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Abstract: The current study delineates the use of date-palm-derived cellulose nanocrystals (dp-CNCs)
as reinforcing agents. dp-CNCs were incorporated in varying amounts to poly(vinyl alcohol)/guar-
gum-based phase-separated composite films. The films were prepared by using the solution casting
method, which employed glutaraldehyde as the crosslinking agent. Subsequently, the films were
characterized by bright field and polarizing microscopy, UV-Vis spectroscopy, FTIR spectroscopy, and
mechanical study. The microscopic techniques suggested that phase-separated films were formed,
whose microstructure could be tailored by incorporating dp-CNCs. At higher levels of dp-CNC
content, microcracks could be observed in the films. The transparency of the phase-separated films
was not significantly altered when the dp-CNC content was on the lower side. FTIR spectroscopy
suggested the presence of hydrogen bonding within the phase-separated films. dp-CNCs showed
reinforcing effects at the lowest amount, whereas the mechanical properties of the films were compro-
mised at higher dp-CNC content. Moxifloxacin was included in the films to determine the capability
of the films as a drug delivery vehicle. It was found that the release of the drug could be tailored by
altering the dp-CNC content within the phase-separated films. In gist, the developed dp-CNC-loaded
poly(vinyl alcohol)/guar-gum-based phase-separated composite films could be explored as a drug
delivery vehicle.

Keywords: date palm; cellulose nanocrystals; poly(vinyl alcohol); guar gum; phase-separated films;
moxifloxacin; drug delivery

1. Introduction

Recently, PVA- and polysaccharide-based phase-separated films have been proposed
by several authors. Phase-separated systems are a special type of composite system wherein
the different phases are formed due to the thermodynamic incompatibility between the two
polymeric phases. Yadav et al. (2017) have synthesized PVA and carboxymethyl tamarind
gum-based composite films [1]. Herein, the dispersed phase was carboxymethyl tamarind
gum, while the PVA formed the continuum matrices. The films were reported to form phase-
separated structures. The authors noted that the carboxymethyl tamarind gum-containing
composite films supported better human keratinocyte proliferation. The composite films
were also found to be capable of antimicrobial drug delivery applications. In another
study, the same group further reported that the properties of the composite films were
significantly changed when the internal carboxymethyl tamarind gum phase was reinforced
with graphene oxide nanosheets [2]. The blank films showed good antimicrobial properties,
which was accounted for the antimicrobial activity of graphene oxide nanosheets. The films
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were also explored for antimicrobial drug delivery applications. It was found that the films
were biocompatible towards human keratinocytes.

Polyvinyl alcohol (PVA) is a semi-crystalline polymer [3]. The polymer is highly
hydrophilic, due to which it can be easily soluble in water and is an excellent film-forming
polymer [4]. It has been extensively used to develop polymeric matrices for wide applica-
tions, including drug delivery, tissue engineering, regenerative medicine, food packaging,
and sensor development [5,6]. The biological applications of PVA are motivated because of
its excellent biocompatibility with human tissue [7]. Nevertheless, the polymer matrices of
PVA have been reported to exhibit poor mechanical and thermal stability. As mentioned
previously, the hydrophilic nature of PVA results in quick water absorption when placed in
the biological environment [8]. The absorption of water molecules results in the mechanical
instability of the PVA matrices, thereby leading to their disruption. The polymer matri-
ces of PVA have been crosslinked either by physical or chemical methods for improving
mechanical stability even when such matrices are placed in an aqueous environment [9].
Further, various authors have reported the inclusion of reinforcing materials (e.g., nanocel-
lulose, carbon nanotubes, and their derivatives, silver nanoparticles, etc.) for enhancing the
mechanical stability of PVA [10–12].

Similarly, many researchers have proposed the synthesis of polymeric architectures by
blending PVA and other biological polymers [13,14]. The blending of polymers of biological
origin with PVA allows the researchers to modulate the functionality of the polymeric
architectures. For example, polymeric structures of PVA and gelatin, alginate, chitosan, or
pectin have been proposed for drug delivery and tissue engineering applications [15–18].
Recently, PVA and polysaccharide-based phase-separated films have been proposed by
several authors. In such systems, the polysaccharides from the dispersed phase. The main
advantage of such a system can be related to the reinforcing effect exerted by the polysac-
charide phase, which helps to improve the mechanical stability of the films, compared
with the pristine PVA film. However, the mechanical stability of such phase-separated
films is composition-dependent. It has been found that, at a critical concentration, the
mechanical stability of the phase-separated film is the highest. The alteration in mechanical
properties can be related to the microstructural arrangement and the crystallinity of the
polymeric phases.

Guar gum (GG) is a widely used polysaccharide-based biopolymer that is extracted
from the embryos of Cyamopsis tetragonoloba [19]. Chemically, GG has a linear backbone
of (1–4)-β-D-mannopyranosyl units, which consists of α-D-galactopyranosyl units as pen-
dants. The gum has been proposed as a coating material for site-specific drug delivery [20].
Similarly, cellulose is another one of the most abundant naturally occurring polysaccharides
from plant cell walls in which a glucose unit of β-1,4 D-glucopyranosyl (anhydroglucose
(AGU)) is joined linearly in the 4C1-chain configuration. The high degree of polymeriza-
tion, high surface-area-to-volume ratio, and availability of numerous chemical functional
groups in the nanocellulose offer a high loading and binding capacity for drug release [21].
These polysaccharides are extensively used as biomaterials due to their biodegradable and
biocompatible characteristics.

Nonetheless, cellulose nanocrystals (CNCs) are also derived from agricultural waste
materials. Valorization of the CNCs has been reported to develop several polymeric
architectures for various applications, including photonic, pharmaceutical, and biomedical
applications. The dp-CNCs are being synthesized from the wastes of the date palm industry
in our previous research [22]. Moreover, the reinforcing effect of the dp-CNCs on the
phase-separated composite films has not been studied yet. Hence, examining the ability
of the dp-CNCs in tailoring the properties of phase-separated composite films seems
rather justified.

Therefore, in this study, we propose to develop PVA–guar gum (GG) phase-separated
film where the GG would form the dispersed phase, and the PVA would form the ex-
ternal phase. The PVA–GG film would be reinforced with date-palm-derived cellulose
nanocrystals (dp-CNCs). A thorough literature survey suggests that composite films of such
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compositions have not been investigated. Accordingly, PVA–GG (PGC) phase-separated
films reinforced with dp-CNCs are fabricated using a solvent casting method, and its
structure–property relationship for drug delivery analysis is studied in this study.

2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (Mw 89,000–98,000, 99+% hydrolyzed CAS number 9002-89-5),
glutaraldehyde solution 25% (v/v), were purchased from Sigma Aldrich, St. Louis, MO,
USA. Isopropanol (99.9%, analytical grade), and hydrochloric acid (37%, ACS reagent)
were obtained from Panreac Química, Garraf, Spain. Guar gum was supplied by Scharlab,
Barcelona, Spain. dp-CNCs were synthesized in our lab, as per the method mentioned
earlier. In brief, fine powder was obtained from palm tree trunk mesh and pretreated with
supercritical carbon dioxide (ScCO2) to eliminate the water-soluble extractives. It was then
treated with a 20% (w/v) sodium hydroxide solution at 90 ◦C for 6 h. The solid fraction
was separated and washed until it became alkali-free. Finally, a bleaching reaction was
carried out at 70 ◦C for 4 h, using an acidic solution of sodium chloride (pH 3.7). The pure
cellulose was collected by filtration, washed several times until it became neutral, and
finally dried to obtain a constant weight. For obtaining nanocellulose from this cellulose,
a combination of mechanical disintegration and chemical treatments with sulfuric acid
was used. Firstly, homogenous cellulose suspension has a solid content of ~5 wt.%. The
suspension was then fed into the barrel of a twin-screw DSM-Xplore micro-compounder
(15 cm3 Xplore®, Sittard, The Netherland) for mechanical defibrillation of cellulose. It is
continuously recirculated within a barrel for about 30 min at a constant screw speed of
250 rpm. After this treatment, solids were collected and subjected to sulfuric acid hydrolysis.
In short, 10 g treated cellulose samples were hydrolyzed in 100 mL 50 wt.% H2SO4 solution.
The reaction was performed at 45 ◦C with continuous stirring for about 60 min. Finally,
the hydrolysis reaction was quenched by the addition of a large amount of distilled water.
This suspension was centrifuged several times, and the supernatant fluid was discarded
till it became neutral. This cloudy suspension was then dialyzed against distilled water
until the pH of the suspension reached a constant value. This portion of the nanocellulose
suspension was stored in a refrigerator at 4 ◦C, while the other was freeze-dried and utilized
for further use. Furthermore, it has nanoparticles with sizes ranging from 26 nm to 61 nm, a
negative zeta potential of −35 mV, and 89% crystallinity [22]. Furthermore, double distilled
water was used throughout the study.

2.2. Preparation of Nanocomposite Films

The PVA–GG-based nanocomposite films were prepared similar to the method pro-
posed by Yadav et al. [2]. In short, initially, solutions of 10% (w/w) PVA and 2% (w/w)
GG in water were prepared. To make a 10% aqueous solution of PVA, 10 g of PVA was
gradually dispersed in 90 g of water by stirring. The mixture was then put in a water
bath at 90 ◦C to achieve complete dissolution of PVA. For GG preparation, 2 wt.% GG
was prepared at room temperature by dissolving 2 g GC in 98 g of hot water. Then, the
solutions of PVA and GG were mixed in the ratio of 18:2 (w/w) and homogenized at room
temperature using an overhead stirrer (200 rpm; 5 min). A volume of 10 mL of water
was then added to the mixture and subsequently homogenized. A suspension of dp-CNC
in 10 mL water, containing 0 mg, 2.5 mg, 5 mg, 7.5 mg, and 10 mg, was then added to
the diluted solution and homogenized further for another 5 min. This was followed by
the addition of the 2 mL of glutaraldehyde reagent, which was used as the crosslinking
solution. The glutaraldehyde reagent was prepared by mixing glutaraldehyde, isopropanol,
and hydrochloric acid in the ratio of 0.5:0.5:0.05 (i.e., 0.5 mL of glutaraldehyde, 0.5 mL of
isopropanol, and 0.05 mL of hydrochloric acid). The liquid mixtures (42 mL) were then
converted into films of 60 mm diameter by the solution casting method using 20 mL of
the mixtures. During the drying stage, the liquid mixtures, which were poured into Petri
dishes, were kept in a thermal cabinet (40 ◦C) for 24 h. The drying process resulted in the
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formation of films, which were peeled off with the help of forceps. The films were named
A0, A1, A2, A3, and A4, respectively. A0 film was a phase-separated film of PVA and GG,
devoid of dp-CNC reinforcement. The rest of the films contained 2.5 mg, 5 mg, 7.5 mg, and
10 mg of dp-CNCs, respectively, in the 40 mL of PVA–GG mixture. The drug-loaded films
were synthesized by incorporating 400 mg of moxifloxacin in the liquid mixture after the
addition of the crosslinking agent. The films thus formed were named A0D, A1D, A2D,
A3D, and A4D. Figure 1 illustrates the flowchart of the film formulation.
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Figure 1. Flowchart diagram of the preparation of the films.

2.3. Characterization of the Films
2.3.1. Microstructure Analysis

The microstructures of the films were observed and analyzed under bright-field
(Model: DM750, Leica Microsystems, Wetzlar, Germany) and polarizing (Model DM 75,
Leica Microsystems, Wetzlar, Germany) microscopes.

2.3.2. Spectroscopic Analyses

The UV-Vis transmission spectrum of the films was evaluated using a UV-Vis spec-
troscope (Shimadzu 3600 UV-VIS-NIR, Kyoto, Japan). The scanning was carried out in
the wavelength region of 280 nm and 800 nm. The functional group analysis and the
interactions among the functional groups were analyzed using a Fourier transform infrared
(FTIR) spectroscope (Nicolet iN10, Thermo Scientific, Winsford, UK). The measurements
were made in the attenuated total reflectance (ATR) mode at room temperature.
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2.3.3. X-ray Diffraction Study

The films were subjected to wide-angle X-ray diffraction studies using an X-ray diffrac-
tometer (D8 Advance, Bruker, Berlin, Germany). An automated wide-angle goniometer
coupled with a sealed tube with Cu-Kα source radiation (λ = 1.54056 Å) was used. In
reflection mode, a range of 2θ was scanned from 5◦ to 50◦ at 5◦/min, and the X-ray tube
was operated at 40 kV and 40 mA.

2.3.4. Mechanical Study

The mechanical property of the films was estimated by performing the stress relaxation
(SR) study, which can divulge information about the viscoelastic nature of the films. The
samples were cut into rectangular pieces (size (L × B): 60 mm × 5 mm). Then, the film
pieces were attached to the sample holder and placed under the tensile grip. The length
of the sample holder window was maintained at 50 mm. The test was carried out by
stretching the films by 2 mm and then recording the reduction in the stress values for 60 s.
The analysis was carried out in triplicate.

2.3.5. Drug Release Study

The drug release study was conducted in Franz’s diffusion cell. The receptor com-
partment of the diffusion cell was 12.0 mL. The films were cut into circular pieces (1 cm
diameter) so that the drug content in the films was 1.57 mg/cm2. The receptor compartment
was filled with phosphate-buffered saline (PBS; 6.8). Then, an activated dialysis tube was
placed over the receptor compartment, followed by the placement of the films. Thereafter,
the donor compartment was placed and secured, followed by the addition of 1.0 mL of
PBS. The PBS in the receptor compartment was sampled (1.00 mL) at regular intervals,
which was then replaced with fresh PBS. The sampled PBS was then analyzed in a UV-Vis
spectrometer at 391 nm wavelength to determine the drug content. The release study was
conducted in triplicate.

2.3.6. Statistical Analysis

The results of mechanical and drug release studies are reported as average ± standard
deviation. The variation in the average values was analyzed by t-test.

3. Results and Discussions
3.1. Microstructure Analysis

The addition of dp-CNCs in A1, A2, A3, and A4 was expected to alter the microstruc-
ture of the films considerably. The bright-field micrographs (Figure 2) of A1, A2, and A3
showed the presence of the dispersed phases. The agglomeration of the dispersed phase
of GG was found to be composition-dependent. Interestingly, it was found that the mi-
croarchitecture of A4 was relatively smoother than the other films. Such an observation can
only be explained by the ability of dp-CNCs to reduce the interfacial tension among PVA
and GG molecules when their concentrations were highest. The bright-field micrographs
of A0 film (control), which did not contain dp-CNCs, showed the presence of dispersed
phases. This observation was in concurrence with the observations made by Yadav et al. [2],
wherein the formation of phase-separated films of PVA was reported.
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Figure 2. Bright-field and polarizing micrographs of the prepared films.

The polarizing micrographs of A0 also showed the presence of these phase-separated
structures. However, the overall brightness of the polarizing micrograph was relatively
dark. The dark appearance of the micrographs was due to the positioning of the polarizer
and the analyzer in the cross-polarized position. The polarized light micrographs of A1, A2,
and A3 confirmed the presence of GG as the dispersed phases. The microarchitecture of A3
showed agglomerated structures of the dispersed phase. The extent of the agglomerated
structures was relatively greater in A3 as against A1 and A2, which predominantly showed
isolated dispersed phases. Interestingly, the polarized light micrographs of A3 also showed
some minor microcracks within the film structure. The polarized light micrographs of A4
showed the extensive presence of microcracks, which were more predominant than the
microcracks of A3.

Moreover, the prepared films were colorless and transparent (Figure S1). The forma-
tion of colorless and transparent films of PVA and polysaccharides has been reported earlier
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by several research groups [2]. Such an observation can be related to the presence of PVA,
which forms colorless and transparent films, in a higher amount than the polysaccharide.
The prepared films were firm to touch and could be appropriately handled without damag-
ing their structure. Apart from this, the foldability of the films was also very good. This
can be reasoned to the presence of PVA as the continuum matrix. The films were placed
over a scale to judge their apparent transparency (Supplementary Information). It could
be observed that the marking of the scale through A0, A1, A2, and A3 could be clearly
seen. There was no distortion of the markings on the scale. However, in the case of A4,
the markings appeared slightly hazy. This is an indication of reduced transparency when
dp-CNC is incorporated within the films in higher quantity.

Nonetheless, researchers are extensively studying the microstructures of polymer
matrices. This is because an alteration in the microstructure can alter the properties,
including physicochemical and mechanical properties, of the polymer matrices. Even a
slight change in the microstructure can greatly alter the properties of the polymer matrices.
The polymer scientists have reported adding two or more polymers for tailoring the
properties. In this regard, PVA has been blended with various polysaccharides, including
GG (pristine or modified), by many researchers [23,24]. In many studies, PVA has been
blended together with GG and other polymers (e.g., chitosan, tamarind seed kernel powder,
κ-carrageenan, cellulose, etc.) [25–28]. Further, the properties of the blends of PVA and GG
have also been tailored using nanoparticles [26]. In all of the papers, it has been reported
that the addition of GG, other polymers, and nanoparticles have considerably affected the
properties of the PVA films.

3.2. Spectroscopic Analyses

The UV-Vis spectra of the films are shown in Figure 3a. From the spectral profiles,
it can be seen that at ~280 nm (start region of UVB radiation), the absorption by all
the films was very high, thereby resulting in near-zero transparency. However, by the
wavelength of 315 nm (end region of UVB radiation), there was a considerable increase in
the transparency values of the films [29]. The A0, A1, A2, and A3 films showed similar
transparency values ~73%, but the A4 films showed significantly lower transparency (~62%).
In the UVC region, there was an increase in the transparency of the films throughout the
radiation wavelengths [30]. The A0, A1, and A2 films showed similar transparency values,
higher than A3 and A4 films. The transparency of the A3 film was slightly lower than
the transparency of the A0, A1, and A2 films. Nevertheless, the transparency of the A4
films was significantly lower than the rest of the films. Further, in the visible region, the
transparency values remained constant. There was not a considerable variation in the
transparency values of the films from the transparency values at 400 nm. The spectra in
the visible region are concurrent with the results from the apparent transparency. In the
apparent transparency test, it was found that there was a considerable distortion in the
markings of the scale when overlayed with A4 film.

Figure 3b–f represent the FTIR spectra of the films. The control (A0) film showed
the absorption bands at ~2929 cm−1, ~2861 cm−1, ~1649 cm−1, ~1420 cm−1, ~1329 cm−1,
~1086 cm−1, ~1028 cm−1, ~919 cm−1, and ~824 cm−1. The C–H stretching vibrations in
the alkyl groups in PVA and guar gum can be attributed to the appearance of the peak at
2929 cm−1. The CH2 bending vibrations in PVA and guar gum are responsible for the band
at 1651 cm−1. The absorption band at 1420.2 cm−1, 1086.2 cm−1, 919.3 cm−1, and 828.6 cm−1

were attributed to C–H wagging vibrations in the -CH2 group, C–O, CH2 stretching, and
C–C stretching vibrations, respectively [31,32]. All the films showed the presence of all
the peaks at similar locations. This observation suggested that the interactions in A0 and
dp-CNC films were similar. The addition of dp-CNCs in the films did not significantly
affect the nature of the interactions.
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Further, there was a broad absorption band in the wavenumber ranges of 3700 cm−1

and 2997 cm−1 in all of the films (Figure 4). This broad absorption band can be explained
by the hydrogen bonding and -OH stretching vibrations within the components of the
films [33]. The area under the peak (AUP) of this broad absorption band is a marker of
hydrogen bonding. The AUP of the control film (A0) was 7.10. The AUP of A1 film, having
the lowest amount of dp-CNCs, decreased to 5.18. However, with a further increase in
dp-CNC content within the films A2, A3, and A4, the AUP was increased to 8.61, 21.89, and
33.76, respectively. The increase in AUP could be due to the increase in the intermolecular
and intramolecular hydrogen bonds within the film components [34]. A significant increase
in the hydrogen bonding may be attributed to the appearance of microcracks in A3 and
A4 films.
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3.3. XRD Study

The diffractograms of the films are provided in Figure 5. The control (A0) films showed
two major peaks at 12.50◦ and 20.05◦ 2θ. The former was a broad peak and had a lower
intensity (565.34 arbitrary units (a.u.)). This peak could be associated with the amorphous
region within the films. The second peak was a sharp peak, with an intensity of 9271.68 a.u.,
and could be attributed to the crystalline region. From the intensity values of these peaks,
percentage crystallinity (%C) was calculated as per Equation (1) [35]. The %C was found to
be 93.90%.

%C =
Ic − Ia

Ic
× 100 (1)

where %C is the percentage of crystallinity, Ia is the intensity of the amorphous region, and
Ic is the intensity of the crystalline region.
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Figure 5. XRD diffractograms of the films: (a) A0, (b) A1, (c) A2, (d) A3, and (e) A4.

The diffractograms of the dp-CNC-loaded films appeared similar in nature. These
films also showed amorphous and crystalline peaks, as seen in A0. However, both of the
bands were conjoined, unlike in A0. The amorphous peaks of A1, A2, A3, and A4 were
located at 13.64◦, 14.7◦, 13.85◦, and 13.62◦ 2θ, respectively. It can be observed here that
the position of the amorphous peak of A2 was at a higher 2θ value than A1. Thereafter,
there was a decrement in the 2θ values in A3 and A4. The corresponding peak intensities
were 1787.38, 1026.56, 1133.27, and 1645.09 a.u. As the dp-CNC amount was increased
in A2, there was a decrease in the intensity values. In fact, the intensity value of the
amorphous peak of A2 was the lowest. After that, the intensity values of the amorphous
peaks increased in a concentration-dependent manner. The crystalline peaks in the dp-
CNC-loaded films were present at 19.66◦, 19.56◦, 19.72◦ and 19.96◦ 2θ values [35]. The
position of the crystalline peak of A2 was at the lowest position. An increment in the
dp-CNC content resulted in the increment in the 2θ values of A3 and A4, respectively. The
intensity of the crystalline peaks of A1, A2, A3, and A4 were 9575.19, 11,732.9, 6692.58, and
9642.71 a.u., respectively. The results suggested that the highest intensity of the crystalline
peak was exhibited by A2. However, no trend regarding the variation in the intensity of
the crystalline peaks could be deciphered. %C was calculated from the intensity values of
the amorphous and crystalline peaks [35]. The %C of the dp-CNC-loaded films was lower
than the control film (93.90%). Among the dp-CNC-loaded films, the %C values of A1, A2,
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A3, and A4 were found to be 81.33, 91.25, 83.07, and 82.94, respectively. The %C of A2 was
highest, followed by A3, A4, and A1.

3.4. Mechanical Study

The mechanical properties of the films were analyzed by the stress relaxation (SR)
study. This method allows the researchers to analyze the changes in the polymer architec-
ture when they are subjected to a constant strain. The SR profiles are shown in Figure 6a.
With the increase in the strain, there was an increase in the force values. The force values
reached the maximum (F0), related to firmness, when the films were stretched to the maxi-
mum extent (2 mm) (Figure 6b). The F0 value of A0 was 593.63 ± 43.33 g. The inclusion of
dp-CNCs into the films significantly increased the firmness of A1 (F0 = 908.51 ± 102.26 g),
explained by the reinforcing effect of dp-CNC. A further increase in the dp-CNC content
correspondingly reduced the F0 value of the films. The F0 values of A1 and A2 were
significantly different from the control film (p < 0.05). The variations in the F0 values of A3
and A4 were statistically similar to the control film (p > 0.05). Among the dp-CNC-loaded
films, the F0 values of A1–A3, A1–A4, and A2–A3 were statistically different (p < 0.05).
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The relaxed force values (F60) of the films showed a similar trend as that of F0 values
(Figure 6c). However, the differences in the F60 values of the films were statistically
insignificant (p > 0.05). Subsequently, percentage SR (%SR) values were calculated using the
F0 and F60 values (Equation (2)) [36]. The %SR of A0 was 43.87 ± 2.51 g, which was increased
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in A1 (54.81 ± 2.09 g) and A2 (55.26 ± 9.42 g) (Figure 6d). The %SR values of A1 and A2
were statistically similar. Even though the %SR values of A0 and A1 were significantly
different (p < 0.05), the %SR values of A0 and A2 were similar (p > 0.05). A consequent
increase in the dp-CNCs in the films reduced the %SR values in A3 (47.54 ± 3.08 g) and
A4 (45.61 ± 1.40 g), respectively. Among the dp-CNC-containing films, the reduction in
the %SR values of A3 and A4 were statistically different (p < 0.05). It can be observed
that the average %SR values of A1 and A2 were greater than 50%. This is suggestive of a
more fluidic component in the films, compared with the others, which are predominantly
elastic [37].

%SR =
F0 − F60

F0
× 100 (2)

where %SR is percentage stress relaxation, F0 is maximum force attained at the maximum
strain, and F60 is the force at the end of the relaxation period.

In gist, it can be observed that A1 showed higher firmness over the other films due
to the reinforcing effect of dp-CNCs. However, it also showed the most increased fluidity,
compared with others. Such property can help improve the endurance of the films.

3.5. Drug Release Study

The moxifloxacin drug release profiles from the films are provided in Figure 7. It can
be observed that there were corresponding increases in the cumulative percent drug release
(CPDR) values as time progressed. However, the CPDR vs. time plot was not a linear
plot [29]. An increase in the dp-CNC content in the films correspondingly improved the
CPDR values. This may be due to the increase in the hydrophilicity with the increase in
the dp-CNC content. The CPDR value of A0D, A1D, A2D, A3D, and A4D at the end of the
study was 31.36 ± 2.15%, 33.17 ± 0.35%, 35.56 ± 1.31%, 42.60 ± 1.01%, and 45.45 ± 1.01%,
respectively. Even though the average CPDR values of A1D and A2D were higher than
the CPDR value of A0D, the values were not statistically significant (p > 0.05). The CPDR
values of A3D and A4D were significantly higher than A0D (p < 0.05). Among the dp-CNC
containing films, except the CPDR values of A1D and A2D that were similarly valued
(p > 0.05), all other CPDR values were significantly different (p < 0.05). In gist, the release of
the drug from the films was not affected significantly, compared with the control, in which
the dp-CNC content was on a lower side. Nevertheless, when the dp-CNC content was on
a higher side, the release of the drug was considerably increased.
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4. Conclusions

In the current study, the synthesis of poly(vinyl alcohol)/guar-gum-based phase-
separated film was discussed, which was confirmed by the bright-field and polarizing
microscopy techniques. The phase-separated film thus formed was incorporated with
dp-CNC as the reinforcing agent. The micrographs suggested the presence of two distinct
phases within the films. The appearance of such microarchitectures can be attributed to
the formation of phase-separated films. It was found that at the lowest dp-CNC content,
dp-CNCs acted as reinforcing agents. Interestingly, the hydrogen bonding was lowest in
this film. An increase in the dp-CNC content significantly improved the hydrogen bonding.
However, the mechanical properties of the films were compromised significantly in A2,
A3, and A4, compared with A1. In fact, in A3 and A4, the hydrogen bonds were so strong
that they formed microcracks. These microcracks can be explained by the decrease in the
mechanical properties of the A3 and A4 films. Lastly, it was found that the developed
films were suitable as delivery vehicles for Moxifloxacin. In the future, research with other
types of drugs will be performed. Additionally, the biocompatibility of the films will be
ascertained using in vitro cell culture studies and in vivo animal studies.
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