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The study of screening active constituents from traditional Chinese medicine (TCM) is
important for explicating the mechanism of action of TCM and further evaluating the safety
and efficacy effectively. However, detecting and identifying the active constituents from
complicated biological samples still remain a challenge. Here, a practical, quick, and novel
integrated strategy from in vitro, in situ, in vivo to in silico for rapidly screening the active
constituents was developed. Firstly, the chemical profile of TCM in vitro was identified
using UPLC-Q Exactive-Orbitrap HRMS. Secondly, the in situ intestinal perfusion with
venous sampling (IPVS) method was used to investigate the intestinal absorption
components. Thirdly, after intragastric administration of the TCM extract, the in vivo
absorbed prototype components were detected and identified. Finally, the target network
pharmacology approach was applied to explore the potential targets and possible
mechanisms of the absorbed components from TCM. The reliability and availability of
this approach was demonstrated using Tongfengding capsule (TFDC) as an example of
herbal medicine. A total of 141 compounds were detected and identified in TFDC, and
among them, 64 components were absorbed into the plasma. Then, a total of 35
absorbed bioactive components and 50 related targets shared commonly by
compounds and gout were integrated via target network pharmacology analysis.
Ultimately, the effects of the absorbed components on metabolism pathways were
verified by experiments. These results demonstrated that this original method may
provide a practical tool for screening bioactive compounds from TCM treating
particular diseases. Furthermore, it also can clarify the potential mechanism of action
of TCM and rationalize the application of TFDC as an effective herbal therapy for gout.
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1 INTRODUCTION

Traditional Chinese medicine (TCM) has been widely used for
preventing and treating various diseases in China for centuries,
which usually exerts a holistic therapeutic effect with the
synergistic or antagonistic interactions of multiple
characteristic constituents (Guo et al., 2019). However, due to
the extremely complicated chemical components in TCM, how to
quickly distinguish the components related to its efficacy and to
further explicate its mechanism of action have become a problem
that need to be urgently solved (Liao et al., 2018). Recently,
research has shown that only a few compounds, which have
appropriate physicochemical properties and sufficient content in
TCM, can be absorbed into the plasma, then transported to the
target organs to exert their biological activities (Tian et al., 2018).
Thus, compared with considering all components, only focusing
on the absorbed components in vivo can improve the hit rate of
the active compounds effectively and simplify the illustration of
the effective material basis (Li et al., 2021). However, in the above
research, the circulating plasma samples after oral administration
of TCM were collected and used for screening the components
absorbed into the plasma. In fact, after taken orally, before
entering systemic circulation, the chemical components in
TCM are mainly absorbed from the small intestine, so
mesenteric vein blood is the first site after gut absorption
(Tian et al., 2018), which contains multiple absorbed
components. Nowadays, many in situ models have been
developed and widely used to study drug intestinal absorption,
such as the in situ closed-loopmethod (Luo et al., 2016), intestinal
single-pass perfusion, intestinal recirculating perfusion, and the
intestinal perfusion with venous sampling (IPVS) method (Li
et al., 2014). Among them, the IPVS method allows the direct
determination of drug absorption through the enterocytes, which
has been widely used and recommended due to its similarity to in
vivo conditions (Caldeira et al., 2018). Moreover, it is often
challenging to profile the absorbed components of TCM in
vivo due to the extremely low concentrations of the absorbed
constituents and the interference of endogenous metabolites and
proteins (Han et al., 2016). Owing to its high sensitivity and
selectivity, ultrahigh-performance liquid chromatography
coupled with Q Exactive Hybrid Quadrupole-Orbitrap high-
resolution mass spectrometry (UPLC-Q Exactive-Orbitrap
HRMS), has become a powerful tool for quickly and precisely
profiling the trace compounds in biological samples (Liu et al.,
2020; Luo et al., 2021a).

Unlike most “one target, one drug” Western medicines, TCM
is a sophisticated system with multicomponent and multi-target
characteristics, which achieves its therapeutic effectiveness by
regulating multiple physiological pathways (Guo et al., 2019).
Therefore, using traditional pharmacological methods to
experimentally uncover the unique mechanism of action may
not be applicable to TCM research. With the continuous
development of bioinformatics, the newly emerging network
pharmacology approach has become a powerful tool to
elucidate the mechanism of action of complicated drug
systems from the molecular level to the pathway level (Chen
et al., 2016). However, conventional network pharmacology

studies gather compounds from various databases to generate
compound–target maps, including some substances with low
bioavailability or low content in TCM, which herein produce
false-positive results (Xu et al., 2017). Thus, using the absorbed
constituents as the target compounds, a newmethod was proposed,
namely, target network pharmacology (Xu et al., 2017), which has
been successfully applied to investigate the synergistic mechanisms
of multiple components in TCM in the treatment of particular
diseases, such as the therapeutic mechanism of ginseng (Panax
ginseng) for treating Alzheimer’s disease (Feng et al., 2019) and the
mechanism of action ofWu-tou decoction on rheumatoid arthritis
(Cheng et al., 2021).

Tongfengding capsule (TFDC), a famous prescription approved
by the Chinese Food and Drug Administration and included in
Chinese Pharmacopoeia Commission (2020), contains eight
Chinese herbs: Gentianae Macrophyllae Radix (GM),
Phellodendri Chinensis Cortex (PC), Corydalis Rhizoma (CR),
Paeoniae Radix Rubra (PR), Cyathulae Radix (CTR), Alismatis
Rhizoma (AR), Plantaginis Semen (PS), and Smilacis Glabrae
Rhizoma (SG). This prescription has been widely used in the
treatment of rheumatoid arthritis, gout, and hyperuricemia in
China for a long time. Modern pharmacology studies have
demonstrated that TFDC can effectively inhibit the production
and promote the excretion of uric acid and improve the liver and
renal functions of patients with gout (Tang, 2016). However, only a
few research studies have been reported to analyze its major
components using the HPLC technique (Qin et al., 2021), and
there has been no systematic characterization of the chemical
constituents of this prescription. Moreover, up to now, there
have been no reports concerning the absorbed effective
substances of TFDC, which play crucial roles in interpreting the
pharmacological effects of TFDC in the treatment of various
diseases in vivo.

To address the above issues, an integrated strategy from in vitro, in
situ, in vivo to in silico for rapidly screening the active constituents from
TCMwas developed usingTFDCas an example. Adetailed description
of the strategy is as follows: firstly, the chemical profile of the TFDC
extract was established with UPLC-Q Exactive-Orbitrap HRMS
in vitro. Secondly, an in situ IPVS method was used to collect and
identify the prototype constituents from intestinal absorption. Thirdly,
after intragastric (IG) administration of TFDC, the circulating plasma
samples were collected and analyzed to determine the absorbed
prototype constituents in vivo. Fourthly, in silico, a target network
pharmacology analysis was used to screen out the bioactive
components, corresponding target genes, and the pathways involved
in TFDC for treating gout. Finally, some of the predicted results were
verified with a lipopolysaccharide (LPS)-induced Tohoku Hospital
Pediatrics-1 (THP-1) cell model. We hope that this integrated strategy
would be helpful in quickly screening out the bioactive constituents
from TCM. The flowchart of the study is presented in Figure 1.

2 MATERIALS AND METHODS

2.1 Chemicals and Reagents
The Chinese herbal medicines GM, PC, CR, PR, CTR, AR, PS,
and SG were purchased from Beijing Tong Ren Tang Co., Ltd.
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(Beijing, China), which were identified by Prof. Jingjuan Wang
(Beijing University of Chinese Medicine, Beijing, China). TFDC
was obtained from Sichuan Sunnyhope Pharmaceutical Co., Ltd.
(Sichuan, China). Eleven reference standards—adenine

(purity ≥ 99.4%), adenosine (purity ≥ 99.7%), gallic acid
(purity ≥ 90.8%), loganic acid (purity ≥ 97.4%), swertiamain
(purity ≥ 98.3%), catechin (purity ≥ 99.2%), chlorogenic acid
(purity ≥ 96.8%), epicatechin (purity ≥ 99.7%), paeoniflorin

FIGURE 1 | Flowchart of the study design.
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(purity ≥ 97.4%), cortisone hydrochloride (purity ≥ 95.1%), and
jatrorrhizine hydrochloride (purity ≥ 89.5%)—were purchased
from the National Institutes for Food and Drug Control
(Beijing, China). Eight reference standards, namely,
magnoflorine (purity ≥ 98%), alibiflorin (purity ≥ 91.4%),
columbamine (purity ≥ 98%), berberine hydrochloride
(purity ≥ 98%), palmatine hydrochloride (purity ≥ 98%),
epiberberine (purity ≥ 98%), salicylic acid (purity ≥ 98%), and
apigenin (purity ≥ 98%), were obtained from Shanghai Yuanye
Pharmaceutical Technology Co., Ltd. (Shanghai, China). Ten
reference standards (purity ≥ 98%), namely, phellodendrine,
D-tetrahydropalmatine, tetrahydroberberine, corydaline,
protopine, cyasterone, dehydrocorydaline, astilbin, engeletin,
and limonin, were purchased from Chengdu Purechem-
Standard Co., Ltd. (Chengdu, China). Two reference
standards, quercetin (purity ≥ 98%) and naringenin
(purity ≥ 98.0%), were obtained from Shanghai Standard
Technology Co. Ltd. Three more reference standards were
used: luteolin (purity ≥ 98%), obtained from Aladdin
(Shanghai, China); cryptochlorogenic acid (purity � 99.07%),
which was obtained from Chengdu Must Bio-Technology Co.,
LTD. (Sichuan, China); and oxypaeoniflorin (purity≥98%),
which was purchased from Shanghai Tauto Biotech Co.,
LTD. (Shanghai, China). MS-grade acetonitrile
(purity ≥ 99.9%) and formic acid (purity ≥ 99) were supplied
by Thermo Fisher Scientific (Fairlawn, NJ, USA). Other
chemicals and reagents were analytical grade or higher. The
human leukemia monocytic THP-1 cell line was obtained from
the Cell Resource Centre, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences (CAMS)/Peking Union
Medical College (PUMC) (Beijing, China). Phorbol myristate
acetate (PMA) and LPS were purchased from Sigma-Aldrich (St.
Louis, MO, USA).

2.2 Preparation of Sample Solutions
2.2.1 Preparation of the Extract Solution of Herbs and
TFDC
The eight herbs and TFDC power (0.5 g) were accurately
weighed and sonicated with 50% methanol (25 ml) for
30 min at room temperature. The extracted solution was
centrifuged at 1,000 × g for 10 min at 4°C. Then, the
supernatant was transferred to a 50-ml volumetric flask
and the precipitate was re-extracted with another 25 ml
50% methanol. After centrifugation, the extracted solution
was transferred into the same volumetric flask and filled to the
mark. The prepared sample solution was filtered through a
0.22-μm pore-size filter before LC-MS analysis.

2.2.2 Preparation of the Perfusion Solution
The TFDC power (10 g) was accurately weighed and sonicated
with water (100 ml) for 30 min at room temperature. The
extracted solution was centrifuged at 1,000 × g for 10 min at
4°C. Then, the supernatant was transferred into an evaporating
dish and the precipitate was re-extracted with another 100 ml
water. After centrifugation, the extracted solution was transferred
into the same evaporating dish and concentrated using a water
bath at 55°C to 100 ml (100 mg/ml).

2.2.3 UPLC-Q Exactive-Orbitrap HRMS Analysis
The compounds were identified using a Vanquish Horizon UPLC
system (Thermo Fisher Scientific, Waltham, MA, USA)
connected to a Q Exactive Hybrid Quadrupole-Orbitrap high-
resolution mass spectrometer (Thermo Fisher Scientific). The
chromatographic separation was accomplished by a Waters
ACQUITY UPLC BEH Shield RP C18 column
(100 mm × 2.1 mm, 1.7 µm) with a column temperature of
35°C. Gradient elution of the analytes was carried out with
0.1% formic acid in water (A) and acetonitrile (B) at a flow
rate of 0.3 ml/min. A linear gradient of solvent B (v/v) was applied
as follows: 0–1 min, 5% B; 1–2.4 min, 5–10% B; 2.4–13.5 min,
10–32% B; 13.5–18.5 min, 32–90% B; 18.5–19 min, 90–5% B; and
19–21 min, 5% B. The injection volume was 2 µl.

The heated electrospray ionization (H-ESI) source was
operated and the MS parameters were optimized as follows:
spray voltage of 3.8 and −3.2 kV in positive and negative
modes, respectively; sheath gas flow, 35 a.u.; aux gas flow,
15 a.u.; aux gas heater temperature, 300°C; and capillary
temperature, 350°C. A full MS scan/data-dependent MS2

(full MS/dd MS2) method was used for analysis. The full
mass scan range was set from 100 to 1,500 in positive and
negative ion modes at resolutions of 70,000 and 17,500 for the
MS2 scan, respectively. The tandem mass spectrometry (MS/
MS) spectra were fragmented by high-energy collision-
induced dissociation (HCD) of the normalized collision
energy (NCE) values at the levels of 20%, 40%, and 60%.
Data acquisition and processing were accomplished with the
Xcalibur software (version 4.2; Thermo Fisher Scientific).

2.3 Animal Experiments
Normal male Sprague–Dawley rats weighing 220–250 g were
purchased from SBF (Beijing) Biotechnology Co., Ltd. (Beijing,
China). The animals were housed and handled according to the
Laboratory Animal Medicine Guidelines of Beijing University of
Chinese Medicine (BUCM). Animals were kept under artificial
light on a 12-h light/dark cycle and housed in rooms controlled
between 25–27°C and 50%–70% relative humidity. Rats were
acclimated for at least 7 days with free access to animal chow and
water before the study.

2.3.1 In Situ Intestinal PerfusionWith Venous Sampling
The surgical operations for IPVS were performed as reported in
the literature (Li et al., 2014). Briefly, prior to the initiation of
perfusion surgical operation, about 50 ml blood was withdrawn
from several rats via the abdominal aorta, and the blood
incubated in a 37°C water bath was prepared to be transfused
into the recipient rat. The recipient was anesthetized with chloral
hydrate (400 mg/kg) by intraperitoneal injection and then
restrained in a supine position under an infrared lamp to
maintain the body temperature. The left jugular vein of the
anesthetized rat was exposed and a 24-G BD Intima II
catheter filled with heparinized saline (100 U/ml) was inserted
into the vein and secured. Then, the catheter was connected by a
silicone tube filled with blood to a peristaltic pump, which is
placed between the donor blood reservoir and the catheter; the
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other end of the silicone tube was immersed in the donor blood.
The abdominal cavity was carefully opened along the abdominal
line to expose the jejunum and the mesenteric vein. Two ends of
the jejunum segment were incised with surgical scissors, and then
two silicone tubes were inserted through the small slits and
secured. After that, the inlet tubing was connected to a syringe
pump. Subsequently, the 24-G catheter with heparinized saline
was intubated into the mesenteric vein and secured. Then, the
catheter was also connected by the silicone tube to the same
peristaltic pump utilized for blood supply.

At the conclusion of the surgical operation, the proximal
mesenteric vein was ligated with silk suture, and then the two
catheters and pumps were switched on immediately. The
perfusate was perfused at a flow rate of 0.2 ml/min and the
blood was supplied at a flow rate of 0.3 ml/min. During the
perfusion, the blood from the mesenteric vein was collected in
heparinized centrifuge tubes within 2 h.

2.3.2 IG Administration
A certain amount of TFDC content was dissolved in 0.5% sodium
carboxymethyl cellulose (NaCMC) in water to achieve a
homogenous suspension at 0.15 g/ml concentration. Male
Sprague–Dawley rats were given 4 ml suspensions
intragastrically. After 2 h, the rats were anesthetized with
chloral hydrate (400 mg/kg) by intraperitoneal injection, and
blood was collected via the abdominal aorta.

2.3.3 Plasma Sample Preparation
The collected blood was centrifuged at 3,300 × g for 10 min, and
then the supernatant was precipitated by an equal volume of
acetonitrile, followed by centrifugation at 11,800 × g for 10 min at
4°C after vortexing for 2 min. Next, the supernatant was
evaporated to dryness under a gentle stream of nitrogen at
50°C. Finally, the samples were reconstituted with 200 µl 50%
methanol and subjected to LC/MS analysis.

2.4 Target Network Pharmacology
2.4.1 Predicting the TFDC-Related Targets
Firstly, the structures of the absorbed prototype components of
TFDC were generated using ChemBioDraw Ultra 19.0 and
saved in SDF format. Then, based on structure similarity, the
targets associated with these TFDC components were predicted
with MedChem Studio (MedChem Studio, 3.0, 2012;
Simulations Plus, Inc., Lancaster, CA, USA). The similarity
threshold was set at 0.7.

2.4.2 Known Therapeutic Targets of Gout
Gout-associated targets were obtained from the following
databases using “gout” and “gouty arthritis” as the keywords
and limiting the species with “Homo sapiens”: DrugBank (https://
go.drugbank.com/) (Wishart et al., 2018), the Online Mendelian
Inheritance in Man (OMIM; https://www.omim.org) (Amberger
et al., 2019), Therapeutic Targets Database (TTD; http://db.
idrblab.net/ttd/) (Wang et al., 2020), and PubMed (https://
pubmed.ncbi.nlm.nih.gov/). Then, the collected target gene
information was standardized using UniProt (https://www.

uniprot.org/) (UniProt Consortium, 2021), and the genes
without the human sample, Uniprot ID, were excluded.

2.4.3 Gene Ontology and KEGG Enrichment Analysis
The intersection of the predicted targets from MedChem Studio
and the known targets of gout were selected for the following
bioinformatics analyses. These overlapping targets were further
checked and retrieved into UniProt ID by using UniProt. These
selected targets were imported into DAVID bioinformatics
resources (https://david.ncifcrf.gov/) (Jiao et al., 2012) to
perform Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis, where targets were only restricted to H.
sapiens.

2.4.4 Component–Target–Pathway Network
Construction
The absorbed prototype components of TFDC and the selected
gout-related overlapping targets were correspondingly prepared
as XLSX. These targets and the enriched KEGG pathways were
also correspondingly arranged as XLSX. The two files were
imported into Cytoscape 3.8.2 and merged to construct the
component–target–pathway network of TFDC for treating gout.

2.5 Cell Culture
THP-1 cells were cultured with RPMI-1640 containing 10% fetal
bovine serum (FBS) in a humidified incubator with 5% CO2

atmosphere at 37°C and stimulated to macrophages with 200 ng/
ml PMA for 24 h.

2.6 Cell Viability Assay
The effects of apigenin on cell viability were evaluated by the Cell
Counting Kit-8 (CCK-8) assay (Beyotime Institute of
Biotechnology, Jiangsu, China). PMA-differentiated THP-1
cells were plated into 96-well plates and incubated with
various concentrations of apigenin (0, 10, 20, and 30 μM) for
24 h. Then, CCK-8 was added to the cell cultures for 2 h, and the
absorbance of the solution was measured at 450 nm using a
microplate reader (SpectraMax iD5; Molecular Devices, San Jose,
CA, USA).

2.7 Real-Time PCR Assay
To study the effects of apigenin on the messenger RNA (mRNA)
expressions of prostaglandin G/H synthase 2 (PTGS2), tumor
necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), THP-1
cells were cultured into six-well plates and differentiated for 24 h
in the presence of 100 ng/ml PMA. Then, the medium was
replaced and the cells were cultured for another 18 h with
fresh medium containing different concentrations of apigenin
(0, 10, and 20 μM) and LPS (1 μg/ml). After 18 h of incubation
with apigenin and LPS, the cells were washed with phosphate-
buffered saline (PBS). Total RNA was extracted from the cells
using the RNeasy Mini Kit (Qiagen GmbH, Hilden, Germany)
according to the manufacturer’s instructions. Then, reverse
transcription was performed using the Evo M-MLV RT kit
with gDNA Clean for qPCR II (Accurate Biology, Hunan,
China) to obtain complementary DNA. Real-time PCR was
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performed on a BIO-RAD CFX96 Real-Time PCR System using
SYBR Green PCR Master Mix. Human-specific primers were
synthesized by Sangon Biotech (Shanghai, China). Detailed
information is presented in Table 1. The amplification
parameters for PCR were listed as follows: 95°C for 10 min
and 40 cycles of amplification at 95°C for 15 s and 60°C for
1 min. All experiments were performed in triplicate.

2.8 Statistical Analysis
Data from the real-time PCR experiments were analyzed with
SPSS software. Significant differences were assessed with
ANOVA. A p < 0.05 was considered significant.

3 RESULTS AND DISCUSSION

3.1 Identification of the Compounds in TFDC
by UPLC-Q Exactive-Orbitrap HRMS
The chemical profiles of TFDC in both negative and positive
modes were well separated and detected by using the established
UPLC-Q Exactive-Orbitrap HRMS method. The total ion
chromatogram (TIC) in both ESI modes is shown in Figure 2.

In this study, when a pure standard was available, the
compound was identified by comparing the retention time and
high-resolution accurate mass with those of the standard.
Meanwhile, the fragmentation patterns and pathways of the
standards helped to further confirm the structures of the
derivatives with the same basic skeleton. For the unavailable
standard compounds, the structures were proposed by comparing
with previous reports according to the chromatographic
behavior, accurate mass, MS/MS data, and fragmentation
rules. The mass error for the molecular ions of all compounds
identified in this study was within ±5 ppm. To reduce false-
positive results, the obtained ingredients of TFDC were further
screened and confirmed by comparing the chromatographic
retention time and fragmental behavior with those of the eight
individual crude drugs. Finally, a total of 141 compounds of
TFDC were unequivocally identified or tentatively identified,
which included 52 alkaloids, 22 flavonoids, 38 terpenoids, 23
organic acids, and 6 other compounds. Among them were 19
compounds from GM, 49 compounds from PC, 29 compounds
from CR, 22 compounds from PR, 10 compounds from CTR, 10
compounds from AR, 13 compounds from PS, and 27
compounds from SG. Detailed information on these
compounds is summarized in Supplementary Tables S1 and S2.

3.1.1 Identification of Alkaloids
Alkaloids are a group of basic nitrogen-containing natural
products of vegetable origin (Maldoni, 1991). In the present
study, the main sources of alkaloids were GM and CR. A total
of 52 alkaloids were tentatively identified in the positive model,
including 19 protoberberine alkaloids, 14
tetrahydroprotoberberine alkaloids, 3 aporphine alkaloids, 3
protopine alkaloids, 6 benzylisoquinoline alkaloids, and 7
other alkaloids, which are summarized in Supplementary
Figure S1. Firstly, we chose berberine (peak 88),
tetrahydropalmatine (peak 66), magnoflorine (peak 30),
protopine (peak 55), and magnocurarine (peak 16) as the
representative compounds to illustrate the characteristic
fragmentation rules of protoberberine alkaloids,
tetrahydroprotoberberine alkaloids, aporphine alkaloids,
protopine alkaloids, and benzylisoquinoline alkaloids,
respectively. Their MS2 spectra and proposed fragmentation
pathways in positive mode are presented in Supplementary
Figures S2–S6. Then, the flowchart for the identification of
the structure type of alkaloids in TFDC is summarized and
presented in Figure 3. Furthermore, 45 alkaloids were
identified from TFDC through a comparison of their exact
molecular mass, MS/MS spectra, and chromatographic
behavior with those of literature data (Cheng et al., 2010;
Hong et al., 2012; Jeong et al., 2012; Ji et al., 2012; Shan et al.,
2018; Tan et al., 2013; Xian et al., 2014; Wang et al., 2016; Sun
et al., 2016; Zuo et al., 2018). Detailed information on these
compounds is summarized in Supplementary Table S1.

Seven other alkaloids were also discovered in TFDC (peaks 1,
3, 5, 41, 47, 113, and 117). Among them, compounds 1 and 3 were
identified as adenine and adenosine via reference standards,
respectively. Based on their exact molecular mass, MS/MS
spectra, and chromatographic behavior compared with those
of literature data, compounds 5, 41, 47, 113, and 117 were
tentatively identified as nicotinic acid (Zou et al., 2015),
plantagoguanidinic acid (Wang et al., 2016), dasycarpamin
(Wang et al., 2013), skimmianine (Xian et al., 2014), and
γ-fagarine (Xian et al., 2014), respectively.

3.1.2 Identification of Flavonoids
The basic structure of flavonoids consists of two benzene rings (A
and B) linked by a heterocyclic pyrane ring (C ring). Flavonoids
are further classified into several subclasses (flavones, flavonols,
flavanones, flavanonol, etc.) (Zou et al., 2015). In the present
study, a total of 22 flavonoids were unambiguously or tentatively

TABLE 1 | Primers used in real-time PCR.

Gene Primers Amplicon size (bp)

GAPDH Forward: 5′-CAAATTCCATGGCACCGTCA-3′ 132
Reverse: 5′-GACTCCACGACGTACTCAGC-3′

PTGS2 Forward: 5′-CTGGCGCTCAGCCATACAG-3′ 94
Reverse: 5′-CGCACTTATACTGGTCAAATCCC-3′

TNF-α Forward: 5′-CCTCTCTCTAATCAGCCCTCTG-3′ 220
Reverse: 5′-GAGGACCTGGGAGTAGATGAG-3′

IL-6 Forward: 5′-AGCCACTCACCTCTTCAGAAC-3′ 118
Reverse: 5′-GCCTCTTTGCTGCTTTCACAC-3′
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identified from TFDC in the positive and negative modes,
and the main source of flavonoids was SG. In order to
explore the fragmentation pathways of flavonoids, seven
standards—catechin (peak 40), epicatechin (peak 50), astilbin
(peak 103), quercetin (peak 108), engeletin (peak 111), luteolin
(peak 121), and naringenin (peak 124)—were first identified.
Briefly, the MS/MS behavior of flavone aglycones was
characterized by the retro Diels–Alder (RDA) fragmentation
pathway and successive loss of small molecules and/or
radicals such as CH3, CO, and CO2 (Wang et al., 2014).
For flavonoid O-glycosides, the MS characteristic fragment

ions were featured by producing the neutral loss of 146
and 162 Da (Luo et al., 2021b). Taking compound
103 as an example, a (M–H)− ion at m/z 449.1082
(C21H21O11) was shown, and the main fragment ions were
observed at m/z 303.0501 (M–H–C6H10O4)

−, m/z 285.0396
(M–H–C6H10O4–H2O)

−, m/z 178.9973 (M–H–C13H18O6)
−, m/z

151.0023 (M–H–C6H10O4–C8H8O3)
−, and m/z 125.0229

(M–H–C15H18O9)
− in the negative ion spectrum. Thus,

compound 103 was definitely identified as astilbin. Its MS2

spectrum and proposed fragmentation pathways in negative
mode are shown in Supplementary Figure S7.

FIGURE 3 | Flowchart for the identification of the structure type of alkaloids in Tongfengding capsule (TFDC).

FIGURE 2 | Total ion chromatogram (TIC) of Tongfengding capsule (TFDC) in positive ion mode (A) and negative ion mode (B) by ultrahigh-performance liquid
chromatography coupled with Q Exactive Hybrid Quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q Exactive-Orbitrap HRMS).
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Compounds 109 and 111 (engeletin) were considered to be
isomers as they displayed the same (M–H)− ions at m/z 433.1133
(C21H21O10) and m/z 433.1132 (C21H21O10). Moreover, they had
similar fragment ions at m/z 287.05 (M–H–C6H10O4)

−, m/z
269.04 (M–H–C6H12O5)

−, m/z 259.06 (M–H–C7H10O5)
−, m/z

178.99 (M–H–C13H18O5)
−, and m/z 152.01 (M–H–C14H17O6)

−

in the MS2 spectra. By comparing their chromatographic
retention times with those of literature data (Chen et al.,
2014), compound 109 was tentatively identified as
neoengeletin. Similarly, via a comparison of their
chromatographic behavior, exact molecular masses, and MS/
MS fragmentation patterns, as shown above, with those of
literature data (Chen et al., 2014; Dai et al., 2015; Zou et al.,
2015; Wang et al., 2016), a total of 22 flavonoids were identified,
which are summarized in Supplementary Figure S8. Detailed
information on these compounds is summarized in
Supplementary Tables S1 and S2.

3.1.3 Identification of Terpenoids
In the present study, a total of 38 terpenoids were found, including
13 iridoids, 8 monoterpene glycosides, and 17 triterpenoids and
derivatives. The classification of these compounds is shown in
Supplementary Figure S9. The source of iridoids was GM. To
explore the fragmentation rules of iridoids, three standards, namely,
loganic acid (peak 19), swertiamain (peak 24), and gentiopicrin
(peak 32), were first identified. Taking compound 19 as an example,
a (M–H)− ion at an m/z of 375.1289 (C16H23O10) was exhibited,
and in the negative ion spectrum, the main fragment ions were
observed at m/z values of 213.0762 (M–H–Glc)−, 169.0860
(M–H–Glc–CO2]

−, and 151.0755 (M–H–Glc–CO2–H2O)
−. Thus,

compound 19 was unambiguously identified as loganic acid. Its
MS2 spectrum and proposed fragmentation pathways in negative
mode are shown in Supplementary Figure S10. Similarly, based on
the chromatographic behavior and similar fragmentation pathways,
10 other iridoids (peaks 13, 14, 17, 27, 28, 33, 34, 38, 119, and 120)
were tentatively identified as isoboonein, geniposidic acid,
secologanic acid, secologanoside, 6′-O-β-D-glucosyl
gentiopicroside, 4′-O-β-D-glucosyl-gentiopicroside, sweroside,
olivieroside C, macrophylloside B, and macrophylloside A (Lv
et al., 2012; Wang et al., 2016; Pan et al., 2016; Zhang et al.,
2020), respectively.

Eight monoterpene glycosides were detected in this work, and
their source was PR. Firstly, three standards—oxypaeoniflorin
(peak 31), alibiflorin (peak 45), and paeoniflorin (peak 51)—were
first identified by comparing with the references to illustrate the
fragmentation rules. Compound 31 (oxypaeoniflorin) afforded a
quasi-molecular ion at m/z 495.1507 (C23H27O12) in the negative
model, and its MS2 spectra showed representative ions at m/z
465.1407 (M–H–CH2O)

−,m/z 137.0232 (M–H–C16H22O9)
−, and

m/z 93.0332 (M–H–C16H22O9–CO2)
−. The MS2 mass spectra and

the fragmentation pathways of oxypaeoniflorin are shown in
Supplementary Figure S11. Consequently, via comparison of
their chromatographic behavior, exact molecular masses, and
MS/MS fragmentation patterns, as shown above, with those of the
literature data (Li et al., 2009), the other five monoterpene
glycosides (peaks 9, 83, 99, 116, and 118) were also tentatively
identified as 1-O-β-D-glucopyranosyl-paeonisuffrone,

galloylalbiflorin, galloylpaeoniflorin, benzoylpaeoniflorin, and
isobenzoylpaeoniflorin, respectively.

Seventeen triterpenoids and derivatives, including 13
triterpenoids and 4 triterpenoid saponins, were detected in
TFDC. Firstly, compound 128 was identified as limonin by
comparing with the standard. Consequently, compound 122,
taken as an example, afforded a quasi-molecular ion at m/z
505.3524 (C30H49O6) in the positive model, and its MS2

spectra showed representative ions at m/z 487.3419
(M+H–H2O)

+, m/z 469.3312 (M+H–2H2O)
+, m/z 451.3202

(M+H–3H2O)
+, m/z 415.2842 (M+H–C4H10O2)

+, m/z
397.2735 (M+H–C4H10O2–H2O)

+, and m/z 353.2471
(M+H–C4H10O2–H2O–C2H4O)

+. Thus, compound 122 was
tentatively identified as 16-oxoalisol A (Yang et al., 2020). Its
MS2 mass spectra and the fragmentation pathways are shown in
Supplementary Figure S12. Similarly, based on the similar
fragmentation pathways, six triterpenoids (peaks 133, 134, 138,
139, 140, and 141) were tentatively identified as 11-anhydro-16-
oxoalisol A, 11-deoxy-16-oxoalisol A, alisol C 23-acetate, 24-
deacetyl-alisol O or 16,23-oxido-alisol B, 25-dehydroxy alisol A
24-acetate, and alisol B 23-acetate, respectively (Luo et al., 2021a).
The remaining compounds (peaks 115, 123, 125, 126, 129, 131,
135, 136, and 137) were tentatively identified via comparison of
their exact molecular masses and MS/MS spectra with those of
literature data (Li et al., 2005; Fan et al., 2010; Gualdani et al.,
2016; Wang et al., 2017; Luo et al., 2021b). Detailed information
on these compounds is summarized in Supplementary Tables S1
and S2.

3.1.4 Identification of Organic Acids
In the present study, a total of 23 organic acids were detected: 3
aliphatic organic acids, 11 phenolic acid derivatives, and 9 quinic
acid and derivatives. The main sources of organic acids were CR
and PR, and the classification of these compounds is shown in
Supplementary Figure S13. Firstly, by comparing their exact
molecular masses and MS/MS spectra with those of literature
data, three aliphatic organic acids (peaks 6, 8, and 92) were
tentatively identified as malic acid (Zou et al., 2015), citric acid
(Zou et al., 2015), and azelaic acid (Rea Martinez et al., 2020),
respectively. For the phenolic acid derivatives, the primary MS/
MS behavior was the neutral losses of glucoside, H2O, and CO2.
By comparing with the standards, compounds 12 and 101 were
unequivocally identified as gallic acid and salicylic acid,
respectively. Compounds 7, 10, and 11 showed the same
molecular formula and similar (M-H)− ions at m/z values of
493.1197 (C19H25O15), 493.1201 (C19H25O15), and 493.1198
(C19H25O15), respectively. Moreover, they exhibited similar
fragment ions at m/z 331.06 (M–H–Glc)−, m/z 313.05
(M–H–Glc–H2O)

−, m/z 169.01 (M–H–C12H20O10)
−, and m/z

125.02 (M–H–C12H20O10–CO2)
−. Thus, by comparing their

chromatographic retention times, exact molecular masses, and
MS/MS spectra with those of literature data (Li et al., 2009) and
the Orbitrap Traditional Chinese Medicine Library (OTCML),
compounds 7, 10, and 11 were tentatively identified as 1′-O-
galloylsucrose, 6′-O-galloylsucrose, and 6-O-galloylsucrose,
respectively. Taking compound 7 as an example, its MS2

spectrum and proposed fragmentation pathways in negative
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mode are shown in Supplementary Figure S14. Similarly, based
on the chromatographic behavior and the similar fragmentation
pathways, five other phenolic acid derivatives (peaks 15, 35, 64,
78, 84, and 96) were tentatively identified as protocatechuic acid,
4-hydroxybenzoic acid, 5-O-caffeoylshikimic acid, p-hydroxy-
cinnamic acid, acteoside, and isoacteoside, respectively (Li
et al., 2009; Ccana-Ccapatinta et al., 2020).

The source of the nine quinic acids and derivatives was PC.
Firstly, two standards, cryptochlorogenic acid (peak 37) and
chlorogenic acid (peak 44), were first identified by comparing
with the references to illustrate the fragmentation rules.
Consequently, compound 37 (cryptochlorogenic acid), taken as
an example, gave a quasi-molecular ion at m/z 353.0872
(C16H17O9) in the negative model, and its MS2 spectra showed
representative ions at m/z 191.0553 (M–H–caffeoyl)−, m/z
179.0340 (M–H–C7H10O5)

−, m/z 173.0445 (M–H–C9H8O4)
−,

m/z 135.0440 (M–H–C7H10O5–CO2)
−, and m/z 93.0332

(M–H–2H2O–CO2)
−. Thus, compound 37 was unequivocally

identified as cryptochlorogenic acid. Its MS2 spectrum and
proposed fragmentation pathways in negative mode are shown
in Supplementary Figure S15. Similarly, the remaining
compounds (peaks 4, 20, 36, 46, 56, 59, and 61) were
tentatively identified via comparison of their chromatographic
retention times, exact molecular masses, and MS/MS spectra with
those of literature data (Sun et al., 2016; Ccana-Ccapatinta et al.,
2020). Detailed information on these compounds is summarized
in Supplementary Tables S1 and S2.

3.1.5 Identification of Other Compounds
Six other compounds (peaks 2, 22, 26, 72, 87, and 94) were also
detected in the negative mode in TFDC. Firstly, compound 94
was identified as cyasterone via a reference standard.
Consequently, by comparing their exact molecular masses and
MS/MS spectra with those of literature data and OTCML, the
remaining compounds (peaks 2, 22, 26, 72, and 87) were
tentatively identified as sucrose, protocatechualdehyde, syringin,
(+/−)8-(4-hydroxy-3-methoxyphenyl)-6,7-bis(hydroxymethyl)-3-
methoxy-5,6,7,8-tetrahydro-2-naphthalenyl-β-D-glucopyranoside
(Xian et al., 2014), and syringaresinol (Sim et al., 2013),
respectively.

3.2 Identification of the Absorbed
Components
After oral administration, the chemical components of TCM
are mainly absorbed from the small intestine, so mesenteric
venous blood usually contains higher concentrations of the
absorbed components compared to systemic circulation
blood. Moreover, compared with a single oral
administration, some relatively low-content components of
TCM could be detected and identified using the IPVS method
with continuous drug perfusion. On the other hand, to
comprehensively screen the components in vivo, the major
compounds in rat plasma (blood was collected from the
abdominal aorta) after IG administration of TFDC were
analyzed. Finally, the results indicated that a total of 64
prototype components were absorbed into plasma, which

might play important roles in exerting the biological and
pharmacological effects of TFDC. Among them, 58 were
from the IPVS group and 45 of them were from the IG
group. Detailed information of all these absorbed
components is summarized in Figure 4.

3.3 Target Network Pharmacology Analysis
3.3.1 Putative Targets of TFDC
Although 64 absorbed prototype components were detected, five
compounds (peak 21, 23, 54, 95, and 126) were excluded, for
which structural information of these components was uncertain.
Therefore, the remaining 59 compounds were selected to predict
the targets of TFDC with MedChem Studio; their detailed
structural information is provided in Supplementary Table
S3. As a result, a total of 753 putative targets were collected
(Supplementary Table S4).

3.3.2 Known Therapeutic Targets Acting on Gout
Based on available data from various gout disease databases,
222 gout-related targets were collected and are presented in
Supplementary Table S5. By mapping the compound targets
with these gout-related targets, 50 common targets were
identified. Among the 59 components used for target
prediction, 35 were selected for their predicted targets
overlapping the targets of gout. Therefore, 35 components
of TFDC and 50 gout-related targets were used for further
analysis.

3.3.3 Network and Pathway Analysis
For the GO terms and KEGG pathway analysis, 50 common
targets described above, which were entered into the DAVID
database and with p-values less than 0.05, were enriched. The top
10 terms for biological process (BP), cellular components (CC),
and molecular function (MF) are shown as bar plot in Figure 5A.
The enriched BP ontologies focused on various metabolic
processes, including doxorubicin metabolic process,
daunorubicin metabolic process, steroid metabolic process,
xenobiotic metabolic process, and progesterone metabolic
process. Besides, it is worth noting that the GO terms
“leukotriene metabolic process” and “leukotriene biosynthetic
process” were also significant entries in BP, which played an
important role in leukotriene B4 (LTB4) metabolism, and recent
research has indicated that the amount of LTB4 in plasma was
closely associated with gout (Luo et al., 2019). The majority of the
protein responses were located in a variety of cell components
such as the extracellular exosome, organelle membrane,
endoplasmic reticulum membrane, cytosol, apical plasma
membrane, cell surface, intercellular canaliculus, nuclear
envelope lumen, protein complex, and extracellular space.
Moreover, the enriched MF ontologies were dominated by
aldo-keto reductase (NADP) activity, heme binding, iron ion
binding, alditol:NADP+ 1-oxidoreductase activity,
oxidoreductase activity, electron carrier activity, oxygen
binding, steroid hormone receptor activity, oxidoreductase
activity, and indanol dehydrogenase activity.

To further explore the significant signaling pathways of the
major target genes, KEGG pathway enrichment analysis was
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performed and resulted in 20 pathways with significant
enrichment (p < 0.05). The pathways are presented in
Figure 5B, which could be categorized into four major
functional groups: metabolism (such as steroid hormone
biosynthesis, steroid hormone biosynthesis, metabolism of
xenobiotics by cytochrome P450, arachidonic acid metabolism,
and pentose and glucuronate interconversions), organismal
systems (such as ovarian steroidogenesis and bile secretion),
human diseases (such as chemical carcinogenesis and
leishmaniasis), and membrane transport (such as ABC
transporters).

Subsequently, a network was constructed by linking the
validated components, target genes, and significant pathways
to achieve a comprehensive understanding of the mechanism of
action, as shown in Figure 6. The network consisted of 105
nodes and 373 edges, with the innermost and purple diamond
representing the 35 validated compounds of TFDC, the middle
and red circle indicating the 50 gout-related targets, and the
outermost “V” shape in yellow indicating the 20 enriched KEGG
pathways. It is worth noting that the arachidonic acid
metabolism pathway was highly enriched in the KEGG
pathway analysis, which played an important role in gout

FIGURE 4 | Comparison of the absorbed components between intestinal perfusion with venous sampling (IPVS) and the intragastric (IG) method.

FIGURE 5 | Gene Ontology (GO) term performance and pathway enrichment analysis of common targets. (A) GO term performance by biological process (BP),
cellular component (CC), and molecular function (MF). (B) Pathway enrichment analysis by the Kyoto Encyclopedia of Genes and Genomes (KEGG).
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treatment (Graham et al., 2013; Napagoda et al., 2018; Deng
et al., 2020).

3.3.4 TFDC Attenuates Gout via Regulating the
Arachidonic Acid Metabolism Pathway
Gout, defined as a type of inflammatory arthritis caused by the
deposition ofmonosodiumurate (MSU) crystals in the synovial fluid
and other tissues (Dalbeth et al., 2019), has four clinical phases:
asymptomatic hyperuricemia, acute gouty arthritis, intercritical gout,
and chronic tophaceous gout (Bohata et al., 2021). According to the
network analysis, the anti-gout mechanism of TFDC may be
associated with the regulation of the arachidonic acid pathway.
As shown in Supplementary Table S8, the TFDC putative targets
involved in the arachidonic acid metabolism pathway included
phospholipase A2 (PLA2G1B, also called PLA2), prostaglandin
G/H synthase 1 (PTGS1, also called COX 1), PTGS2,
polyunsaturated fatty acid 5-lipoxygenase (ALOX5, also called 5-
LOX), aldo-keto reductase family 1 member C3 (AKR1C3), and
cytochrome P450 2B6 (CYP2B6). Figure 7 shows the arachidonic
acid metabolism pathway affected by the major putative targets of
TFDC; the details are discussed below.

Arachidonic acid generally is incorporated into the plasma
membrane, and the release of arachidonic acid from membrane
phospholipids is through the activation of various phospholipase
enzymes, mainly PLA2 (Munaron 2011). Therefore, the
antagonists of PLA2 can block PLA2 to release arachidonic
acid. Based on our predicted results, four compounds (92, 94,
101, and 125) were considered as PLA2 antagonists, so they may
partially contribute to the anti-gout effects of TFDC.

Prostaglandin G/H synthase (PTGS, also called COX),
including two isomerases, namely, PTGS1 and PTGS2, and
ALOX5 are two rate-limiting enzymes involved in the
metabolism of arachidonic acid. Metabolism by PTGS leads to
the formation of prostaglandins (PGs), whereas metabolism by
ALOX5 leads to the generation of leukotrienes (LTs). These two
types of metabolites are actively involved in the development of
inflammatory diseases. The PGs are connected with vascular
permeability, vasodilatation, fever, and pain amplification
(Laupattarakasem et al., 2003), and the LTs are key mediators
in inflammatory and allergic processes (Patil et al., 2019).
Therefore, we can suppress the production of LTs and PGs by
inhibiting PTGS1, PTGS2, and ALOX5, leading to anti-

FIGURE 6 | Tongfengding capsule (TFDC) key components–major targets–main pathways network. Innermost and purple diamond represents the 35 validated
compounds of TFDC, the middle and red circle stands for the 50 gout-related targets, and the outermost “V” shape in yellow indicates the 20 enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. Edges represent interactions among the key components, targets, and pathways.
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inflammatory and analgesic effects in gout. Many of the identified
active compounds from TFDC provide strong support for the
inhibitory effect of TFDC on arachidonic acid metabolism. It
has been shown that compounds such as geniposidic acid
(peak 14) (Ramirez-Cisneros et al., 2015), loganic acid (peak
19) (Ramirez-Cisneros et al., 2015), protocatechualdehyde
(peak 22) (Chang et al., 2011), phellodendrine (peak 25) (Li
et al., 2016), magnoflorine (peak 30) (Li et al., 2019),
oblongine (peak 39) (Li et al., 2019), menisperine (peak
42) (Li et al., 2019), cyasterone (peak 94) (Cao et al.,
2017), salicylic acid (peak 101) (Paterson and Lawrence,
2001), astilbin (peak 103) (Wang et al., 2018), engeletin
(peak 111) (Wu et al., 2016), and apigenin (peak 130)
(Lajter et al., 2015) have suppressive effects on PTGS,
while compounds such as salicylic acid (peak 101)
(Lapenna et al., 2009) and apigenin (peak 130) (Lajter
et al., 2015) were reported to downregulate ALOX5.
Therefore, TFDC may play an anti-gout role through
regulating the arachidonic acid metabolism pathway by
inhibiting PTGS and ALOX5.

TNF-α, a cytokine, can induce fever and stimulate synovial
cells to produce collagenase and prostaglandin E2 (PGE2) and
thus is considered to contribute to joint damage in inflammatory
conditions such as rheumatoid arthritis (Warren, 1990). Recently,
a study has shown that arachidonic acid can stimulate TNF-α
production in Kupffer cells (Cubero and Nieto 2012). Moreover,
TNF-α further exerts secondary inflammatory effects by
stimulating IL-6 synthesis in several cell types. Upregulation of
IL-6 production has been observed in patients with gout disease
(Mitsuyama et al., 2008). Several of the identified active

compounds from TFDC have shown potent inhibition on
TNF-α and IL-6, such as magnoflorine (peak 30) (Guo et al.,
2018), astilbin (peak 103) (Wang et al., 2018), and engeletin (peak
111) (Jiang et al., 2018). Besides, the pharmacological activity of a
single herb of TFDC on gout has also been reported. The water
extract of SG can reduce the serum levels of TNF-α and IL-6
in hyperuricemia and gouty mice and showed significant
effects in ameliorating murine hyperuricemia and gout
induced by potassium oxonate and monosodium urate
(Liang et al., 2019). Taken together, the anti-gout function
of TFDC may be partially attributed to the downregulation of
the expressions of TNF-α and IL-6.

Reactive oxygen species (ROS) is an umbrella term including
oxygen radicals and certain non-radicals that either are oxidizing
agents or are easily converted into radicals or both (Biswas
2016). Recent studies have demonstrated that reducing the
production of ROS via eucalyptol or ROS scavengers
significantly alleviated pain and inflammation in a mouse
with gout, demonstrating the key role of ROS in mediating
gout pain and inflammation (Yin et al., 2020a; Yin et al.,
2020b). Besides, it has been shown that arachidonic acid can
promote the production of ROS (Shin and Kim 2009). Several
components have been shown to play antioxidative roles by
reducing the levels of ROS , such as astilbin (peak 103) (Wang
et al., 2018) and engeletin (peak 111) (Zhao et al., 2020).
Therefore, TDFC may partially exert its anti-gout effect by
decreasing ROS formation.

Nitric oxide (NO), a small gas molecule, is synthesized by three
isoforms of NO synthase (NOS): endothelial NOS, neuronal
NOS, and inducible NOS (iNOS) (Michel and Feron 1997).

FIGURE 7 | Illustration of the arachidonic acid metabolism pathway influenced by the major putative targets of TFDC components. PLA2, phospholipase A2; AA,
arachidonic acid; LTs, leukotrienes; PGs, prostaglandins; iNOS, inducible NO synthase; ROS, reactive oxygen species; FLAP, 5-lipoxygenase-activating protein;
ALOX5, polyunsaturated fatty acid 5-lipoxygenase; PTGS1, prostaglandin G/H synthase 1; PTGS2, prostaglandin G/H synthase 2; TNF-α, tumor necrosis factor alpha;
IL-6, interleukin-6; TFDC, Tongfengding capsule.
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Among them, the overexpression of iNOS is linked to a variety of
pathological conditions, including gouty arthritis (Chen et al.,
2004), and inhibition of iNOS attenuates MSU-induced
inflammation in mice (Ju et al., 2011). In addition, an earlier
study has shown that, in pathological conditions, arachidonic
acid can stimulate the expression of NO (Mariotto et al., 2007).
Several components have been shown to effectively inhibit NOS,
such as magnoflorine (peak 30) (Wang et al., 2019), menisperine
(peak 42) (Zhao et al., 2020), cyasterone (peak 94) (Cao et al.,
2017), astilbin (peak 103) (Zhao et al., 2020), engeletin (peak 111)
(Ko et al., 2004), and apigenin (peak 130) (Ko et al., 2004).
Therefore, TFDC may play an anti-gout role by inhibiting NOS
expression.

In summary, by acting on multiple target genes/proteins, or
genes/proteins associated with multiple pathways, the multiple
constituents contained in TFDC exert their therapeutic effects on
gout. However, there are some unavoidable limitations to this
study. Firstly, in some situations, it is the metabolites rather than
the parent compounds that possess therapeutic effects. Secondly,
the effects and targets of chemicals are likely tissue- and dose-
specific, which may affect the accuracy of our predicted results.
Thirdly, it is indeed difficult to confirm the predicted targets with
inhibitory or activating effects in vivo. Fourthly, the constituents
in TFDCwere treated equally, without considering their contents.
Finally, and importantly, the theoretical predictions may be
influenced by potential biases in the highly studied biological
processes (Yu et al., 2019).

3.4 Real-Time PCR Assay
Real-time PCR experiment was used to verify the effects of the
predicted active components on the predicted targets. To select
suitable doses and evaluate the effect of apigenin on the LPS-
induced THP-1 cell model, the cytotoxicity of apigenin was
examined. As shown in Figure 8A, the concentration of
apigenin from 10 to 30 μM showed no effect on cell
growth. Hence, apigenin doses of 10 μM (low dose) and
20 μM (high dose) were chosen as the doses for subsequent
experiments. The real-time PCR experiment results,
presented in Figures 8B–D, showed that the mRNA
expression levels of PTGS2, TNF-α, and IL-6 in the LPS
group were significantly increased compared with those in
the control group. Meanwhile, the mRNA productions of
PTGS2, TNF-α, and IL-6 were remarkably reduced after
treatment with apigenin. These results preliminarily
indicate that apigenin could modulate the pathway of
arachidonic acid.

4 CONCLUSION

Compared with conventional screening of absorbed
compounds in partial site, we developed a novel strategy
for stepwise screening from in vitro, in situ, to in vivo by
integrating UPLC-MS and IPVS to characterize the multi-
site absorption process of TCM. Using this strategy, firstly,

FIGURE 8 | Tohoku Hospital Pediatrics-1 (THP-1) macrophages were treated with apigenin and lipopolysaccharide (LPS; 1 μg/ml) and subsequently incubated for
18 h. The effects of apigenin on themRNA expressions of prostaglandin G/H synthase 2 (PTGS2), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) are shown.
(A) Cell viability as determined by the CCK-8 assay. (B–D) The mRNA expressions of PTGS2 (B), TNF-α (C), and IL-6 (D) were detected by real-time PCR. Data are the
mean ± SD from three separate experiments. ND, not detected. ###p < 0.001 versus control; ***p < 0.001 versus treatment with LPS alone.
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we described the chemical profile of TFDC rapidly and
systematically by identifying and characterizing 141
components. Then, 65 absorbed prototype compounds
were rapidly identified by combining the use of the IPVS
and IG methods. Next, a target network pharmacology
analysis was performed based on the identified absorbed
components, and the results indicated that the arachidonic
acid metabolism pathway was highly enriched and that eight
key targets were found, suggesting that the mechanism of
action of TFDC in treating gout may be mainly via regulating
the arachidonic acid metabolism pathway. Moreover, the
real-time PCR experiment showed that apigenin can
suppress the mRNA expressions of PTGS2, TNF-α, and IL-
6 in LPS-induced THP-1 cells. Collectively, the results
demonstrated that this novel strategy may be a powerful
tool to rapidly screen potential active components from
TCM and clarify the mechanism of action of the active
compounds in the treatment of diseases to support
assessments of potential clinical application.
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