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ABSTRACT
Serotonin is well known as a neurotransmitter. Its roles in neuronal processes such as learning, 
memory or cognition are well established, and also in disorders such as depression, schizophrenia, 
bipolar disorder, and dementia. However, its effects on adhesion and cytoskeletal remodelling 
which are strongly affected by 5-HT receptors, are not as well studied with some exceptions for e. 
g. platelet aggregation. Neuronal function is strongly dependent on cell-cell contacts and adhe-
sion-related processes. Therefore the role played by serotonin in psychiatric illness, as well as in 
the positive and negative effects of neuropsychiatric drugs through cell-related adhesion can be 
of great significance. In this review, we explore the role of serotonin in some of these aspects 
based on recent findings. 
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Introduction

Serotonin, 5-hydroxytryptamine (5-HT), a monoamine, 
is involved in a wide range of functions, which include 
platelet aggregation, cell proliferation, cell transforma-
tion, vascular smooth muscle contraction, mood, appe-
tite, cognition, learning and memory, 
thermoregulation, locomotion, sleep, sexual behavior, 
endocrine secretion, pain, and immune responses [1– 
3]. 5-HT, in the animal kingdom, is synthesized from 
the amino acid tryptophan by tryptophan hydroxylase 
(TPH) and AADC – an aromatic amino acid decarbox-
ylase though in Drosophila and mouse phenylalanine 
hydroxylase is also known to substitute for TPH [4]. In 
mammals, more than 90% of the 5-HT present is pro-
duced by the enterochromaffin cells in the gastrointest-
inal tract and the rest is chiefly produced in the CNS by 
the serotonergic neurons of raphe nuclei present in the 
brain stem [5]. Apart from endogenous synthesis, 5-HT 
is supplied to the developing embryos from maternal 
and placental sources [6]. While 5-HT is not known to 
be supplied via dietary intake or cannot cross the 
blood-brain barrier, dietary supplementation with tryp-
tophan or 5-hydroxytryptophan an intermediate pre-
cursor of 5-HT can raise the blood 5-HT, and since 
both of these molecules can cross the blood-brain bar-
rier it can increase 5-HT in the brain as well [7]. 
Moreover, 5-HT is expressed very early in the develop-
ment in various invertebrates and vertebrates even 

before the formation of the nervous system and is 
reported to play a developmental role [8–11].

5-HT can activate 14 known receptor subtypes (not 
including splice and edited variants), which are 
grouped into seven major families (Figure 1) based on 
their structural and functional similarities [12]. All 
5-HT receptors are G-protein-coupled receptors, except 
those belonging to the 5-HT3 family which are iono-
tropic ligand-gated ion-channels [12].

The distribution and functions of various 5-HT 
receptors in mammals are highly diverse and briefly 
noted here. These have been mostly studied in the 
context of the nervous system. 5-HT1A is present in 
limbic areas, anterior raphae nuclei, and interpeduncu-
lar nucleus, and is implicated in the regulation of the 
cardiovascular system, neuroendocrine responses such 
as secretion of adrenocorticotropic hormone, regula-
tion of body temperature, sleep states, mood, and neu-
rogenesis. 5-HT1A knockout mice are seen to exhibit 
anxiety, depression, and cognitive deficits [12,13]. 5- 
HT1B is expressed in the hippocampus, striatum, cere-
bral cortex, cerebellum, and vascular tissues, which is 
associated with contraction of rat caudal arteries, inhi-
bition of noradrenaline release, inhibition of plasma 
extravasation, and it plays a role in migraine [12,13]. 5- 
HT1D present in low levels in the brain is a prime target 
for antimigraine drugs [12,13]. 5-HT2A is present in the 
cortex, hippocampus, platelets, vascular smooth muscle 
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cells, and gastrointestinal tract (GIT) is associated with 
learning and memory, behavior, sexual functions, 
endocrine functions, thermoregulation, gastrointestinal 
motility, platelet aggregation, vascular smooth muscle 
contraction [14,15]. 5-HT2B, present in rat fundus, gut, 
heart, kidney, lung, cerebellum, lateral septum, dorsal 
hypothalamus and medial amygdala, is seen to be quin-
tessential for the development of the cardiovascular 
system [14,16]. 5-HT2C reported in the choroid plexus, 
hippocampus, amygdala, human cerebral cortex, cere-
bellum and substantia nigra (SN), endopiriform nuclei, 
cingulate, and piriform cortex, is seen to play an impor-
tant role in feeding behavior[17]. 5-HT3 receptor family 
subtypes 5-HT3A and 5-HT3B, are expressed in the 
amygdala, hippocampus, cortex at the CNS, peripheral 
autonomic ganglion and GIT, and are seen to be asso-
ciated with the regulation of emetic reflex, intestinal 
motility and, in addition, has roles in the cardiovascular 
system [12]. 5-HT4 is seen to be present in the olfactory 
tubercle, islands of Calleja, substantia nigra, ventral 
pallidum, striatum, septum, hippocampus, amygdala, 
heart, and GIT. 5-HT5 is present in the cerebral cortex, 
dentate gyrus, pyramidal cell layer within hippocampal 
fields CA1-3, granule cell layer of the cerebellum, and 
tufted cells of the olfactory bulb, cerebral cortex, hip-
pocampus, and cerebellum. The 5-HT5A knockout 
mouse also shows increased exploratory activity in 
a novel environment. 5-HT6 is found in the striatum, 
nucleus accumbens, olfactory tubercle, and cortex, is 
moderately expressed in the amygdala, hypothalamus, 
thalamus, cerebellum, and hippocampus, corpus stria-
tum, nucleus accumbens, Islands of Calleja, olfactory 
tubercle, and the choroid plexus. Moderate levels are 
found in the hippocampal formation and cerebral cor-
tex, thalamus, hypothalamus, and substantia nigra and 

is involved in various functions such as cognition, 
learning and memory and Alzheimer’s disease [18,19]. 
5-HT7 is present in the ileum, spleen, endocrine glands, 
arteries, thalamus, hypothalamus, cerebral cortex, hip-
pocampus, and amygdala [20]. It is seen to be involved 
in the regulation of the endocrine system, the circadian 
rhythm, and temperature regulation, sleep, neuropsy-
chiatric disorders, memory and learning, locomotor 
functions, migraine pain, substance abuse, respiratory, 
cardiovascular and intestinal systems [21,22].

Serotonin and its receptors are expressed at both 
central nervous system and periphery and are known 
to modulate many functions, however, its lesser known 
roles in cell adhesion, migration, or cytoskeletal remo-
deling are recently gaining interest. The adhesion- 
related processes associated with the serotonergic sys-
tem reviewed here are as follows. Serotonin is classically 
associated with platelet aggregation and inhibitors of 5- 
HT2A are clinically used as drugs to prevent platelet 
aggregation. Serotonin and its receptors are also known 
to play a role in adhesion, migration and proliferation 
of vascular smooth muscle cells and pathogenesis of 
atherosclerosis. The adhesion-related processes 
mediated by serotonin in immune system are observed 
in mast cells, eosinophils, dendritic cells etc., for e.g in 
cell adhesion, migration, cytoskeletal remodeling and 
cell shape. Serotonin is known to augment wound 
healing, which is seen to be relevant for its role in 
fibrosis also, which is characterized by excessive extra-
cellular matrix protein secretion. In the central nervous 
system, serotonin has obvious roles in the expression 
and modulation of adhesion molecules including 
NCAM, synaptic adhesion and neurite remodeling. 
The role of serotonin in cell adhesion is also seen in 
developmental processes for e.g. in gastrulation and 

Figure 1. Classification and characteristics of serotonin receptors.

262 J. A. K. JOHN JAYAKUMAR AND M. M. PANICKER



interneuron migration. As reviewed here, adhesion- 
related roles of serotonergic system are interlinked 
with neuropsychiatric disorders and their medication.

Examples of serotonin-mediated adhesion, 
migration, and remodeling of the cytoskeleton

Though the serotonergic system is mostly associated 
with the central nervous system and primarily recog-
nized in neuronal signaling, emerging roles at the per-
iphery in lesser known cellular processes related to 
adhesion have begun to unravel entirely novel func-
tions. One of the well-known functions of 5-HT related 
to adhesion is platelet aggregation. In the neuronal 

context, it has also been speculated that many antide-
pressants and antipsychotics could mediate their roles 
by modulating synaptic adhesion molecules and/or the 
cytoskeleton. Though every detail of these studies is 
beyond the scope of this review, we aim to analyze in 
some detail adhesion-related roles of the serotonergic 
system in all the relevant systems, i.e. platelets, vascular 
smooth cells, immune cells, neuronal cells and in devel-
opment, along with its clinical implications (Figure 2). 
It is important to note that there is a strong correlation 
between increased platelet aggregation and pathogen-
esis. For e.g. in COVID-19 patients exhibit increased 
thrombosis (platelet aggregation) and vascular throm-
boembolism (circulating platelet clots within the blood 

Figure 2. The schematic representation of the adhesion-related effects mediated by the serotonergic system. The link between the 
serotonergic system and adhesion-related processes can be depicted as follows. (1) Physiological roles: The adhesion-related pro-
cesses (yellow) – platelets, vascular smooth muscle cells, immune cells, wound healing, neuronal cells, in development, etc., could be 
modulated by serotonergic system as its physiological role (blue). (2) Pathological roles: An aberrant serotonergic system for e.g. 
abnormal levels of expression of serotonin, serotonin receptors or transporter, etc., (purple) could also affect the adhesion- 
related processes, and such abnormal adhesion-related processes could cause the disease progression of neuropsychiatric disorders 
(orange). (3) Mode of action of drugs: The neuropsychiatric drugs targeting the aberrant serotonergic system could evoke its desired 
response of mitigating neuropsychiatric symptoms by modulating the adhesion-related processes (green). (4) Adverse effects of 
drugs: The neuropsychiatric drugs can also act nonspecifically on other components of serotonergic system and result in off- 
target adverse effects (brown).
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vessels) as pathology, which is suggested to have 
a larger role in disease progression, including multi- 
organ failure and fatality [23]. The exact mechanism of 
increased thrombosis in COVID-19 is not fully under-
stood, although it is speculated to be hyper- 
inflammation (and a subsequent cytokine storm), 
hypoxia and immobility. As prophylactic anticoagu-
lants such as heparin are administered to prevent 
COVID-19 associated coagulopathy [24], it would be 
useful to know if conventional anticoagulants targeting 
5-HT2A antagonists such as sarpogrelate or cyprohep-
tadine or antagonists of 5-HT2 receptors could be 
employed for reducing the hyper-coagulability compli-
cation in COVID-19 [25].

Platelet aggregation and migration of vascular 
smooth muscle cells

Two classical functions of 5-HT also to be discovered 
very early on were platelet aggregation and vascular 
smooth muscle contraction, in part due to its initial 
isolation and identification from fractionated serum 
[26,27]. Further work established that 5-HT is synthe-
sized and secreted into the blood by enterochromaffin 
cells and is subsequently taken up and stored in plate-
lets as dense granules [28]. During vascular injury, the 
contact of platelets with the damaged and exposed 
vessel walls triggers its aggregation and release of 
5-HT. The released 5-HT further stimulates 5-HT2A 

on platelets and vascular smooth muscle cells, causing 
amplification of platelet aggregation and vasoconstric-
tion, with resultant clot formation and hemostasis 
[29,30]. Hence, many conventional antiplatelet aggre-
gation drugs are seen to be inhibitors of 5-HT2A, such 
as sarpogrelate, cyproheptadine, pizotifen, which are 
used in major occlusive disorders, such as atherosclero-
sis [31,32]. While the atherosclerotic plaques trigger the 
first step of pathogenesis i.e. uncontrolled platelet 
aggregation or thrombosis [33], the associated 5-HT 
release also initiates a second step, the migration and 
proliferation of smooth muscle cells into the intima 
causing thickening of the vessel wall [34]. The migra-
tory effects of 5-HT on smooth muscle cells have been 
experimentally demonstrated in cultured rat aortic 
smooth muscle cells [35] and bovine pulmonary artery 
smooth muscle cells [36] as well, and 5-HT2 and 5-HT4 

receptors were seen to be involved respectively. 
Progress in atherosclerosis research has now shed 
light on 5-HT2A as a significant player and potential 
target for drug discovery [32].

Adhesion, migration and cytoskeletal remodeling 
of immune cells

In the immune system, cell adhesion and migration are 
essential for various functions such as extravasation, 
chemotaxis, phagocytosis, antigen presentation, secre-
tion of migratory cytokines & extracellular matrices 
[37], and 5-HT can affect many of these functions 
[38]. It also turns out that 5-HT plays significant adhe-
sion-related roles in various immune cells, i.e. mast 
cells, eosinophils, and dendritic cells.

In mice bone marrow-derived mast cells and human 
CD34+ derived mast cells, 5-HT is seen to cause increased 
in vitro adhesion, migration and actin polymerization, 
and are dependent on 5-HT1A expressed in these cells. 
Bone marrow-derived mast cells from 5-HT1A-/- mice did 
not exhibit any of this increased adhesion or actin poly-
merization, and similarly, in wild type mice, pharmaco-
logical inhibition of 5-HT1A abolished the serotonin- 
mediated increase in the adhesion of these cells to fibro-
nectin substrates. Moreover, intradermal injection of 
5-HT also caused migration and accumulation of mast 
cells to the site of injection in wild type mice, but not in 5- 
HT1A-/- mice [39]. Mast cells are a source of 5-HT [39] 
and are known to cross the blood-brain barrier and 
release 5-HT that played a role in learning and memory 
[40]. Similarly its also known that mast cell-deficient 
C57BL/6 W sh/sh mice show impaired spatial learning 
and memory [41]. So mastocytosis, a condition caused 
by increased proliferation of mast cells that eventually 
accumulates in various organs such as skin, liver, etc., is 
associated with neuropsychiatric disorders such as 
depression and post-traumatic stress disorder 
(PTSD) [42].

5-HT is also known to act as a chemo-attractant for 
eosinophils [43] and causes 5-HT2A dependent in vitro 
migration of human eosinophils, and in vivo rolling and 
migration of murine bone marrow-derived eosinophils 
within inflamed post-capillary venules [44].

Another role of 5-HT mediated adhesion in the 
immune system is on dendritic cells, where 5-HT is 
seen to promote in vitro and in vivo adhesion, migra-
tion, and cytoskeletal modulation. It is seen that 5-HT 
aids the migration of lung-derived dendritic cells in 
response to intratracheally injected FITC-labeled 
OVA, to crossing into mediastinal lymph nodes 
through epithelial tight junction barriers. Similarly, 
transwell migration of dendritic cells was seen to be 
mediated by 5-HT1B and 5-HT2A [45]. In colon 
explants, treatment with 5-HT7 inhibitor caused 
reduced and diffused migration of dendritic cells, 
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compared to straight and long-distance migration seen 
with controls. 5-HT7 activation also caused actin- 
mediated extensive morphological changes, in vitro 
transwell migration, and 3D collagen gel invasion of 
dendritic cells [46].

Moreover, it is seen with numerous studies, that 5-HT is 
significantly involved in immune disorders such as asthma, 
wheezing, allergic rhinitis, chronic pulmonary obstructive 
disease, arthritis, irritable bowel syndrome, Raynaud’s phe-
nomenon/scleroderma or psoriasis [47–52] and the under-
lying cause or mechanism could be based on adhesion- 
mediated effects.

A physiological process that is at the intersection of 
serotonin, platelets and immune cells is wound healing, 
and serotonin may have an augmentative role. Serotonin 
is seen to promote cell migration, proliferation, survival, 
and antiapoptotic effects in keratinocytes and fibroblasts 
[53]. Moreover, numerous lines of evidence also suggest 
that autologous platelets enhance healing of skin wounds 
in humans [54]. Platelets are significant reservoirs for 
serotonin, and the mechanism could be serotonin- 
mediated adhesion and migration of cells involved in 
tissue repair. Yet another role for serotonin is an 
increased risk of fibrosis with increased blood serotonin, 
and inhibitors of serotonin receptors such as 5-HT2A 

and 5-HT2B play protective roles [55,56].

Modulation of adhesion molecules and 
cytoskeleton of neuronal cells

The serotonergic system being an integral part of CNS, is 
known to have significant roles in neuropsychiatric dis-
orders. Several medications are therefore targeted to 5-HT 
receptors. Recent results from our laboratory suggest that 
some of the clinically used antipsychotics may modulate 
adhesion-related processes and F-actin remodeling[57]. 
Many neuropsychiatric studies, including postmortem 
brain analysis of schizophrenic patients, have shown 
expression of synaptic adhesion molecules such as neural 
cell adhesion molecule (NCAM) to be significantly 
reduced [58]. The significance of NCAM is even more 
evident in its relevance in schizophrenia mouse models, 
such as NCAM1 null mice [59] and in the maternal 
deprivation mouse model [60] also NCAM expression is 
seen to be reduced [61]. The modulation of NCAM by 
5-HT is driven by the addition of polysialic acid. It is 
known that non-polysialylated NCAMs are associated 
with robust and rigid adhesion, polysialylation decreases 
its adhesiveness and enables dendritic arborization, neu-
ronal migration and synaptic plasticity [62]. Notably, in 
conditions of depression, in schizophrenic individuals or 
animal models, polysialylated-NCAMs are also seen to be 
decreased [63], and antipsychotics or antidepressants 

used in their treatment promote polysialylation of 
NCAM [64].

Secondly, remodeling cytoskeleton is integral to neu-
ronal events such as spinogenesis, axonal guidance, 
growth cone or neurite maturation, synaptogenesis, 
and plasticity [65]. For these functions, 5-HT is gener-
ally seen to have an augmentative role, for e.g. treat-
ment with fluoxetine and vortioxetine, which increases 
5-HT concentrations in the synapse, is seen to promote 
spine enlargement, synaptic contacts and dendritic den-
sity [66,67]. Nevertheless, the effects of individual 5-HT 
receptors are highly variable, based on the receptor 
type, site of expression, and/or time. For e.g. in rat 
embryonic neuron culture, 5-HT1A is seen to increase 
dendritic filopodia density and 5-HT2A/2C is seen to 
increase the puncta and spine density on 
embryonic day 11, but on embryonic day 15 they are 
seen to negate each other’s effects [68]. In another 
study 5-HT1A has been reported to restrict dendritic 
growth cone formation [69] while it has also been 
shown to increase spinogenesis in a similar context 
[70]. Moreover, 5-HT2A [68,71–73], and 5-HT7

46 [74– 
77], has been reportedly seen to cause neurite elonga-
tion, spinogenesis and synaptogenesis, while 5-HT3 is 
believed to cause a decrease in total axon length and 
dendritic branching in cultured neurons [78].

Adhesion and migration in embryonic development

In invertebrates, such as sea urchins, mollusks, starfish, 
planaria and Drosophila, 5-HT is expressed early in the 
development and is ascribed various pre-nervous roles 
[8,11,79–82]. In mammals, 5-HT is expressed at differ-
ent time points in development, for e.g. in rodents 
5-HT is expressed in preimplantation embryos and 
embryonic stem cells [9,83] and in primates it is 
shown to be present at least from the first month of 
gestation [84].

Development is a process crucially dependent on 
differential adhesion, and 5-HT and its receptors play 
significant roles, which are directly or indirectly related 
to adhesion. For e.g. HToin Drosophila, 5-HT2Dro, is 
seen to play a very important role in its gastrulae, where 
5-HT2Dro knockout causes lethally abnormal ectoderm 
extension due to aberrant adherence junctions, while 
disruption of 5-HT synthesis also results in similar 
condition [81,85]. Curiously, mice that lack TPH1 and 
TPH2 enzymes (involved in the synthesis of 5-HT in 
the periphery and CNS respectively) are quite normal at 
birth but does show retarded development initially, and 
then recovers [86,87]. Such retarded growth could also 
be attributed to highly deficient maternal care exhibited 
by dams that lack serotonin [88,89]. It is interesting to 
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note that in mice that lack TPH1 and TPH2 there does 
not seem to be a total loss of serotonin [90]. One of the 
possible reasons could be Phenylalanine hydroxylase 
taking the role of TPH1 in converting tryptophan to 
5-hydroxytryptophan the rate-limiting step of serotonin 
synthesis [4]. 5-HT receptors when globally knocked 
out, are seen to exhibit a fairly robust survival also 
suggesting redundancy of functions among 5-HT 
receptors, which seem to obviate the adverse effects 
due to absence of individual receptors [10]. These 
observations suggest that the serotonergic system in 
development is highly buffered, that even when seroto-
nin synthesis in the developing embryo is inadequate or 
individual 5-HT receptors are absent, there is some 
level of compensation. Curiously, when whole embryo 
cultures were exposed to pharmacological agents, such 
as inhibitors of SERT, 5-HT1A, 5-HT1B, 5-HT1D or 5- 
HT2A, 5-HT2B, or 5-HT2C, severe embryonic malforma-
tions were observed, and some of them seem to be 
directly related to adhesion and/or migration [16,91– 
95]. Moreover, in humans also antipsychotics or anti-
depressants at pregnancy are seen to be associated with 
an increased risk of spontaneous abortions, stillbirths 
or malformations [96,97].

Another adhesion-related process during develop-
ment, i.e. interneuron migration is also seen to be 
significantly regulated by 5-HT receptors. 5-HT3A 

expressed in caudal ganglionic eminence-derived inter-
neurons, plays a role in their migration and laminar 
positioning to specified cortical plates [98,99]. 5-HT6 is 
also known to affect migration of PC12 and neuronal 
cells [100–102], and is present in the proliferative zones 
i.e. subventricular zones (SVZ) and intermediate zone 
(IZ) of developing mice embryos, and aids interneuron 
migration [103,104]. Interneuron migration is very 
important for the spatiotemporal formation of brain 
regions for e.g. laminar positioning of cortex and for-
mation of neuronal circuits [105,106107–108]. It is 
known that faulty interneuron migration results in 
neuronal migration disorders (National Institute of 
Neurological Disorders and Stroke information page), 
which could lead to neuropsychiatric disorders such as 
autism and schizophrenia. One could perhaps also 
speculate on interneuron connectivity being affected 
by 5-HT-mediated adhesion.

The clinical implication of an aberrant 
serotonergic system and adverse effects 
pertinent to cell adhesion and migration, and 
cytoskeletal remodeling

The role of 5-HT in the central nervous system and 
neurological disorders such as schizophrenia, anxiety, 

autism, depression, and bipolar disorders are well 
known [107–109], and so are the roles of antidepres-
sant and antipsychotic drugs known to effectively 
relieve neuropsychiatric complaints [110,111]. 
However, the other roles that the serotonergic system 
is involved in, especially at the periphery, and in events 
such as adhesion, migration, and cytoskeletal remodel-
ing have only received moderate attention, despite its 
significant clinical implications.

Although 5-HT is perceived to be majorly associated 
with a large number of functions in the CNS, more 
than 90% of 5-HT is present at the periphery, and is 
likely to play significant roles. As the 5-HT receptors 
are present both at the CNS as well as periphery, many 
neuropsychiatric drugs targeted to affect the CNS are, 
not so surprisingly, seen to have off-target adverse 
effects at the periphery. As expected, serotonin is asso-
ciated with many disorders at the periphery especially 
in conditions known to increase 5-HT levels in the 
blood, such as administration of antidepressants. 
Platelet aggregation, a serotonin-affected phenomenon, 
also has a strong correlation with atherosclerosis, fibro-
sis and psoriasis [33,55,112,113]. In conditions such as 
mastocytosis, atherosclerosis, pulmonary hypertension, 
or psoriasis, we also see an associated elevated blood 
level of 5-HT [39,114,115]. In particular, the signifi-
cance of 5-HT in cardiac fibrosis became evident, 
from the infamous use of a weight-loss drug Fen- 
Phen, where the main anorexine fenfluramine, 
a serotonin reuptake inhibitor, and an agonist of 5- 
HT2B and caused fibrosis of the heart valve which led 
to significant mortality [116,117]. Curiously other ser-
otonin reuptake inhibitors have not been reported to 
cause a similar valvular defect until now. In pulmonary 
artery hypertension, there is also an over-expression of 
SERT [48] and maternally administered SSRIs are 
known to result in pulmonary hypertension in off-
springs [118]. Similarly, an increase or decrease in 
5-HT is seen to result in the increase or decrease in 
bone resorption respectively, and humans on SSRI 
administration are prone to bone fractures [119]. On 
the contrary, antipsychotics are seen to be beneficial in 
all of the aforementioned complications, e.g. in delay-
ing the onset of atherosclerosis and fibrosis and for 
treating pulmonary hypertension, multiple sclerosis, 
cystic fibrosis, and psoriasis [32,120–122], but is seen 
to be counter-effective in bone mineralization [123]. 
Interestingly, in carcinoid syndrome i.e. cancer of the 
enterochromaffin cells associated with high secretion of 
5-HT, as expected, high levels of metastasis are 
observed [124]. While 5-HT/SSRIs have been linked 
to promoting metastasis antipsychotics are seen to inhi-
bit it [125,126].
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Thus, we see that the adverse effects of abnormal 
levels of serotonin or faulty expression of receptors/ 
transporter are not confined to just CNS, but are per-
vasive across multiple systems in the body. Similarly, 
neuropsychiatric medications such as SSRIs (antide-
pressants) or antipsychotics are seen to have huge off- 
target effects outside the CNS. This is one of the major 
reasons why neuropsychiatric treatment remains 
a tightrope walk, with specificity largely remaining elu-
sive, often necessitating ‘risk versus benefit’, and limit-
ing the usage of available drugs. As the mode of action 
of many antidepressants and antipsychotics at the CNS 
includes replenishing inadequate synthesis, controlling 
the excessive production of neurotransmitters or mod-
ulation of signaling of receptors [127], many of these 
drugs require chronic administration. This, unfortu-
nately, paves way for several side effects for e.g. agra-
nulocytosis, extrapyramidal symptoms, dyskinesia, 
weight gain, etc. [128]. In the case of serotonin syn-
drome, a life-threatening complication arising from 
increased serotonergic activity following clinical 
administration of serotonergic agents, SSRIs and 
many drugs that affect the serotonin metabolism, exhi-
bit symptoms which are termed as the classical triad of 
cognitive-behavioral changes, neuromuscular excitabil-
ity, and autonomic instability [129].

Despite significant advances in neuropsychiatry espe-
cially serotonin biology, the adverse effects of medications 
targeting the serotonergic system remain severe. Hence, the 
path forward in clinical interventions involving the seroto-
nergic system needs to be holistic and multi-targeted, for 
gaining specificity to minimize off-target effects. To achieve 
that, it would be imperative to also unravel the complex 
links between serotonergic systems and lesser-known cel-
lular processes such as cell adhesion and cytoskeletal remo-
deling, which could aid in understanding the effects of 
these drugs thereby design optimal drugs with improved 
clinical results.

The link between the serotonergic system and adhesion- 
related processes can be depicted as follows. (1) 
Physiological roles: The adhesion-related processes (yel-
low) – platelets, vascular smooth muscle cells, immune 
cells, wound healing, neuronal cells, in development, etc., 
could be modulated by serotonergic system as its physio-
logical role (blue). (2) Pathological roles: An aberrant ser-
otonergic system for e.g. abnormal levels of expression of 
serotonin, serotonin receptors or transporter, etc., (purple) 
could also affect the adhesion-related processes, and such 
abnormal adhesion-related processes could cause the dis-
ease progression of neuropsychiatric disorders (orange). 
(3) Mode of action of drugs: The neuropsychiatric drugs 
targeting the aberrant serotonergic system could evoke its 
desired response of mitigating neuropsychiatric symptoms 

by modulating the adhesion-related processes (green). (4) 
Adverse effects of drugs: The neuropsychiatric drugs can 
also act nonspecifically on other components of serotoner-
gic system and result in off-target adverse effects (brown).
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