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Cumulative impacts: thermally 
bleached corals have reduced 
capacity to clear deposited 
sediment
Pia Bessell-Browne   1,2,3, Andrew P. Negri1,3, Rebecca Fisher1,3, Peta L. Clode   2 & Ross 
Jones1,3

The interaction between local, anthropogenic stressors, and larger scale regional/global stressors, is 
often used to explain the current poor condition of many corals reefs. This form of cumulative pressure 
is clearly manifested by situations where dredging projects happen to coincide with marine heatwaves 
that have caused coral bleaching. A key pressure associated with dredging is elevated sedimentation. 
In this study, 3 coral species (Acropora millepora, Porites spp. and Turbinaria reniformis), representing 
three common morphologies (branching, massive and foliose respectively), were experimentally 
induced to bleach by exposure to a temperature of 31 °C for 21 d. The corals were then subjected to 
a range of sedimentation rates (0, 11, 22 and 40 mg cm−2 d−1), and their sediment-rejection ability 
quantified after 1 and 7 successive sediment deposition events. Bleached corals were less capable 
of removing sediments from their surfaces, and sediment accumulated 3 to 4-fold more than on 
normally-pigmented corals. Repeated deposition resulted in a ~3-fold increase in the amount of 
sediment remaining on the corals, regardless of bleaching status. These results suggest that adaptive 
management practices need to be developed to reduce the impacts of future dredging projects that 
follow or coincide with elevated sea surface temperatures and coral bleaching events.

A well cited model for the current poor condition of many corals reefs is the interaction between local anthro-
pogenic factors (e.g. coastal development, poor water shed management, pollution and overfishing), and larger 
scale regional and global factors (e.g. rising seawater temperatures and ocean acidification)1–7. This combination 
(and possible interaction) of local and global stressors represents one of the largest uncertainties for predicting 
environmental change5, 8. Conserving reefs in the face of predicted increases in seawater temperatures associated 
with climate change3, 9–11, and the pernicious threat of coral bleaching12, 13, is a significant challenge faced by reg-
ulatory agencies. Cumulative impacts and interactions of local and global stressors or drivers (see Côté, et al.14), 
can manifest themselves in many ways, and are epitomised by situations where dredging projects coincide with 
‘natural’ warm-water coral bleaching events15.

Coral bleaching, or the dissociation of the coral-algal symbiosis, is a well-known stress response of corals16–18, 
and is frequently observed in response to periods of elevated water temperatures3, 16, 19, 20. Bleaching events can 
occur at multiple scales from local events (e.g. Jones18 and Jones21), to regional (mass bleaching) events22, 23, and 
even global bleaching events3, 24, 25. Bleaching events can occur rapidly (within days) from only short term acute 
periods of temporarily elevated water temperatures21, as well as in response to more chronic periods of warm 
water26. The loss of the symbionts is often associated with high levels of partial and whole colony mortality, and at 
the ecological level recovery of reefs impacted by severe bleaching occurs over decadal time frames27. Bleaching 
events differ considerably in severity and duration, and the sub-lethal response along with inter and intraspecific 
variability in bleaching of corals is commonly observed28, 29. While bleaching can lead to whole colony mortality, 
under some conditions heavily bleached (bone-white) colonies can regain their algal symbionts, and return to a 
normal pigmentation with no associated mortality21.
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At a physiological level, recovery of algal symbionts can take many months to upwards of a year26, 30–35. This 
time frame is much longer than predicted from models based on the number of dividing Symbiodinium and 
duration of the division phase34. The extended time period needed to re-establish the symbiosis may be related 
to sorting processes within the tissues, i.e. the movement of newly divided algal cells into empty gastro-dermal 
cells34; however, it may also be due to tissue damage incurred during the bleaching process itself. In addition, 
heterotrophic food sources facilitate tissue repair following bleaching along with energy reserves, and limita-
tions in either of these will also slow recovery36–40. Histopathological examinations of bleached corals sometimes 
show loss of architecture, various degrees of atrophy and necrosis, and disruption of the gastro-dermal layer41–43. 
Bleached corals have also been found to possess significantly depleted numbers of epidermal mucous secreting 
cells (mucocytes), compared to normally-pigmented corals44, 45. Corals exposed to elevated water temperatures 
also exhibit a six-fold higher release rate of undischarged cnidae, indicative of host cell necrosis or detachment46 
during the bleaching process47.

Irrespective of the mechanism of recovery, bleached corals are in a compromised state, with decreased tissue 
thickness48–50, and in some cases low energy reserves26, 51. The reduced ability to acquire energy phototrophically 
can in some species be compensated for by increased heterotrophic feeding36, 52. However, most studies confer 
that bleached corals are in a weakened state and susceptible to range of different stressors, such as algal colonisa-
tion53, disease54, and periods of poor water quality15.

Concepts of multiple stressors acting synergistically, and of interactions between local anthropogenic factors 
and larger global factors, was highlighted recently with the Miami Harbor Phase III Federal Channel Expansion 
Project, which was conducted during a regional mass coral bleaching event55, 56. Similar situations have occurred 
in the inshore, central Great Barrier Reef 21, 57, and a series of dredging projects off the west coast of Australia in 
recent years58. The projects in Western Australia were large scale, capital dredging projects, which involved the 
removal of ~50 Mm3 of sediments from coral reef environments. These projects included the 2010–2011 Barrow 
Island project59, the 2007–2010 Pluto project60, and the 2013–2015 Wheatstone project61. These dredging cam-
paigns each happened to coincide with a series of local and mass coral bleaching events62–65.

Dredging and dredging-related activities release sediments into the water column either from mechanical 
disturbance of the seabed, controlled overflow from hopper barges, or sediment disposal at offshore placement 
sites66, 67. There are many different cause effect pathways where sediment plumes from dredging activities can 
affect corals (recently reviewed by Jones, et al.68). Of these, one of the most significant is elevated sedimentation, 
as resuspended sediments deposit onto the sea floor, often leading to smothering of corals (see images in Foster, 
et al.66 and Jones, et al.68). In this study, we examine the consequences of coral bleaching on the tolerance of corals 
to poor water quality associated with dredging.

Results
Approach.  Fragments of 3 coral species (Acropora millepora, Porites spp., and Turbinaria reniformis) were 
experimentally induced to bleach by exposure to elevated water temperatures. Sediment-rejection by these 
bleached corals was then tested against normally-pigmented ‘control’ corals, in a series of sediment deposition 
events up to a rate of 40 mg cm−2 d−1. Non-destructive techniques were used to monitor coral health throughout 
the sediment exposure period, including image analysis of coral colour and photochemical efficiency of algal 
symbionts. Corals were exposed to these sediment deposition events for 7 consecutive days, and at the end of 
each day any sediment accumulating on the surfaces was cleaned by water motion. The sediment-rejection ability 
of the corals was quantified after day 1 and then again at day 7 by determining the mass of sediment remaining 
on each coral.

Effects of bleaching on coral survival, colour and physiology.  Bleaching was induced in the corals by 
slowly raising water temperatures (0.5 °C per day for 8 d) and holding the temperatures at 31 °C for 3 weeks under 
a daily light integral of 8.6 mol photons m−2 d−1. Bleaching (tissue lightening) was observed after ~15−20 d in 
the 31 °C temperature treatment. No bleaching was observed in any of the corals held at 27 °C. For the branching 
A. millepora, paling occurred first on the upper light exposed surfaces, and towards the end of the exposure the 
upper surfaces were heavily bleached (bone white), and the lower (shaded) surfaces of the branches were pale in 
colour. The hemispherical Porites spp. also discoloured first on the upper more horizontal surface, with the edges 
of the colonies still retaining some pigmentation. Bleaching in T. reniformis was more uniform across the surface 
and the corals took on a pale yellow colouration (from animal pigments) as the bleaching progressed. There was 
no partial or whole-colony mortality resulting from the 31 °C temperature treatment, or in any of the corals held 
at 27 °C. The maximum quantum yields (Fv/Fm) of the bleached fragments were ~3, 2 and 6-fold lower in A. mille-
pora, Porites spp., and T. reniformis respectively, and bleached corals had ~50% lower colour index scores than the 
normally-pigmented fragments for all species (Fig. 1).

Effects of pulsed sediment on coral survival, colour, physiology and sediment clearance.  The 
bleached and normally-pigmented corals were exposed to temporarily high suspended sediment concentrations 
(SSCs), and water motion in the tanks was subsequently stopped to allow the sediments to settle out of suspen-
sion and onto the corals. Settlement of sediment in the tanks occurred rapidly, with most sediment dropping 
out of suspension in the first 1–2 h after the pumps were turned off each day (Fig. 2). The amount of sediment 
accumulating on the flat, concrete filled PVC cylinders (SedPods) averaged 0.05 ± 0.03, 10.8 ± 3.7, 22.4 ± 2.4 and 
39.6 ± 2.3 mg cm−2 (mean ± SE, n = 3) over the 7 successive deposition events (Fig. 2).

There was no whole colony mortality in response to the sediment exposures and the only partial mortality 
occurred in a bleached Porites spp. fragment (which suffered 26% partial mortality in the 11 mg cm−2 d−1 treat-
ment), and a bleached fragment of T. reniformis (which suffered > 5% mortality in the 22 mg cm−2 d−1 treatment).
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During the sediment exposures, all species had expanded and partially expanded polyps irrespective of 
bleaching status. Mucus secretion was commonly observed in T. reniformis and Porites spp., but less so in A. 
millepora. All corals appeared to corral and collect the sediments into mucus-laden patches with well–defined, 
discrete, edges. The patches were then slowly moved under muco-ciliary transport to the sides of the colonies 
and ultimately shed. Occasionally, sediments patches became stuck in local depression or concave features of the 
surface and remained trapped there. For the A. millepora similar trapping of sediment was occasionally observed 
at the junction point of neighbouring branches.

The colour index of bleached and normally-pigmented corals differed considerably for all three species, while 
there was limited apparent impact of sediment treatment (Table 1, Fig. 3). The best fit model suggested that col-
our index was driven by an interaction between bleaching status, species and time, with an additive impact of 
sediment treatment having a lower model weight than when sediment was included (Table 1, Fig. 3). Chl a was 
best explained by a model including an interaction between bleaching status and species (Table 1, Fig. 3). At the 
end of the experiment Chl a concentrations differed between normally-pigmented and bleached corals, with sub-
stantially less Chl a present in bleached fragments, with this consistent across all three species, while the smallest 
difference was apparent in T. reniformis (Fig. 3). Similar to colour index, there was no evidence for an impact of 
sediment deposition treatment on Chl a concentrations (Fig. 3), with a model not including sediment having a 
higher model weight (Table 1). Fv/Fm also differed between normally-pigmented and bleached corals, and this 
effect was dependent on species, time and sediment (Table 1). While Fv/Fm remained stable across deposition 
treatments for the normally-pigmented corals, Fv/Fm values were lower in higher sediment treatments in bleached 
corals of all species (Fig. 3).

Normally-pigmented corals were effective at removing sediment from their surfaces, and at the highest sed-
imentation level the amount of sediment remaining was 0.6 ± 0.2 mg cm−2 (mean ± SD, range 0.3–0.7 mg cm−2, 
n = 36), or 2.1% of the accumulation rate measured on the SedPods on that day (Supplementary Table S1, Fig. 4). 
The difference between the sediment mass on the corals and SedPods is due to the self-cleaning ability of the 
corals. Sediments were washed off the corals each day (during the re-suspension process), and after the last of 
the 7 consecutive daily deposition events, the amount of sediment remaining on the surfaces of the highest sedi-
mentation level, was much higher, being 2.5 ± 0.3 mg cm−2 (mean ± SD, range 2.3–2.8 mg cm−2, n = 36), or 6.4% 
of the accumulation rate measured on the SedPod on that day (Supplementary Table S1, Fig. 4). Overall, for the 
normally-pigmented colonies, 3.1-fold more sediment remained on the surface of the corals after the 7th deposi-
tion event than after the first.

Bleached corals were less effective at removing sediment from their surfaces, and at the highest sedimentation 
level, the amount of sediment remaining was 1.8 ± 1.4 mg cm−2 (mean ± SD, range 0.5–3.3 mg cm−2, n = 36), or 
~6.5% of the accumulation rate measured on the SedPod on that day (Supplementary Table S1, Fig. 4). After the 
last of the 7 consecutive daily deposition events, the amount of sediment remaining on the surfaces of the highest 

Figure 1.  Differences in coral tissue colour and maximum quantum yield of the algal symbionts after the 
experimental bleaching. (a) Colour score index and (b) Fv/Fm of bleached and normally-pigmented corals 
after exposure to 31 °C or 27 °C for 3 weeks and before the sediment deposition experiments. Average data is 
presented with SE, n = 48 fragments per bleaching status for each species.
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sedimentation level, was much higher at 9.3 ± 3.9 mg cm−2 (mean ± SD, range 4.9–12.3 mg cm−2, n = 36), or 24% 
of the accumulation rate measured on the SedPod on that day (Supplementary Table S1, Fig. 4). Overall 3.7-fold 
more sediment remained on the surface of the corals after the 7th deposition event than after the first.

The combined effects of the reduced capacity to self-clean with time and lower sediment rejection ability of 
bleached corals differed between species. For bleached T. reniformis and the Porites spp. 2.3 to 2.6-fold more sedi-
ment remained on the corals after the last deposition event than the first. For bleached A. millepora, 15-fold more 
sediment remained on the corals after the last deposition event than the first (Supplementary Table S1, Fig. 4). The 
amount of remaining sediment on each fragment (inability to clear sediments), was best described by a complex 
model involving a three-way interaction between bleaching status, species and time as well as two-way inter-
actions between sediment deposition and species, along with time and bleaching status (Table 1, Fig. 4). Given 

Figure 2.  Suspended sediment concentrations (SSCs) and sediment deposition rates in the experimental tanks. 
(a) Nephelometrically-derived suspended sediment concentrations (mg L−1) in each tank for the 7 day exposure 
period showing resuspension of sediment each afternoon (4:00 pm) followed by a decrease in SSCs as sediment 
fell out of suspension on the corals and SedPods each night, (b) Sedimentation (SedPod accumulation rate, 
mean ± SE, n = 3) after each of the deposition events across the 4 deposition rate treatments of 0, 11, 22 and 
40 mg cm−2.

Parameter Model n AICc δ AICc AICc weight R2

Colour index

ble. × spp. × time 15 933.6 0.0 0.33 0.83

ble. × spp. × time + sed. 16 935.3 1.7 0.14 0.84

ble. × spp. × time + spp. × time + ble. × time + ble. × spp. + sed. 17 936.0 2.4 0.11 0.84

spp. × time + ble. × time + ble. × spp. 13 936.0 2.4 0.10 0.83

ble. × spp. × time + spp. x time + sed. × time + ble. × time + ble. × spp. 17 937.4 3.9 0.05 0.84

spp. × time + ble. × time + ble. × spp. + sed. 14 937.8 4.2 0.04 0.83

Chl a

ble. × spp. 9 −650.4 0.0 0.41 0.93

ble. × spp. + sed. 8 −649.9 0.5 0.32 0.93

ble. × spp. + ble. × sed. 10 −646.9 3.0 0.10 0.93

sed. × spp. + ble. ×  spp. 11 −645.7 4.2 0.06 0.93

ble. × sed. × spp. 14 −643.9 6.0 0.02 0.94

sed. x . spp. + ble. × spp. + ble. × sed. 12 −643.1 6.8 0.02 0.93

Fv/Fm

ble. × spp. × time + ble. × sed. 17 798.7 0.0 0.23 0.63

ble. × spp. × time + ble. × sed. + spp. × sed. 19 800.0 1.3 0.12 0.64

ble. × spp. × time + sed. x time + ble. x spp. 18 800.3 1.7 0.10 0.63

ble. × spp. × time + sed. x time + sed. x spp. 19 801.4 2.7 0.06 0.64

ble. × spp. × time + ble. × sed. × spp. 20 801.6 3.0 0.06 0.64

sed. × spp. × time + ble. × spp. × time 21 801.6 3.0 0.05 0.64

Deposited sediment

ble. × spp. × time + sed. × time + sed. × spp. + sed. × ble. 20 787.5 0.0 0.39 0.99

ble. × spp. × time + ble. × sed. × time 21 789.3 1.9 0.15 0.99

ble. × spp. × time + ble. × sed. × spp. + sed. × time 22 790.8 3.3 0.07 0.99

spp. × time + sed. × time + sed. × spp. + ble. × time + ble. x sed. 16 791.0 3.5 0.07 0.99

spp. × time + sed. × time + sed. × spp. + ble. × time + ble. × spp. + ble. × sed. 18 791.1 3.7 0.06 0.99

sed. × spp. × time + ble. × spp. × time 22 791.5 4.0 0.05 0.99

Table 1.  Top model fits (generalised linear mixed model) for colour index, Chl a concentrations, maximum 
quantum yield (Fv/Fm) and deposited sediment for each of the fixed factors, inducing bleaching status (ble.), 
species (spp.), time and sediment deposition treatment (sed). Shown are the fitted model, number of parameters 
(n), Akaike information criterion (AICc), δ AICc, model weights, and R2 values. The model with the fewest 
parameters within 2 AICc is considered the most parsimonious, and therefore the best model. Selected best 
models are shown in bold.
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the high order interactions with deposition, we fitted separate dose response relationships at two times (after 1 
deposition and after 7 deposition events), for each species and for both bleached and normally pigmented corals.

Effect concentrations of both 10 and 50% (EC10 and EC50 respectively) impacts on clearance ability were cal-
culated for bleached colonies of each species after 7 deposition events (Fig. 4). A sediment deposition rate of 
40 mg cm−2 d−1 was not sufficient to reduce the clearance ability of any species while normally pigmented after 
either 0 or 7 deposition events (Fig. 4). Bleached A. millepora demonstrated a 10% reduction of clearance ability 
at 5 ± 4 mg cm−2 d−1, and a 50% reduction at 12 ± 4 mg cm−2 d−1, both after 7 deposition events. The 10% impact 
on clearance in bleached T. reniformis after 7 deposition events was 10 ± 3 mg cm−2 d−1, while the 50% impact 
was observed at 13 ± 6 mg cm−2 d−1. After 1 deposition event the 10% impact on clearance for Porites spp. was 
11 ± 4 mg cm−2 d−1, while a 50% impact was observed at 16 ± 6 mg cm−2 d−1. No effect concentration could be 
determined for Porites spp. after 7 deposition events as the amount of sediment accumulating on the fragments 
was still increasing at the highest sediment deposition treatment (Fig. 4b).

Based on relative explanatory values of the fixed predictors, species was the most important factor influencing 
Fv/Fm, followed closely by sediment treatment and time, and then lastly bleaching status, however these were all 
strong influencers (Fig. 5) Colour index was most influenced by time, followed by species, bleaching status, and 
finally sediment treatment, which had a limited effect (Fig. 5). Chl a concentrations were most influenced equally 
by bleaching status and species (although time was not included in these models because this was only measured 
at the end of exposure), followed by sediment deposition rate (Fig. 5). Lastly, the amount of deposited sediment 
remaining on coral fragments was most strongly driven by bleaching status (Fig. 5).

Discussion
The data from this study provides clear evidence that thermally bleached corals have considerably reduced capac-
ity to clear sediments from their surfaces compared to normally-pigmented corals. The pattern was similar across 
three growth forms (branching, massive, and foliose), from three common and widely distributed coral species. 
Sedimentation is considered one of the most widespread, human-induced perturbations on reefs69, and a key 

Figure 3.  Physiological health parameters of bleached and normally-pigmented corals after 7 consecutive 
deposition events. (a) Colour index, (b) Maximum quantum yield (Fv/Fm), and (c) Chl a concentrations (µg Chl 
a cm−2) of A. millepora, Porites spp. and T. reniformis fragments across 4 deposition rate treatments for both 
normally pigmented (black) and bleached (blue) fragments after 7 consecutive deposition events. Raw data 
(triangles) is presented with modelled relationships (lines) and 95% confidence intervals (ribbons).
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causal pathway associated with mortality of corals close to dredging activities68, 70–72. This interaction between 
coral bleaching and sedimentation pressures clearly represents a consideration for resource managers in the 
regulation of more manageable local, anthropogenic stressors in the face of much wider-scale, and essentially 
uncontrollable issues15, associated with periods of elevated water temperature resulting from a changing climate.

Before the sediment exposure experiment, corals were artificially bleached by heat stress. The time-course 
and patterns of bleaching are consistent with the current understanding of the bleaching phenomenon based on 
both field and laboratory experiments73. Bleaching was induced by slowly raising water temperatures to 31 °C and 
exposing the corals for 3 weeks under a daily light integral of 8.6 mol photons m−2 d−1. For the mid-shelf reefs 
of the GBR, at around 18°S, where the corals were collected, the maximum average daily temperatures typically 
range from 28–30 °C73. The 31 °C temperature only marginally exceeds the normal range, although the combi-
nation with time (21 d exposure) greatly exceeds temperatures that the corals have previously encountered, and 
is equivalent to ~4 degree heating weeks (DHW). Such a DHW exposure is generally anticipated to result in sig-
nificant coral bleaching and this exposure resulted in the dissociation of the symbiosis in all species74. Maximum 
potential quantum yields (dark-adapted Fv/Fm) of the algal symbionts were significantly reduced by the temper-
ature/light combination, and corals preferentially bleached first on their upper, light exposed surfaces. These 
results and observations are consistent with a photoinhibition model of coral bleaching3, 44, 75–80.

Corals have a range of mechanisms to clean their surface of sediments primarily involving muco-ciliary 
transport, hydrostatic inflation and tentacle movement72, 81–85. These energy intensive ‘active’ processes work in 
combination with ‘passive’ forces associated with gravity and flow to keep the upper sunlight exposed surfaces 
sediment-free in all but extreme cases of deposition. If sediments cannot be removed from the surface at a rate 
equivalent to the deposition, sediment can then build up and smother coral tissue, reducing feeding, solute (gas) 
exchange, and light transmission to the algal symbionts86. If covered with several millimetres of organic rich sed-
iment mortality can occur quickly, in a matter of days87.

For the most part the corals were able remove all sediments up to the highest deposition rate tested of 40 mg cm−2 
d−1. For contextual purposes deposition rates of up to 50 mg cm−2 d−1 have recently been measured during a high 
wind and wave event on a inshore turbid reef system of the central Great Barrier Reef 88. These maximum depo-
sition rates occurred during a natural resuspension event and a period of extreme turbidity, where wind-speeds 
exceeded the 95th percentile for the local area, and SSCs exceeded 100 mg L−1 88. Under less extreme conditions and 
when SSCs ranged from a more typical < 1–28 mg L−1, deposition rates in the naturally turbid reef system averaged 
only 8 ± 5 mg cm−2 d−1 88. This suggests that the high sediment deposition rates investigated here are likely to be 
associated with either very extreme natural turbidity events or in close proximity to dredging activities.

The corals in this study cleaned their surfaces of sediments using muco-ciliary transport, which is commonly 
regarded as the primary mechanism whereby corals can move fine silts and clays from their surfaces. The fluidic 

Figure 4.  Sediment accumulation on bleached and normally-pigmented corals. The amount of sediment (mg 
cm−2) accumulated on each fragment of A. millepora, Porites spp. and T. reniformis across 4 deposition rate 
treatments for both normally-pigmented (black) corals and bleached (blue) fragments after: (a) 1 deposition 
event, and (b) a further 6 deposition events. Raw data is presented (triangles) with modelled values (lines) and 
95% credible intervals (ribbons).
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mucus is produced from epithelial secretory cells, mucocytes89, 90, and because of its adhesive characteristics 
can agglutinate settled sediment. Mucus-entangled sediment81 was manipulated by co-ordinated ciliary move-
ment (metachronal waves), and the movement of sediment invariably occurred down the face of sub-horizontal, 
inclined planes until reaching the colony edge where is was subsequently shed. The normally-pigmented cor-
als were highly efficient at removing sediments, and in the highest sedimentation rate the amount of sediment 
remaining on the tissues was only ~2% of the amount that settled on the inert, flat surface of the SedPods. This 
difference is due to the self-cleaning, sediment rejection ability of the corals, which actively removed sediment 
from the colony surface. For both the bleached and normally pigmented corals there was a broadly similar (3.1 
and 3.7-fold respectively) increase in the amount of sediment remaining on the tissues after the seventh succes-
sive daily deposition than the first, indicating a reduction in self-cleaning capability with time. Where the two 
types of corals (bleached and normally-pigmented) differed was in the absolute levels of deposited sediment on 
their tissue, which was typically 3 to 4-fold higher on bleached than the normally-pigmented corals at the highest 
sedimentation rate (40 mg cm−2 d−1). The combined effects of the lower sediment rejection ability of bleached 
corals and the more general loss of self-cleaning ability with time meant the amount of sediment on the bleached 
corals after the last deposition event averaged ~24% of the amount that settled on the SedPods. For the most sen-
sitive species, A. millepora, this amounted to a 15-fold decrease in the amount of sediment that could be cleared 
from the surface.

There are numerous plausible mechanisms for these two effects. Histological studies have demonstrated an 
absence of mucocytes in the epithelium of an experimentally bleached (heat-stressed) coral (Stylophora pistillata), 
and negligible quantities of mucus in the deeper gastro-dermal layer44. Similarly, Piggot, et al.45 showed that in 
field-collected corals, those that have bleached through heat stress have greatly reduced densities of epithelial 
mucocyte cells, even though the density of mucocytes increases with increasing water temperature. Mucocyte 
numbers and mucus production was not quantified in this study, but reduced mucocyte density in bleached 
corals seems plausible. Mucus production comes at an energetic cost to corals91, 92, and numerous studies have 
qualitatively suggested increased mucus production in sediment-exposed corals72, 93, 94 and repeated exposure to 
sediment deposition events could also exhaust mucus production. Stafford-Smith94 argued a counterpoint, that 
it is ciliary transport that becomes exhausted and that cannot be maintained for long period, citing the ability of 
some corals to produce mucus in response to sediment influx long after sediment rejection slows down. Recent 
studies have shown that cilia beating is only a negligible fraction of the corals metabolic budget95; but possible 
changes under sediment influx are unknown68.

Ultimately the energy for mucus production and ciliary transport would come from phototrophic or heter-
otrophic sources, both of which would be affected by sediment smothering. For phototrophy, both the loss of 
algal symbionts, and the reduced light availability to remaining algae by a thin layer of sediment would decrease 
energy availability92, as light transmission is <1% through a ~2 mm deposit of very fine, silt size sediment86, 87. 
Corals were not veneered by sediments in this experiment as they corralled the sediments into discrete patches, 
but under these patches light availability would be limited, thus impacting upon photosynthesis and potential 
recovery from the bleached state. Corals rely on heterotrophic food sources and energy stores during recovery 
from bleaching for at least 11 months36–38, 40. This suggests that the ability to re-establish the coral-Symbiodinium 
symbiosis depends on the health of the coral host and these alternative energy sources will be vital in the recovery 
of corals. In addition, some corals have been found to obtain nutritional value from sediment96, and this may aid 
in recovery from a bleached state when exposed to elevated sediments, however, this would only occur at low 
sediment concentrations as SSCs above 30 mg L−1 have been found to reduce coral feeding rates97. In a natural 
setting, sediment related stress may be greater than reported here, where sediments have been manually cleared 
from corals on a daily basis, as while periodic sediment removal may occur naturally during storm events, it 
seems unlikely this would occur on a daily frequency. Due to this increased accumulation of sediments on coral 
tissues would likely occur, leading to mucus sheet formation98 and potentially necrosis87. The reduced capacity of 
bleached corals to removed sediment will mean that such effects will be substantially greater in corals compro-
mised by thermal stress.

Figure 5.  Explanatory value of each of the fixed factors included in the models, including deposition rate 
treatment (mg cm−2), Time (d), Species and bleaching status (normally pigmented or bleached), with darker 
colours indicating increased importance of that variable. Explanatory value was calculated simply as the 
additional R2 obtained when a variable was included in a complete interaction model, compared to a model 
excluding just that variable. This in effect represents the unique variance explained by each predictor, rather 
than the overall R2 explained by individual best models, as presented in Table 1.
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In summary, this study has demonstrated that thermally bleached corals have substantially reduced ability 
to clear deposited sediment, and that this ability is further reduced following consecutive days of sediment dep-
osition. The impacts of this reduction in clearance ability is likely to become exacerbated when combined with 
increased ocean acidification, another key impact resulting from climate change. The likelihood of a marine heat-
wave (and subsequent coral bleaching event) coinciding with dredging projects has unfortunately reached a point 
where explicit consideration needs to be given regarding management practices. Maintenance dredging typically 
occurs over a few weeks to months, and the timing of the activities can be reasonably predicted and planned 
in advance99. Avoiding dredging when bleaching could occur (i.e. summer maximum temperatures) seems a 
practical approach. This management practice is similar to concepts associated with ‘environmental windows’, 
which involve avoidance of times of the year or particular sites, where key species, ecological communities or 
critical processes may be particularly vulnerable to pressures from dredging100, 101. For capital dredging projects 
which can often occur over extended periods102, contingency plans in the event of a warm-water bleaching event 
could be developed before dredging commences. Plans could include defining the scale and intensity of an event 
and a series of practical and achievable courses of action to ensure minimal impacts and maintain acceptable 
levels of impact. Appropriate courses of action may include relocation of dredges, altering overflow plans, use of 
different dredge material placement sites, the use of more conservative water quality thresholds (for managing 
projects), and possibly cessation of all dredging activities. Several of these approaches were employed on the Great 
Barrier Reef in a dredging program in 2000–200121, 57. From an environmental and management perspective, the 
significance of sub-lethal bleaching is that the symbiosis is dissociated, and the time for it re-establish may be 
much longer than the acute physiological effects alone. This serves to amplify the significance of what may be a 
short-term initial stress, increasing the potential for additional impacts from local, anthropogenic activity (i.e. 
cumulative impacts).

Materials and Methods
Experiments were conducted with 3 hard coral species, Acropora millepora (Ehrenberg 1834), Porites spp. and 
Turbinaria reniformis (Bernard 1896), representing branching, massive and foliose morphologies respectively. 
Due to difficulty identifying Porites spp. underwater (they have small and variable corallites103) a mixture of two 
species (P. lutea and P. lobata) were included. All corals were collected between 3–10 m from the Rib, Trunk 
and Davies Reef lagoons (mid-shelf reefs centrally located in the central Great Barrier Reef, GBRMPA permits 
G12/35236.1 and G13/35758.1). For A. millepora, 8 colonies were collected by hand, 14 Porites spp. colonies 
were cored with a pneumatic drill, and T. reniformis were collected from an extensive thicket ~5 by 10 m where 
individual colonies were unable to be identified. 10 fragments were collected from each A. millepora and T. reni-
formis colony, while 6 were collected from each Porites spp. colony. Colonies that were free of biofouling and 
diseases were fragmented into replicates of ~7 cm2. Fragments were then glued onto aragonite coral plugs, with 
genotypes randomly allocated between 6, 200 L flow-through (receiving new water at a rate of 31 L h−1 = 3 water 
turnovers d−1) holding tanks in the National Sea Simulator (SeaSim) at the Australian Institute of Marine Science 
(AIMS, Townsville, Australia), for 6 weeks to recover from the collection and preparation procedures (Fig. 6a). 
Light above each tank was provided by four AI Hydra FiftyTwo™ HD LED lights (Aquaria Illumination, IA, US), 
which generated even illumination with an equal mix of white, blue, and red light. During the holding period, 
corals were exposed to a 12 h light:dark (L:D) cycle comprised of a 6 h period of gradually increasing light in the 
morning (06:00–12:00 h), to a maximum midday instantaneous light level of 400 μmol photons m−2 s−1 followed 
by 6 h of gradually decreasing light in the afternoon (12:00–18:00 h). Over the course of the day the corals expe-
rienced a daily light integral (DLI, total summed Photosynthetically Active Radiation [PAR, 400–700 nm]) of 
8.6 mol photons m−2. Light intensity was measured within tanks at the same depth as the coral fragments using 
an Underwater Spherical Quantum Sensor (Licor LI-193).

Prior to the start of the sediment clearance experiments, half the coral replicates were induced to bleach by 
exposing them to elevated water temperatures (Fig. 6b). To induce bleaching water temperatures in four of the 
six holding tanks was incrementally raised from 27 °C to 31 °C at a rate of 0.5 °C per day for 8 d. Corals were then 
maintained at 31 °C (or 27 °C) for 3 weeks. Light exposure remained the same as during the holding period. Coral 
bleaching was observed by the 3rd week of exposure, and was examined throughout the bleaching period by visual 
assessment, and the use of a colour index (see below). The maximum quantum yield (Fv/Fm) of symbiotic dino-
flagellate algae within the live tissue of each coral fragment was also measured using a mini-PAM fluorometer 
(Walz, Germany) (see below).

Once the corals had been bleached, their ability to clear upward facing surfaces of sediment was compared 
with normally-pigmented corals, by exposure to a series of sedimentation events of different intensities (Fig. 6c). 
All experiments were conducted in clear PVC tanks filled with 100 L of 0.4 µm filtered seawater (as not to intro-
duce additional uncontrolled sediment sources) pumped into each tank at 400 mL min−1 to ensure 5.8 complete 
water changes per day, see Bessell-Browne, et al.104 for details of the experimental system. Three replicate tanks 
were used to enable potential tank-effects to be assessed. Water temperature was maintained at 27 ± 0.5 °C and 
salinity was 33 ± 0.5‰. Light above each tank was provided by two AI Hydra FiftyTwo™ HD LED lights (Aquaria 
Illumination, IA, US). Corals were exposed to a daily light integral (DLI) of 8.6 mol photons m−2 using the same 
light regime as the bleaching experiment described previously. Coral genotypes were randomly allocated between 
the experimental tanks with 4 bleached and 4 normally pigmented corals assigned to each tank.

Corals were placed in the tanks on a fibre reinforced plastic grating (false bottom floor), 25 cm below the water 
surface. The sediment used for deposition events had a mean grain size of 30 µm, and this was used as it has been 
found to be the most common grain size suspended and subsequently deposited during dredging campaigns68. 
Deposition events were created in each tank by raising the SSCs to 100, 300 and 650 mg L−1 (nephelometrically 
derived SSCs), and then turning the pumps off and allowing the suspended sediment to settle out of suspension 
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overnight past the grating holding the corals. At the end of the day (4.00 pm), the pumps were turned on again 
resuspending all sediment that had settled on the bottom of the tank, grating and the corals. Repeated deposition 
events were generated over 7 successive days by resuspending the sediments at 4.00 pm each day. Deposition 
events were thus scheduled to occur at night to avoid attenuation of light by suspended sediments, which is a key 
dredging related pressure impacting upon coral health104, and therefore deposition at night reducing the con-
founding nature of extra causal pathways impacting on health that were not investigated here.

Sediment was delivered to individual tanks by an air diaphragm pump (SandPiper S1F), via a high velocity 
loop (3 m s−1), from a concentrated (g L−1) stock solution. The desired SSC in each tank was controlled by a pro-
grammable logic controller (PLC) coupled to pivoting solenoid valves connected to the stock solution, and based 
on real time feedback from turbidity sensors (Turbimax CUS31, Endress and Hauser) contained in each of the 
12 tanks.

Sediment deposition was measured within each tank using sediment pods (SedPods), which are concrete filled 
PVC cylinders105 placed on the grating beside the corals. Each morning SedPods were capped and any accumu-
lated sediment filtered through pre-weighed 0.4 µm, 47 mm diameter polycarbonate filters, incubated at 60 °C for 
≥24 h, and weighed to determine sediment mass.

All sediment used was biogenic calcium carbonate collected from Davies Reef (GBRMPA permit: 
G13/35758.1). Sediment was first screened to 2 mm and then ground with a rod mill grinder until the mean grain 
size was ~30 µm (range: 0.5–140 µm), measured using laser diffraction techniques (Mastersizer 2000, Malvern 
instruments Ltd, UK). Total organic content of the sediment was 0.25% (w/w).

Figure 6.  Conceptual diagram of the steps involved in the experiment, including (a) the initial healing process, 
(b) bleaching of corals, (c) subsequent sediment deposition exposures and health parameters that were assessed 
at different stages of the experiment.
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For each sediment treatment, there were 3 replicate tanks with 4 normally-pigmented and 4 bleached corals 
per tanks. Corals were exposed to 7 individual deposition events (one per day). Coral fragments were photo-
graphed immediately before the first deposition event and immediately after the last. Changes in the colour of 
coral tissue was used as a non-destructive indicator of bleaching. The photographs were analysed with Image 
J106 using the histogram function on a selection of representative live tissue, taking the arithmetic mean of pixel 
values (range 0–255) on a black and white scale. These were then standardised by converting to a range between 0 
and 1 for each species. During the photographing process, any partial mortality of the corals was noted and then 
quantified from the photographs using image processing software Image J.

Chlorophyll fluorescence of the endosymbiotic dinoflagellate microalgae within tissue of each coral fragment 
was measured using a mini-PAM fluorometer (Walz, Germany). Measurements were obtained using a 6 mm 
fibre-optic probe positioned perpendicular to the coral fragment and 3 mm away (controlled by a rubber spacer). 
Coral fragments were dark-adapted for 30 min prior to measuring initial fluorescence (F0), which was determined 
by applying a weak pulse-modulated red light (650 nm, ~0.15 μmol photons m−2 s−1). Maximum fluorescence 
(Fm) was then measured following a saturating pulse of saturating white light. Maximum quantum yield (Fv/Fm) is 
the proportion of light used for photosynthesis by chlorophyll when all reaction centres are open107 and is deter-
mined by the following equation:

= −
F
F

F F F( )/v

m
m 0 m

Chlorophyll fluorescence measurements were made at the start of the sedimentation experiments and again 
at the end. Measurements were only taken over live tissue, with 4 measurements taken and averaged per coral 
replicate.

The mass of sediment that remained on coral tissue after it was left to settle overnight (~16 h) was quantified 
after both the first and last deposition event. To do this a plastic bag was placed around each coral and the bag 
then sealed and shaken to dislodge all sediment that had settled on the surfaces. The suspension was then filtered 
through pre-weighed 47 mm diameter polycarbonate filters (0.4 µm nominal pore size), dried at 60 °C for ≥24 h, 
and weighed to 0.0001 g. The mass of collected sediment was then standardised to fragment surface area using 
the wax dipping technique108.

At the end of the experiment, one third of the corals were snap frozen in liquid nitrogen and then stored at 
−80 °C. Fragments were then air blasted to remove tissue and chlorophyll extracted twice from tissue using 95% 
ethanol, and quantified spectroscopically using the equations of Ritchie109 and Lichtenthaler110. Endolithic algae 
were not visible in the samples and assumed not to contribute any significant amount of Chlorophyll a (Chl a) to 
the samples. Chl a was standardised to the surface area and used as a proxy for coral bleaching.

All data were analysed with R software (version 3.2.3, R Core Team111). We used a complete subsets model 
selection approach112 to examine the effects of time (1–7 days of repeated exposure), sedimentation level (0, 11, 
22 and 40 mg cm−2 d−1), species (A. millepora, T. reniformis and Porites spp.), and bleaching status (bleached, 
normally pigmented) on coral health parameters. This approach involves fitting all possible model combina-
tions (including interactions) and comparing this complete model set using Akaike Information Criterion with 
corrections for small sample sizes (AICc). The model with the lowest AICc (within 2) and the fewest parameters 
is considered the most parsimonious, and chosen as the best model. For modelling of relationships, tank and 
coral fragment identity (to account for repeated measurements through time) were included as random factors 
in a Generalised Linear Mixed Model (GLMM). A complete subsets information theoretic approach based on 
GLMM was used over more traditional ANOVA like approaches, as this allows non-independence (associated 
with repeated measurements through time and tank effects) to be successfully accommodated, as well as flexi-
bility of the statistical distributions used. Colour index and Fv/Fm were logit transformed, as they are both pro-
portions, and then modelled using a Gaussian distribution, with bleaching status, time, sediment deposition 
treatment and species included as fixed factors. Models were fit using the lmer function from the package lme4113. 
Chl a concentrations, and the amount of deposited sediment remaining on coral fragments after the 1st and 7th 
deposition event, were modelled as GLMMs based on a Tweedie distribution, fit using the cplm package, with 
fragment number and tank included as random effects114. A Tweedie distribution is appropriate for continuously 
distributed data that can take values of 0 to ∞.

Due to the interaction between time and species on the amount of deposited sediment remaining on coral 
fragments, pressure-response relationships were subsequently fitted after 1 and 7 deposition events, for both 
bleached and normally pigmented fragments. These relationships were fitted with the drc package115.
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