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Abstract
With the advent of very rapid and cheap genome analyses and the linkage of
these plus microbial metabolomics to potential compound structures came the
realization that there was an immense sea of novel agents to be mined and
tested. In addition, it is now recognized that there is significant microbial
involvement in many natural products isolated from “nominally non-microbial
sources”.
This short review covers the current screening methods that have evolved and
one might even be tempted to say “devolved” in light of the realization that
target-based screens had problems when the products entered clinical testing,
with off-target effects being the major ones. Modern systems include, but are
not limited to, screening in cell lines utilizing very modern techniques (a high
content screen) that are designed to show interactions within cells when treated
with an “agent”. The underlying principle(s) used in such systems dated back to
unpublished attempts in the very early 1980s by the pharmaceutical industry to
show toxic interactions within animal cells by using automated light microscopy.
Though somewhat successful, the technology was not adequate for any
significant commercialization. Somewhat later, mammalian cell lines that were
“genetically modified” to alter signal transduction cascades, either up or down,
and frequently linked to luciferase readouts, were then employed in a 96-well
format. In the case of microbes, specific resistance parameters were induced in
isogenic cell lines from approximately the mid-1970s. In the latter two cases,
comparisons against parent and sibling cell lines were used in order that a
rapid determination of potential natural product “hits” could be made.
Obviously, all of these assay systems could also be, and were, used for
synthetic molecules.
These methods and their results have led to a change in what the term
“screening for bioactivity” means. In practice, versions of phenotypic screening
are returning, but in a dramatically different scientific environment from the
1970s, as I hope to demonstrate in the short article that follows.
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Introduction
Over the last 40 or so years, bioactive natural product discovery 
and development has moved from what was known colloquially in 
the trade as “grind and find techniques”, also termed “determining 
the phytochemistry of the plant”, to the use of very advanced ana-
lytical, genomic, metabolomic, and informatic techniques together 
with high throughput and/or “high content screening”.

In the days when the author was active in an industrial laboratory as 
a bench scientist, mainly in antibiotic discovery (late 1960s through 
the early 1980s), the methods always involved the screening of 
compounds or extracts against microbial cells, usually a relatively 
safe surrogate, such as the standard FDA strain of Staphylococcus 
aureus known as “209P”, a common Escherichia coli strain, and 
a suitable Candida albicans strain, all designed to show activity 
that could then be followed in a bioactivity-driven isolation format. 
During this time frame, “crude pre-fractionation systems” were uti-
lized that consisted of adsorption or desorption through different 
ion-exchange systems, macro-reticular resins (based on XADs), 
silica gel, and alumina columns, sometimes independently, other 
times in series. Since these columns were handmade using Pasteur 
pipettes (the “Sep-Pak systems” were well in the future) and high-
performance liquid chromatography (HPLC) was unknown until 
the late 1970s, the throughput was slow but effective in determining 
some of the potential chemical classes of antibiotics, aminoglyco-
sides for example, that were in the crude extracts. Semi-purified 
extracts from these processes would then be tested in vivo in suit-
able mouse models of infection. Similar techniques were also used 
by scientists (including the author) when investigating antitumor 
activities in crude extracts of marine invertebrates and an occasional 
plant extract. Then, a simple mouse leukemia (L1210 or P388), or 
at times KB or HeLa (confluent mammalian), cell line was used 
to follow biological activities, followed by in vivo studies in both 
situations in either syngeneic (usually at the time) or SCID or NuNu 
mice if the facilities were available.

In contrast, most of the investigators who were not connected to 
the then-large-scale program run by the US National Cancer Insti-
tute (mid-1960s to 1981), and who were using plants as a source, 
would conduct isolation and purification of compounds from a 
plant extract (determining the phytochemistry of the source) and 
then, once the compound had been identified, might have a propor-
tion of the pure materials tested in any “available assay”, hence 
the use of the soubriquet “grind and find” for this process. Even 
today, this system is still in place, mainly for plant-derived materi-
als, in countries where the scientific infrastructure is not conducive 
to cell-line and/or animal screening owing mainly to the cost of the 
infrastructure required to maintain such facilities.

To perhaps the chagrin of a considerable number of natural prod-
uct chemists, and in particular botanists and marine biologists, it 
is now becoming evident that molecules that have very significant 
biological activities from a pharmaceutical perspective are often 
not produced by the organism from which they were isolated but 
are the product of either microbes that are “in, on, or around” the 
source organism, or are perhaps the product of “chemical talk 

between organisms”, with at times the nominal producer being only 
a “container” for the single-celled organism/organisms that is/are 
the source.

What I hope to demonstrate is how the interplay of genomics and 
metabolomics coupled to mass spectroscopy (MSn) and informatics 
has led to what can be classified as a revolution in both screen-
ing and isolation, with novel screens (or not as will be seen later) 
coupled to the very rapid identification of compounds. In some 
respects, a very complex “grind and find” operation, in others a 
very sophisticated analytical screening, followed by the isolation of 
active entities using a multiplex approach.

The unifying principle might be, if I am allowed a little humor, 
“what you isolate may not be produced by what you thought was 
the source”, and I will show that, as a result, Mother Nature still has 
many tricks to show us.

Screening secondary metabolites: nominally from all 
sources (microbe, marine invertebrate, and plant)
Preamble
What I hope to do is, by utilizing the data from a series of published 
research papers and reviews from 2012 to date (together with some 
earlier papers that demonstrated the necessary science), show that 
the term “screening for bioactive agents” covers a number of related 
approaches, with the advances in the rapid identification of second-
ary metabolites over the same time period being due to one major 
method, that of MSn, or multiplexed mass spectral approaches, with 
the use of HPLC or, in its absence, and as shown later, nuclear mag-
netic resonance (NMR) profiling of enriched fractions. The utili-
zation of these techniques coupled to very rapid next-generation 
sequencing of gene clusters and/or total genome sequencing and 
significant advances in informatic analyses of the data obtained 
have caused a major paradigm shift in “the concept of screening”.

A major emphasis, as might be evident from the introductory com-
ments, is on microbes, both currently cultivatable and those that 
are not yet able to be cultivated. The use of cultivatable microbes 
is obvious, but one may ask, how on earth can you utilize the as-
yet-uncultivated organisms? I will show how this has been done 
successfully and the extremely interesting findings that have come 
from such efforts.

Screening methods and perceived current practice
Anyone who reads the literature related to the discovery of bioactive 
materials, irrespective of whether the sources are natural products, 
modified natural products, or synthetic compounds, has realized 
that, over the last 25–30 years, the (perceived) paradigm changed 
from phenotypic screening (usually cell or animal based) to the use 
of isolated “targets”. The reasons for this change are quite simple 
but not often mentioned. The “collision” of the invention of the 96-
well plate, the rise of recombinant DNA technologies, and access to 
cheap and simple computing platforms (the PC) permitted the rapid 
production of targets (enzymes or proteins), their “interrogation” by 
semi-automated to automated systems, and the analyses of results 
in a short time period.
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This led to the realization that the numbers of available chemical 
compounds were much too low, and since the screens were run in 
campaign-mode, the time frame, usually less than 3 months for a 
given screen, was totally unsuitable for the screening of other than 
pure natural products in the late 1980s to mid-1990s. This lack of 
compounds to test led to the initial rise of combinatorial chemistry, 
which promised to solve the supply and any intellectual property 
problems, since the compounds produced were only in a particular 
laboratory or company. Literally millions of compounds (pure and 
semi-pure) were screened in massive numbers of screens, and com-
pounds were identified as “hits or leads”, but miniscule numbers 
actually reached preclinical status and then clinical trials.

In practice, if one looks at the analyses of sources of drugs since 
1981 to 2014, there are perhaps three approved drugs worldwide 
that are de novo combinatorial discoveries, with one being discov-
ered by the use of fragment techniques on targets1. Combinatorial 
chemistry is magnificent for the development of an existing lead, but 
not for de novo discovery. Further examples of the problems with 
drugs approved from the use of target-based screens (in the area 
of anticancer drugs) are their side effects. As Fabbro (the biologist 
behind Gleevec®) explained in 20142 and 20153, people forgot (or 
did not realize) that multiple types of kinases are not only present in 
cancer cells but also essential components of all cell metabolism.

To add to the confusion surrounding “target choices”, a paper pub-
lished in late March 2017 by a group from Cold Spring Harbor4 
throws doubt upon a choice of a particular kinase (MELK) in triple 
negative breast cancer. In this paper, MELK, the target of two drugs 
thought to be MELK inhibitors from kinase testing and currently 
in clinical trials, was shown not to be the target by use of CRISPR/
Cas9 technology, even though the original target was “correlated 
with RNAi inhibition”. By knocking out the “MELK target” and 
still demonstrating excellent cell growth inhibition, the target of 
these clinical candidates is now open to question. Thus, in this par-
ticular case, target-based screening is “debatable”. How many more 
such “problems” are yet to be found using this technology is now 
an open question.

A very interesting recent review was the thorough analysis done 
of all drugs approved by the US FDA for the treatment of cancer 
between 1999 and 2013 by Moffat et al.5 This review built on the 
earlier report by Swinney and Anthony, who in 2011 demonstrated 
that, of the 183 small molecule drugs approved across diseases 
between 1999 and 2008, 58 (32%) were from phenotypic screens, 
and if one considered new entities that were “first in class”, then 28 
of the 50 were from phenotypic screens and 17 were from target-
based systems6.

Do the figures in the paragraph above mean that one should go back 
to phenotypic screening or continue with targeted methods? There 
is no one answer to this question, but what has been occurring over 
the last 7-plus years, because of the significant advances mentioned 
in the opening paragraph of the preamble, is that a very up-to-date 
version of “grind and find” has now effectively taken over the  

initial screening systems, at least in the case of microbial sec-
ondary metabolites.

Discussions centered around such organisms will be the major 
focus of the rest of this review for the relatively simple reasons 
that a large percentage of all marine invertebrate-sourced natural 
products are the result of the interplay between microbes and their 
hosts. In addition, it is now becoming evident that a similar relation-
ship may occur with a significant number of plants, in particular 
with their fungal endophytes, and there are now many examples of 
insects using microbes as sources of defensive metabolites7.

Modern versions of “grind and find” and their use in 
screening
Application of single-cell genome interrogation to natural 
product structures
More than 20 years ago, the biotech company Diversa built upon 
some earlier research by a smaller biotech company, One Cell, 
where environmental microbes were diluted out and effectively 
suspended in a single drop of medium. This system allowed the 
growth of some previously uncultivated microbes but was not 
further followed up once Diversa folded. Recently, a Japanese 
group published a method using water-in-oil droplets to ferment 
such organisms but either were unaware of the much earlier work  
or did not locate any relevant references to it8. However, they 
did reference a 2014 paper in Nature9 that demonstrated not the  
fermentation of as-yet-uncultivated microbes but the isolation of 
single cells and subsequent DNA amplification that permitted the 
identification of the biosynthetic pathways of what were thought to 
be, up to that time, marine-sponge-derived bioactive metabolites.

In 2014, the Piel group at the ETH in Zurich published the  
paper mentioned above, which effectively revolutionized the 
understanding of the source of over 30 bioactive marine sponge-
sourced secondary metabolites9. The sponge Theonella swinhoei Y 
(Y for “yellow variant”) was a well-known producer of bioactive  
compounds with over 30 bioactive structures determined over the 
years. These compounds came from a combination of classical  
isolation and then biological activity determination and the use of 
bioactivity-driven isolation depending upon the compound.

In this paper, the group demonstrated, by the isolation of single 
bacterial cells from the whole sponge macerate, that the previously 
unknown and currently uncultivated microbe had the genomic 
potential to produce the widely disparate structures previously 
found, including the very potent agent onnamide (Figure 1, [1]), 
a pederin-based (Figure 1, [2]) molecule originally found in the  
Brazilian blister beetle. The story of the work performed over more 
than 30 years that led to the identification of pederin as a micro-
bial product was covered in a recent publication7. The techniques 
of DNA amplification from a single microbe through to the deter-
mination of biosynthetic methods are now being applied to other  
marine-derived secondary metabolites, and two recent papers  
from the Piel group should be consulted for current information10,11. 
However, it should be pointed out at this stage that this is only the 
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“tip of the iceberg” as far as any production system is concerned. 
Although it might be feasible to use Theonella as a host in aqua-
cultural production, as was done by the New Zealand group12 in 
the 1990s to produce small quantities of halichondrin B, it will  
probably need to be transferred into a heterologous host in order to 
produce any metabolite from this discovery.

Mass spectral in situ determination of secondary 
metabolites
In 2009, Esquenazi et al. published a review of the techniques that 
could visualize the production of secondary metabolites in microbes 
during their growth phase and, in particular, demonstrated the util-
ity of imaging MSn (IMS)13. This methodology permitted research-
ers to follow secondary metabolite production in bacterial cells by 
using the mass spectrum of the chosen metabolite as the sensor. In 
two later reviews in 2011, the Dorrestein group, of which Esquenazi 
was then a member, demonstrated that the technique was of sig-
nificant import in determining the spatial production of metabolites 
and that one could also recognize the presence and production of 
novel metabolites14,15.

That this was not just a technique for demonstrating production at 
a single time point was shown in 2012, when Xu, working with 
other scientists at the Scripps Institute of Oceanography, used the 
technique to demonstrate the production of didemnin B16. This 
compound, prior to a single report in 201117, was thought to be the 
product of an encrusting ascidian and was the first directly marine-
sourced compound to enter clinical trials as a potential antitumor 
agent. In the report from the Scripps group and their collaborators, 
the authors not only demonstrated the production of didemnin B 
but also, by growing the producing microbe on a suitable matrix 
that supported the use of IMS, were able to follow the time course 
of didemnin B production in the “fermentation” for the first time. 
The sequence of the production of “putative” intermediates lead-
ing to the final molecule, didemnin B, in the biosynthetic pathway 
was determined directly, thus proving the proposed biosynthetic  
pathway16.

Linkage of mass spectroscopy and genetic sequences as 
primary screening systems
With the examples described above as proof of the utility of the 
technique, a substantial number of papers have been published over 
the last 4 years or so showing the capabilities of MSn as a screen-
ing tool either coupled to genomic sequences or recognizing the 
production of potential novel compounds before biological screen-
ing. Although the advent of next-generation sequencing permitted 
the identification of biosynthetic gene clusters, either as part of a 
full sequence determination or as isolated entities, a major stum-
bling block was in proving that a given gene cluster produced a 
metabolite of interest, though significant numbers of linkages were 
obtained, usually by comparative studies.

Thus, by linking mass spectral analyses to genomic sequencing, 
investigators could link the production and identification of a given 
series of molecules to a particular microbe and then frequently 
identify the potential genomic cluster. Doroghazi et al. in 201418 
published the initial results of an analysis of 830 actinomycete 
genomes that included 344 new total genomes and 412 gene clus-
ters that were listed in GeneBank and produced known secondary 
metabolites. Using a significant number of computational tools, 
the data obtained were grouped into 4,122 gene cluster families 
(denoted as GCFs) containing 11,422 gene clusters. The clustering 
or metabolite production was validated in a significant number of 
instances by mass spectral analyses of the metabolites produced. 
What was also of interest were the numbers of natural product gene 
clusters found per taxonomic family, with the well-known families 
having averages around the lower 20s per genome analyzed. Does 
this mean no duplication across families? No, but the technique per-
mits a rapid deconvolution in due course, particularly when coupled 
to the results of other techniques that will be discussed below.

In 2016, Henke and Kelleher published an excellent short review 
on the utility of MSn techniques to dereplicate compounds from 
microbes using a “structure-based approach” rather than a bioac-
tivity-driven approach19. Effectively, MSn techniques came to the 

Figure 1. Onnamide and Pederin. Onnamide and Pederin.

Page 5 of 13

F1000Research 2017, 6(F1000 Faculty Rev):783 Last updated: 05 JUN 2017



rescue of a “grind and find” process. In addition to this review,  
there were other significant reviews covering the use of these  
techniques that should also be consulted by interested readers. The 
limitation of length in this review means that discussion of these 
other papers covering the utility of this approach cannot be covered, 
but the following recent papers are well worth consulting20–28.

Gene maps as leads to novel natural product bioactivities
There are two databases that have the potential to help in the  
screening of both fractionated extracts (see next section for a  
discussion of such libraries) and pure compounds. The largest 
is the “connectivity map”, also known as “cmap”, located at the 
Broad Institute of MIT and Harvard in Cambridge, Massachusetts29.  
Quoting from their website at https://portals.broadinstitute.org/
cmap/, the cmap “is a collection of genome-wide transcriptional 
expression data from cultured human cells treated with bioac-
tive small molecules and simple pattern-matching algorithms that 
together enable the discovery of functional connections between 
drugs, genes and diseases through the transitory feature of com-
mon gene-expression changes”. Although there do not seem to be 
any published results from screening of natural product extract  
libraries, there definitely is significant potential for future use.

However, a smaller database specifically designed to link natural 
product isolation, in this case from marine-sourced microbes, with 
notation of a possible mechanism of action was constructed by  
MacMillan and White at the University of Texas, Southwestern 
Medical Center. A recent paper has demonstrated its success in 
working with marine-derived natural products and leading to the 
identification of a novel AKT inhibitor30.

Pre-fractionation of natural product libraries
What has occurred in the last few years is the realization by natural 
product chemists and biologists that extracts from any natural prod-
uct source are not generally amenable to high-throughput screen-
ing, particularly against enzymes/receptors. Though there have 
been recent reports of successful programs using the crude micro-
bial extracts from the NCI microbial extract libraries31–33, their costs 
were significant and were paid for by some version of a grant or 
contract.

There are also potential problems involved in dereplication in 
any system that utilizes the same or a similar microbe in multiple 
media and growth conditions, which were part of the sources of 
the NCI microbial extract collection, where microbes could have 
been fermented in up to 12 different media conditions commenc-
ing in the late 1980s. This multiple media approach has been enti-
tled OSMAC (one strain/many compounds) and is often ascribed 
to work reported in 1999 by Schiewe and Zeek34. This attribution 
is incorrect, although it has entered the literature since the process 
was first described from an academic aspect by Zahner in 197735 
and had been in general use in the antibiotic discovery programs in 
the pharmaceutical industry for at least 17 years prior to the Zahner 
paper. Since industry generally did not publish their techniques (the 
author was using such systems before 1970, and they had been in 
general use since the early 1960s), such information is not in the 

general literature, though the NCI contract conditions that led to 
their microbial collection were written by a retired microbiologist 
from Squibb and published in the mid-1980s specified just such 
an approach.

Thus, in order to reduce the problems associated with crude  
microbial extracts in particular, together with plant and marine-
invertebrate extracts, scientists continued to think about how to 
optimize extracts for screening. The first formal publication from 
academia on the concept of pre-fractionation of crude extracts was 
probably the paper in 1999 by Schmid et al. from the Hans-Knoll 
Institute in Germany, quoting the use of Zymark SPE work stations 
for such fractionations36. Though perhaps the first academic link, 
the concept had been used in various ways in small and large com-
panies for years before then. Small companies in the early 1990s, 
such as Xenova in the UK, used pre-fractionation with HPLC trac-
ing. Earlier, as mentioned above, in the late 1970s, larger compa-
nies such as SK&F (now GSK) used much cruder versions of the 
same concept owing to analytical limitations (personal observation 
by the author). From 2002 to 2008, companies such as Sequoia  
(specializing in plant-based materials from the Missouri Botani-
cal Gardens)37, bioLeads GMBH38, and MerLion, specializing in  
microbial and marine invertebrate extracts39, together with Wyeth40 
published their methodologies, with probably the first academic 
group to publish after the Hans-Knoll group mentioned earlier 
being the Ireland group at Utah in the later 2000s41.

All of the fractionation methods used from the late 1990s were 
designed so that individual “wells or tubes” would in general 
contain only 3–10 compounds, and from the early 2000s analyti-
cal data on the pre-fractionated materials was obtained during the  
process41–47. It should be noted, however, that the initial impetus 
for fractionation before assay came from industry or from groups 
that started in industry and then moved into academia (i.e. Quinn at 
Astra Zeneca and then Griffith University, and Butler at MerLion 
and then University of Queensland).

Although all have overlap in their coverage, the following three 
review articles are worthwhile extra reading on the pre-fractiona-
tion topic. The 2013 review by Henrich and Beutler includes the 
pre-fractionation techniques used at the NCI that utilize the NCI’s 
Natural Products Repository44. The 2014 chapter on Marine Bio-
prospecting by Fenner and Gerwick covers the usage of marine-
derived extracts47, whilst the 2015 review by Gaudencio and Pereira 
covers the whole period from 1993 to mid-201548.

Utility of fractionated natural product libraries and NMR 
profiling
Another instrumental technique that can be said to have “come of 
age” in screening processes is the use of NMR profiling of natu-
ral product extracts as a screening tool. The use of what could be 
termed “hyphenated-analytical systems including online NMR” in 
the initial profiling/screening of compounds as they eluted from 
(usually) HPLC systems has a relatively long history, with one of 
the first online NMR analyses of single compounds as a method of 
detection published 20 years ago49.
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The Eskitis group at Griffith University used their modification 
of pre-fractionation to analyze solid-state fermentation extracts of 
Streptomyces strains isolated from termite gut. These extracts were 
fractionated into lead-like enhanced (LLE) fractions using pub-
lished methodology from their laboratories43. This process led to a 
dataset of 420 LLE fractions and each was subjected to NMR pro-
filing, with the spectra being manually examined for the occurrence 
of unique chemical profiles. They were classified as non-repetitive 
or unique NMR resonances and then followed further dereplica-
tion by linking specific spectral types to the previously collected 
distinctive ESIMS ion peaks (these were collected during the LLE 
process). These processes enabled the identification of six new  
secondary metabolites in addition to five known metabolites50.

Unbiased phenotypic screening with pure natural products 
in high content screens
Two excellent papers were published in 2016 from the Quinn group 
in Australia demonstrating how to couple phenotypic screening 
against non-immortalized human olfactory neurosphere-derived 
(hONS) cells (primary cells derived from Parkinson’s disease 
patients) with pure natural products using a high content screening 
system. The first screen covered isolated metabolites from marine 
sponges (Jaspis splendens) to prove that the overall system could 
function51. The following screen then utilized a 500-plus pure com-
pound set from the Nature Bank collection at Griffith University52. 
The results demonstrated that such a high content screen produced 
multiple possibilities for the identification of the interaction(s) 
with cellular organelles/protein interactions, being limited only by 
the specificity of the fluorescent probes used to demonstrate the 
responses.

To further demonstrate the potential of such high content screen-
ing, recently an excellent review covering almost all aspects of high 
content screening and its associated operations was published by a 
German group from the Helmholtz Centre in Braunschweig (the old 
GBF). This should be read in order to see the progression in tech-
niques and technologies from 1997 to the end of 201553.

Metabolomics meets modern assay techniques
In a review paper in 201554, Kurita and Linington covered the vari-
ous techniques that now permit results from high content screening 
of extracts to link phenotype and chemotype and, later that same 
year, published an excellent paper on what they call “compound 
activity mapping”, which integrates high content biological screen-
ing and untargeted metabolomics to identify potential compounds 
with activity55. This article should also be read in conjunction with 
the comments above on “cmap” and “FuSiOn” databases.

Although most scientists working with microbes have tended to 
work with eubacteria, predominately actinobacteria, there are 
two groups who have worked in other taxa for many years: one 
with fungi, predominately Aspergillus species, and the other with  
myxobacteria.

In the case of fungi, although it is not yet feasible to survey the 
complete secondary metabolome of a single fungus, there is the 
potential for 80–100 putative biogenetic clusters to be recognized 

from full genome studies in Aspergillus strains56. In addition, the 
activation of cryptic clusters via epigenetic “tricks” also demon-
strated further potential in these organisms57. As a result, their 
potential is really only just being recognized21,58–60.

In the case of the myxobacteria, which are predatory Gram-negative 
bacteria, just as in the case with the Keller group at the Univer-
sity of Wisconsin and Aspergillus, one research group, the Müller 
group in Germany (the lineal descendant of the Reichenbach and 
Höfle group at the then GBF in Braunschweig), are the pre-eminent 
investigators of secondary metabolites from this unusual taxon. 
In the last 4 years, they have published some excellent articles on 
this particular group of microbes, demonstrating their potential 
as sources of compounds with unusual structures and biological  
activities61–64. In addition, what is relevant to the comments ear-
lier about actual sources not being what they were thought to be, 
in 2015, the Müller group plus a group from Sanofi in Germany 
reported not only the isolation of bengamides (Figure 2 [3]; a 
series of compounds originally isolated from Jaspis sponges) from  
terrestrial myxobacteria but also the details of large-scale produc-
tion and optimization of the base structure65. The initial report 
of production of the bengamides from a terrestrial microbe was 
in fact in a patent application from Sanofi-Aventis in 2003, with 
the patent’s international filing date being in October 200466. 
This demonstrates that the claim for the first report showing the 
material from a myxobacterial source from the Crews’ group in  
California in 201267, who had reported the marine-sourced benga-
mides many years previously, is not correct and emphasizes that 
the patent literature can hold very significant information that is  
often not checked by academic scientists. This taxon also produces 
the microsclerodermins (Figure 2, [4]), agents originally reported 
by Bewley et al. in 1994 from a lithistid sponge and then, just as in 
the case of the bengamides, reported by the Müller group in 2013 
from a terrestrial myxobacteria68.

Statistical tools for the interrogation of results
Although the production of spectral data of all types is now a “rela-
tively simple process” if one has the necessary resources, the con-
version of such datasets into usable information, structures, linkage 
to targets etc. is a process that requires the use of multiple statistical 
tools, thus the processes are comparable to the use of “chemomet-
rics” in chemical operations. Chemometrics is usually defined as 
“relating measurements on a chemical system or process to the state 
of the system via application of mathematical or statistical meth-
ods”, the use of principal component analysis (PCA) being just one 
example of the tools available.

In order to link information from multiple sources to “screen” 
natural products, a number of groups, some referred to earlier, 
have used “chemometric methods” linked to biological datasets so 
that initial findings from one analytical system can relatively eas-
ily be used to link to previously identified compounds, biological 
targets, genomic sequences, and metabolomic datasets across taxa. 
The datasets used are not limited to just natural products but can, 
and do, cross into information derived from synthetic or semi-syn-
thetic compounds that have reported biological activities. Recent 
examples are the articles (some referred to earlier) from the Dor-
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restein group and collaborators22,24,69,70 and the Linington group and  
collaborators (also referred to earlier)55. In addition to these, recent 
papers that deal with the chemometric link are one by Humbeck and 
Koch71 and two papers from the Oberlies group72–73.

Epigenetic modulation of source microbes
An area that may well have significant relevance in the future is 
(in addition to “persuading” as-yet-uncultivated microbes to grow, 
thus enabling the use of the vast array of techniques that can be 
used in fermentation processes) the activation of the so-called  
“cryptic clusters” in microbes. Just as in the human genome, the 
full epigenetic control mechanisms have not been elucidated in any 
microbe. Yes, we do know some of the parameters required in cer-
tain biosynthetic clusters, but how much of the total genome of a 
microbe is composed of control mechanisms is unknown.

There are relatively simple methods and more complex ones that 
can be used to “unlock” the Pandora’s box that any genome repre-
sents. The modification of genetic control elements in Aspergillus, 
as published by Bok et al. in 200657, is one route, but the use of 
exogenous chemicals such as DNA methylators or histone acetyla-
tion modifiers are simpler examples, with some excellent work 
demonstrating such possibilities emanating from the Cichewicz 
group in 200874 and expanded in following years75–78.

In addition to the “epigenetic modulators” listed above, the use  
of simple antibiotics in a single microbial fermentation can lead  
to the production of previously unknown metabolites. Thus, Truong 
et al. demonstrated that if Burkholderia thailandensis is treated 

with the well-known antibiotic trimethoprim, the activation of an 
orphan LuxR homolog known as MalR occurs, which is linked to 
the gene cluster that yields the toxic polyketide malleilactone79. 
This sublethal trimethoprim–B. thailandensis combination was 
then later shown to induce the production of over 100 compounds 
previously not known from this particular microbe80. In order to 
identify these materials, the investigators used the mass spectral 
networking technique pioneered by the Dorrestein group70,81. A 
very recent paper from the same group then identified the master 
regulator Scmr (secondary metabolite regulator) for the production 
of secondary metabolites in the same bacterium. Removal of this 
regulator then led to overproduction of some secondary metabolites 
by more than 200-fold82.

However, there is another simple process that can be applied to 
the screening of microbes for epigenetic-induced amplification 
of genetic clusters and/or modified metabolites. This is to sim-
ply grow two or more microbes in the presence of each other.  
This is often thought to be a relatively new concept but in fact was 
being investigated in the pharmaceutical industry in the 1970s 
using a device known as the EcoLogen, which was effectively four  
vessels arranged around a central chamber that could be indi-
vidually closed with solid gates or selective filters. One microbe  
in the center could be influenced by chemical entities, well before 
any knowledge of quorum sensors, as the operator desired. There 
are only three academic references to the use of this device83–85, but 
the author used it quite extensively in industry in the late 1970s. 
However, results were difficult to interpret at times because of the 
lack of sensitive analytical systems 30-plus years ago.

Figure 2. Bengamide B and Microsclerodermin A. Bengamide B and Microsclerodermin A.
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However, today, there are multiple reports of novel agents coming 
from mixed culture techniques, with perhaps the first one showing 
a novel bioactive product being the report from the Fenical group 
at the Scripps Oceanographic Institution in 2001 of pestalone. 
This metabolite arose from challenging the marine-derived fun-
gus Pestalotia spp. with a marine α-proteobacterium86, which was 
followed 4 years later by the report of the marine-derived fungus 
Libertella spp. yielding new cytotoxic diterpenoids, libertellenones 
A–D, when co-fermented with the same α-proteobacterium87. Later 
work from the same group, but using the marine-sourced fungus 
Emericella spp. and culturing with the obligate marine bacterium 
Salinispora arenicola, produced the cyclic depsipeptides known as 
emericellamides A and B88.

In 2014, the Wolfender group published an excellent paper on the 
methodology for studying microbial interactions in 12-well plates. 
This mimicked, to some extent, methods used many years ago in 
industry for the production of novel antibiotics, where one microbe 
was grown on an agar slant then a liquid culture of another microbe 
or supplemented medium was added and the presence of induced 
activity was checked against suitable test microbes. The Wolfender 
group used modern analytical techniques to demonstrate the pro-
duction of novel metabolites from this process89. A very interesting 
variation on the same theme is the one recently published by Barkal 
et al., where microfluidic techniques are used followed by untar-
geted metabolomics90.

Thus, one might well state that old techniques often used in the 
1960s and 1970s when pharmaceutical houses were the major 
sources of natural product-derived drug candidates have now met 
up with modern analytical systems. Unfortunately, except for an 
occasional patent or publication well after the programs had been 
shut down, only the memories of the scientists involved are left, as 
publication was not encouraged and, frequently at that time, the 
methodologies were proprietary.

Conclusion
Is there hope for interesting molecules to come from these 
multiplex types of screening systems?
From the examples that have been given above, the interplay of 
very talented academic scientists with state-of-the-art analytical 
systems bodes well for finding novel agents from (mainly) micro-
bial sources, even though frequently the nominal starting source 
is not a microbe. As shown in the case of the sponge metabolites 
from Theonella swinhoei Y, the complex molecules produced have 
significant activity and their structures are ones that no synthetic 
chemist would ever conceive in the absence of a similar compound. 
In addition, until that work was reported, the investigation of as-yet-
uncultivated microbes from a metabolome aspect was a problem 
few scientists would even “touch”. Currently, that specific paper9 
from 2014 has over 150 citations in the Scopus database at the time 
of writing. In addition, the recent paper from the Piel group should 
also be required reading for scientists interested in the potential of 
this type of technology11.

What is also of import is the realization that in addition to the dis-
covery that significant numbers of marine-sourced agents have a 
microbe in their background, important bioactive plant-derived 
compounds such as the taxanes, camptothecins, and vinca alkaloids 
have endophytic microbes in their “background”, and in the case 

of maytansine, there is no doubt that the molecule is bacterial in 
origin91.

The “systems integration” demonstrated above also bodes well 
for investigations of the enormous potential of both terrestrial and 
marine microbes and their associated “hosts”. The oceans cover 
70% of the Earth’s surface and numbers of microbes per cm3 of 
seawater alone run between 103 and 105. It should be remembered 
that a suspension of 105 E. coli per mL (1 cm3) is a clear solu-
tion to the human eye. When one also considers that ~50% wet 
weight of a sponge is composed of single-celled organisms (not all  
eubacteria or fungi), the numbers of potential sources are  
incalculable if one also includes the microbial content of the  
seabed. Some relevant recent examples will give an idea of the 
potential.

In the marine area, the Fenical group and collaborators at the 
Scripps Oceanographic Institution in San Diego have published 
extensively on the potential of marine microbes, usually free- 
living but at times associated with invertebrates. The exam-
ples given earlier on products from co-culture are one aspect; in  
addition, papers from long-time collaborators Jensen and Moore, 
and later Dorrestein, give further insight into the vast areas that  
still have to be investigated24,25,92–94. These investigations, when  
coupled to the methodologies reported by the Piel group on marine-
sourced but as-yet-uncultivated microbes (see earlier section),  
demonstrate the potential of these sources to uncover novel  
agents that may result from using the “modernized grind and  
find” and coupling to the latest phenotypic screening techniques.

Finally, one could even postulate that “all that is old is new again” 
in this field, as older concepts and some early reports of potential 
novel agents in strange places have now met up with the necessary 
tools to investigate these areas.
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