrinsic viscosity for each orientation. Then, the orientation dynamics is reconstructed
by solving the kinematic Equation (15) where the angular velocity on the right-hand side is taken by
interpolating the simulation data. Once the look-up table has been constructed, it can be used for
calculating the particle orbits for any initial orientation, thus greatly reducing the computational cost.

Let us describe in more detail the adopted procedure. Since the particle shape has no symmetry
axes, two (orthogonal) orientation vectors p and q are required to identify the orientation of the particle
in a fixed frame. The choice of these two vectors to build the look-up table is done as follows. Let
us consider the unit vector x̂ = (1, 0, 0) in the reference frame of the aggregate generated by the
particle-cluster method [23,24]. Notice that this vector identifies an arbitrary direction (depending
on the algorithm used to build the aggregate) and, as such, does not have any physical meaning.
A triangulated icosahedral mesh over the unit sphere is generated, that is, the unit sphere is divided
in triangles with icosahedral symmetry. The aggregate is then rigidly rotated so that the orientation
vector p, originally aligned with the unit vector x̂, is brought to coincide with the vertices of the
triangulated mesh.

For each of these orientations p, we select the vectors q as the equally-distributed vectors over
the unit circle around p. Specifically, the calculation of the vectors q is carried out by first defining Nq

vectors qxy,i uniformly distributed over the unit circle in the xy−plane, that is, qxy,i = (cos ψ, sin ψ, 0)
with ψ = −π + 2π(i− 1)/Nq for i = 1, ..., Nq; then, the vectors q are computed as qi = Rẑ,p · qxy,i
where Rẑ,p is the rotation matrix transforming ẑ = (0, 0, 1) to p. In this way, the vectors q are
orthogonal to p (since qxy are orthogonal to ẑ) and the vector q1 corresponds to the transformation of
−x̂ according to the rotation matrix Rẑ,p. In summary, the aggregate generated by the particle-cluster
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method is first rotated so that p coincides with one vertex of the icosahedral mesh, and then it is further
rotated around p to get one of the Nq vectors q as discussed above.

We select an icosahedral subdivision with triangulation number Tn = 4 resulting in 42 vertices
over the unit sphere and Nq = 12 for a total of 504 entries (i.e., single-step simulations) in the look-up
table. In this way, the angular distance of p on the unit sphere and of q on the unit circle (around p) is
approximately the same (about π/6). We have verified that this subdivision is sufficient to assure a
good accuracy of the interpolation.

Once the look-up table has been computed, integration of Equation (15) is done by interpolating
the angular velocity. Notice that two kinds of interpolations need to be performed, that is, one over
the unit sphere (for p) and one over a unit circle orthogonal to p (for q). After obtaining the angular
velocity, we update both orientation vectors instead of the rotation angle θp by using quaternions [28].
The entire procedure (interpolation and orientation update) is summarized in Algorithm 1.

Algorithm 1 Procedure used to update the particle orientation dynamics

1: p0, q0 ← initial orientation

2: for t← 1, num_time_steps do
3: Identify the spherical triangle containing p with vertices vi (i = 1, 2, 3)

4: for i← 1, 3 do
5: Compute the rotation matrix Rp,vi from p to vi

6: q′i ← Rp,vi · q
7: Compute ωi and Bi by interpolating the look-up table with entries vi and q′i
8: end for
9: Compute ω and B by interpolating ωi and Bi over the spherical triangle in p

10: Update p and q using quaternions.

11: end for

The same triangular mesh chosen for building the look-up table is used for interpolation. First of
all, the triangle containing p needs to be identified (step 3 of Algorithm 1). We use the search procedure
described in Reference [29]. The interpolation of the angular velocity and intrinsic viscosity inside a
spherical triangle mesh requires the knowledge of these quantities at the triangle vertices. To do this,
we compute the rotation matrix needed to rotate p on the unit vectors corresponding to the triangle
vertices vi and apply this rotation matrix to q in order to get the values q′i in these vertices (steps 5 and
6). Then, we enter into the look-up table with vi and q′i to perform the interpolation (step 7). Notice
that the values vi are already present in the look-up table since, as mentioned above, the same mesh is
used for building the table and for performing the interpolation. This is not the case for q′i. Hence,
a mono-dimensional interpolation is required over the block of Nq data in the table. This is done
by using a quadratic interpolation. At the end of the inner loop in Algorithm 1 we get the angular
velocity and the intrinsic viscosity in the three vertices of the triangle. A linear interpolation inside
the spherical triangle over p is finally performed to obtain the values of the two quantities in the
desired point [29,30] (step 9). Once the angular velocities are known, the quaternions are updated in
time by using a third-order Adams-Bashforth scheme. The rotation matrix in terms of quaternions is
constructed and used to update p and q (step 10).

The one-step direct numerical simulations are carried out by solving the governing equations by
the finite element method. The particle angular velocity are treated as additional unknowns, and are
included in the weak form of momentum equation. The torque-free condition is imposed through
Lagrange multipliers in each node of the particle surface [31].

The spherical primary particles forming the aggregate generated by the particle-cluster method
are tangent. To avoid numerical problems in the region of the contact point, we perform a Boolean
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union operation of the spheres with a set of cylinders connecting the centers of the spheres in contact
(that are readily identified since the generation algorithm provides the connectivity list). The radius of
the cylinders is chosen 0.732a. We have verified that, by reducing the cylinder radius, the rotational
dynamics and the resulting intrinsic viscosity is weakly affected. The aggregate surface is, then,
smoothed and meshed. These operations are performed through the library PyMesh [32]. Examples of
the surface meshes for the aggregates in Figure 1a,c are shown in Figure 1b,d. The volume mesh, that
is the mesh between the external spherical domain and the aggregate, is made by tetrahedral elements
and is generated by Gmsh [33].

Mesh and time convergence, the dimension of the external spherical domain as well as the validity
of the procedure described above are carefully checked. The parameters used in the simulations are
reported in Table 1 where ∆x and ∆Rext (made dimensionless by the primary particle radius a) are
the size of the elements on the aggregate surface and the external domain, respectively, Rext is the
radius of the external sphere, and Nelem is the number of tetrahedral elements in the volume mesh. We
verified that, by reducing ∆x and ∆Rext and increasing Rext by about 20%, the particle angular velocity
and the intrinsic viscosity change by less than 1.5%. The time-step size is fixed at ∆t = 0.05, giving
the same orientation dynamics by repeating the computation with ∆t = 0.025. We have also verified
the accuracy of the solution of the governing equations for a spherical particle in a power-law fluid
and the validity of the homogenization procedure for the most critical case of n = 0.4 by comparing
the results with those reported in Reference [25] (deviations are less than 2%). Finally, the procedure
described in Algorithm 1 is applied to a spheroid. The particle dynamics and the time-dependent
intrinsic viscosity is in excellent agreement with the Jeffery results [7].

Table 1. Mesh and geometrical parameters used in the simulations.

Np ∆x Rext ∆xext Nelem

10 0.20 40 10 ∼20000
20 0.25 40 10 ∼20000
50 0.30 50 20 ∼30000

3. Results

In this section we present results by varying the fractal dimension, the flow index, and the number
of primary particles. Specifically, we consider three values for each parameter, that is, Df = [1.5, 2.0, 2.5],
n = [1.0, 0.7, 0.4], and Np = [10, 20, 50]. Notice that, since the intrinsic viscosity is normalized with
respect to the aggregate volume, the number of primary particles defines the structure resolution (finer
for many particles) and, for low fractal dimension, it is also connected to the aggregate aspect ratio.

Figure 2 shows the probability distribution of the intrinsic viscosity with respect to the same
initial orientations considered to build the look-up table, for the two aggregates reported in Figure 1
and three flow indexes. The dashed lines represent the medians of the distributions, which are all
approximately unimodal. Comparing the results for different fractal dimensions, it can be seen that at
lower Df the distribution of the intrinsic viscosity is wider, as the particles are more anisotropic and
their orientation becomes more relevant. In particular, B is higher when the aggregate is aligned with
the gradient direction (i.e., y), and lower when it is aligned with the flow or vorticity direction, similarly
to prolate spheroids. On the other hand, the distribution variance reduces at higher Df as the particles
are more sphere-like. In agreement with the results for a sphere in power-law fluid [25], shear-thinning
determines a reduction of the intrinsic viscosity, but the shape of the distribution remains the same.

As stated above, to make the results independent of the specific random seed used to generate
the aggregates, for every combination of the other parameters, we repeat the simulations with ten
different seeds. The effect of the specific morphology on the intrinsic viscosity distribution is reported
in Figure 3 with a box plot showing the first, second (i.e., the median), and third quartile of every
distribution. In all cases we find again the same trend seen in Figure 2 with fractal dimension and flow
index, whereas the effect of the random seed is of secondary importance.
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Figure 2. Probability distribution of the intrinsic viscosity corresponding to the initial aggregate
orientations used to build the look-up table, for low (left) and high (right) fractal dimension and three
flow indexes. The dashed line represents the median of the distribution.
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Figure 3. Box plot of the intrinsic viscosity as a function of aggregate random seed, flow index and
fractal dimension. The black dash within each box represents the median of the distribution.

Since the intrinsic viscosity depends on the particle orientation, which changes with time due to
the imposed shear flow, it is important to reconstruct the particle dynamics. The rotational dynamics
of an irregularly shaped aggregate can be better understood by looking at its principal axes of inertia.
Specifically, let’s denote with P the principal axis corresponding to the smallest moment of inertia,
which for an elongated particle (small Df) corresponds to its ‘natural’ orientation. Figures 4 and 5 show
the time evolution of the Cartesian components of P and the angular velocity around it ωP = ωp · P,
for the aggregate reported in Figure 1b and two initial orientations. In both cases the orientational
dynamics is rather complex and neither a steady-state nor a simple periodic regime is achieved. Two
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periods can be recognized, one shorter connected to the rotation around the vorticity axis z, and
one longer connected to the rotation around P. When the particle starts with an orientation close to
the z-axis (see Figure 4), it undertakes a kayaking-like dynamics with approximately elliptical orbits
around the z-axis, more elongated in the x-direction. On the other hand, when the initial orientation
is sufficiently far from the z-axis (see Figure 5), the particle tends to align with the shear plane, that
is, Pz progressively reduces, similar to a tumbling motion. At the same time also ωP decreases, thus
determining an extension of the rotation period around P. The same qualitative behavior of the
aggregate dynamics is observed for shear-thinning fluids.

P
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1

P
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-1
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0

0.5

1

P
z

-1
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0
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1

ω
P
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-0.5

0
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Figure 4. Time evolution of the components of the particle smallest principal axis of inertia P and of
the angular velocity around it ωP, for an initial orientation close to the vorticity axis z. The aggregate is
the one reported in Figure 1b, the other parameters are Np = 20, Df = 1.5, and n = 1.0.

Once the particle orientational dynamics is known, the time evolution of intrinsic viscosity B and
time-average intrinsic viscosity B can be reconstructed. Figure 6 shows the trend of B and B for the
trajectories seen in previous figures. Specifically, panel Figure 6a refers to Figure 4 (where the particle
undertakes kayaking) and panel Figure 6b refers to Figure 5 (where the particle tumbles close to the
shear plane). In both cases, while B continues to oscillate due to the aforementioned dynamics, after a
certain time, B reaches a steady state condition. Notice that such steady state values are different for the
two initial orientations considered. B is lower in Figure 6a since the aggregate is mainly aligned with
its longest axis towards the vorticity direction. Conversely, B is higher in Figure 6b since, during the
aggregate tumbling motion, P periodically passes close to the gradient direction, which corresponds
to the maximum intrinsic viscosity.
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Figure 5. Time evolution of the components of the particle smallest principal axis of inertia P and of
the angular velocity around it ωP, for an initial orientation far from the vorticity axis z. The aggregate
is the one reported in Figure 1b, the other parameters are Np = 20, Df = 1.5, and n = 1.0.
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Figure 6. (a) Time evolution of intrinsic viscosity B (blue curve) and time-average intrinsic viscosity B
(red curve) for the trajectory reported in Figure 4. (b) The same as a for the trajectory in Figure 5.

By repeating this procedure for many orientations, it is possible to obtain the evolution of the
probability distribution of the time-average intrinsic viscosity, as reported in Figure 7 for the usual
two aggregates and n = 1.0. Notice that the initial distributions are the same of Figure 2. As just seen
in the previous figure, for low fractal dimension more than one steady state value is present, with
the majority of initial orientations leading to dynamics like the one in Figure 6b with B ≈ 11.5. The
two lower peaks visible for Df = 1.5 at t = 5000 correspond to P approximately aligned with the
positive (shown in Figure 4) or negative (not shown) vorticity direction. These last two peaks are close
but not equal since the aggregate has no symmetries. A similar behavior can be observed at high
fractal dimension, but with a longer time needed to reach the steady state. The two peaks visible for
Df = 2.5 at t = 30, 000 are still related to the kayaking and tumbling motion. However, those related to
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alignment of P to the vorticity direction or its opposite are not distinguishable because of the more
isotropic particle shape.
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Figure 7. Probability distribution of the time-average intrinsic viscosity B corresponding to the initial
aggregate orientations used to build the look-up table and n = 1.0, for low (left) and high (right) fractal
dimension, parametric in time.

Finally, averaging on all the initial orientations and random seeds we get the ensemble-average
intrinsic viscosity defined in Equation (22). Figure 8 reports the dependency of 〈B〉m on the fractal
dimension and flow index, parametric in the number of primary particles, together with standard
deviation and trend line. In the range considered, 〈B〉m decreases with Df and increases with Np. The
decreasing trend of 〈B〉m with the fractal dimension, previously observed for Newtonian fluids [11],
is related to the aggregate shape and can be justified recalling that the intrinsic viscosity of a suspension
of rod-like particles is higher than the one for a suspension of spheres [7]. For the same reason, the
number of primary particles forming the aggregate weakly affects the intrinsic viscosity at high fractal
dimension. On the contrary, Np has a strong influence on 〈B〉m for low values of Df. Indeed, for a
sphere-like aggregate the number of primary particles only defines its resolution, whereas for a rod-like
aggregate it is connected to the aspect ratio that, in turn, determines the viscosity of the suspension [7].
As regarding the effect of the flow index, in agreement with the previous literature for suspensions of
spherical and spheroidal particles [14,16,25], shear-thinning reduces the intrinsic viscosity. Specifically,
as visible on the right column of Figure 8, in the investigated range the intrinsic viscosity linearly
depends on the flow index. As expected standard deviation is lower for high fractal dimensions, since
both initial orientation (see Figure 2) and random seed (see Figure 3) have a relatively minor effect.
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Figure 8. Ensemble-average intrinsic viscosity as a function of fractal dimension, parametric in the
number of aggregate primary particles and for different flow indexes (left). Same data as a function
of flow index for different fractal dimensions (right). The data standard deviation and trend line are
also reported.

The intrinsic viscosity shown in the previous figures accounts for the effective volume of the
aggregate that, as discussed in Section 2.1, is computed from the union of spheres and cylinders.
An alternative approach is to normalize the intrinsic viscosity by the aggregate hydrodynamic volume
that, for a set of spherical particles with radius a, is the volume of a sphere with radius RH a, where
RH is the hydrodynamic radius [11]. The hydrodynamic radius is defined as the radius of a sphere
that gives the same drag force acting on the aggregate in a uniform flow [34], and, in a Newtonian
fluid, it is related to the eigenvalues of the translational mobility tensor. Neglecting the contribution of
the connecting cylinders, the ensemble-average intrinsic viscosity normalized with the hydrodynamic
volume is then:

〈B〉m,H =
Np

R3
H
〈B〉m. (23)

Figure 9a shows the trend of 〈B〉m,H, in which the values of RH are taken from the literature [23,34].
Some remarks are in order: (i) Equation (23) and the used hydrodynamic radii assume that the
aggregate is made of tangential spherical particles, (ii) the values of RH are calculated for an aggregate
suspended in a Newtonian fluid (notice that the calculation of the hydrodynamic radius for a power-law
fluid is not straightforward as, due to the non-linearity of the constitutive equation, the mobility tensor
cannot be used for its evaluation). Despite these approximations, the data scale fairly well with
respect to the number of primary particles (symbols with the same color in figure). As a consequence
of the previous normalization, at high fractal dimension 〈B〉m,H tends to the value for a spherical
particle (i.e., 2.5 in the Newtonian case) [11]. This motivates us to further normalize the data with
respect to the intrinsic viscosity of a dilute suspension of spheres in a power-law liquid, given by
Bsph = 0.383 + 2.117n [14,25,35]. As visible in Figure 9b, all the data collapse on a single curve. Hence
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the viscosity of a dilute suspension of aggregates (with the same fractal parameters) in a power-law
fluid is completely determined by the fractal dimension. Of course, the prediction of the intrinsic
viscosity form the master trend in Figure 9b requires the knowledge of the hydrodynamic radius of the
aggregate population.
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Figure 9. (a) Ensemble-average intrinsic viscosity normalized with the aggregate hydrodynamic radius
as in Equation (23). (b) Same data as panel a normalized by the intrinsic viscosity of a sphere in a
power-law fluid. In both panels, the symbols denote the number of primary particles composing the
aggregate (lower triangle Np = 50, upper triangle Np = 20, and circle Np = 10) and the colors refer to
the flow index (blue n = 1.0, red n = 0.7, and green n = 0.4).

4. Conclusions

The viscosity of a dilute suspension of fractal aggregates in a shear-thinning fluid has been
investigated. The aggregate morphology is generated through a particle-cluster method combining
spherical particles with equal size in order to satisfy the fractal equation. The power-law constitutive
equation is used to model the fluid. Finite element simulations are employed to solve the fluid
dynamics problem of an aggregate in an unbounded shear flow for a fixed particle orientation.
The simulation gives the velocity and pressure fields, and the angular velocity of the aggregate.
A homogenization procedure is adopted to obtain the intrinsic viscosity. The simulations are run for
a uniform distribution of all the possible orientations, building a database of angular velocities and
intrinsic viscosities. The orbits followed by the aggregate are, then, reconstructed by integrating the
particle kinematic equation with angular velocity interpolated from the database. Finally, the intrinsic
viscosity computed along the orbit is averaged in time and over several initial orientations and seeds
used to build the morphology.

The rotational dynamics of the aggregate is rather complex, characterized by irregular oscillations
and more than one characteristic period. At long times, the aggregate approximately aligns with
one of its principal axes of inertia to the vorticity direction, performing a kayaking motion. Hence,
multiple regimes depending on the initial particle orientation are possible, thus leading to different
time-average intrinsic viscosities. The ensemble-average intrinsic viscosity decreases by increasing
the fractal dimension, that is, from rod-like to sphere-like aggregates. For low values of the fractal
dimension, the number of particles forming the aggregate directly affects the aspect ratio and, in turn,
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leads to relevant variations of the intrinsic viscosity. Shear-thinning reduces the intrinsic viscosity
showing a linear dependence with the flow index in the investigated range. Finally, the intrinsic
viscosity data, normalized through the hydrodynamic volume and the intrinsic viscosity of a dilute
suspension of spheres in a power-law liquid, collapse on a single curve in terms of the fractal dimension.

The results presented in this work help us to understand the effect of both complex particle shape
and non-Newtonian rheology on the intrinsic viscosity of suspensions in the absence of interparticle
hydrodynamic interactions. Hence, in some sense, they represent the extension of Einstein result to
a (dilute) suspension of fractal aggregates in a power-law fluid. Furthermore, they can be used as
starting point to estimate the suspension bulk viscosity at high volume fractions [25,35,36].
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