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Reduced calorie diet combined 
with NNMT inhibition establishes 
a distinct microbiome in DIO mice
Andrea Dimet‑Wiley  1, Qinglong Wu2, Jerrin T. Wiley3, Aditya Eswar4, 
Harshini Neelakantan  5, Tor Savidge2 & Stan Watowich1*

Treatment with a nicotinamide N-methyltransferase inhibitor (NNMTi; 5-amino-1-methylquinolinium) 
combined with low-fat diet (LD) promoted dramatic whole-body adiposity and weight loss in 
diet-induced obese (DIO) mice, rapidly normalizing these measures to age-matched lean animals, 
while LD switch alone was unable to restore these measures to age-matched controls in the same 
time frame. Since mouse microbiome profiles often highly correlate with body weight and fat 
composition, this study was designed to test whether the cecal microbiomes of DIO mice treated 
with NNMTi and LD were comparable to the microbiomes of age-matched lean counterparts 
and distinct from microbiomes of DIO mice maintained on a high-fat Western diet (WD) or subjected 
to LD switch alone. There were minimal microbiome differences between lean and obese controls, 
suggesting that diet composition and adiposity had limited effects. However, DIO mice switched 
from an obesity-promoting WD to an LD (regardless of treatment status) displayed several genera 
and phyla differences compared to obese and lean controls. While alpha diversity measures did 
not significantly differ between groups, beta diversity principal coordinates analyses suggested 
that mice from the same treatment group were the most similar. K-means clustering analysis of 
amplicon sequence variants by animal demonstrated that NNMTi-treated DIO mice switched to 
LD had a distinct microbiome pattern that was highlighted by decreased Erysipelatoclostridium and 
increased Lactobacillus relative abundances compared to vehicle counterparts; these genera are tied 
to body weight and metabolic regulation. Additionally, Parasutterella relative abundance, which 
was increased in both the vehicle- and NNMTi-treated LD-switched groups relative to the controls, 
significantly correlated with several adipose tissue metabolites’ abundances. Collectively, these 
results provide a novel foundation for future investigations.

Obesity remains a poorly-controlled, global public health problem1–3. First-line obesity treatments include 
lifestyle intervention (e.g., low-calorie diets) and behavioral modification therapies4,5 since approved obesity 
medications have limited efficacy and commonly have side effects6. A novel target for next-generation obe-
sity medications is nicotinamide N-methyltransferase (NNMT)7–11, an enzyme central to cellular metabolism 
and energy homeostasis12. The use of NNMT inhibitors as a potential obesity treatment has been investigated 
preclinically8,9,13, and observational clinical data suggests that increased NNMT expression and activity correlate 
with increased incidence of Type 2 diabetes (T2D) and risk of obesity, respectively10,11. In proof-of-concept stud-
ies, NNMT inhibitors (NNMTis) have demonstrated promise as potential treatments for obesity and obesity-
related metabolic comorbidities (e.g., T2D, fatty liver)8,9,13. However, the role of the microbiome in NNMTi-
mediated weight loss is yet to be elucidated.

Understanding how the microbiome is involved in establishing, maintaining, and reversing obesity has been 
an active area of research14–16, and has included studies investigating links between the microbiome and obe-
sity-related comorbidities such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis 
(NASH)17,18. For example, individuals with NAFLD exhibit increased intestinal permeability and prevalence 
of small intestine bacterial overgrowth, and these factors are associated with the severity of hepatic steatosis19. 
Additionally, recent studies have identified bacterial DNA in human and mouse adipose tissues20,21. Increased 
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intestinal permeability is facilitated by a high-fat diet (HFD)22, and may allow for bacterial translocation from 
the gut to adipose tissue23. Since adipose tissue is responsive to endotoxins, bacterial translocation may provide a 
mechanism whereby the gut microbiome can modulate the adipose metabolome (for review, Kruis et al., 201423) 
and consequently exacerbate obesity and its related comorbidities.

We recently reported that NNMTi treatment combined with a low-fat, or lean, diet (LD) returned systemic 
adiposity and liver pathologies of obese animals to the adiposity and liver pathology levels of LD controls. LD 
alone, however, failed to improve obesity-linked liver pathologies13. Given that both diet composition and adipos-
ity can each substantially impact the gut microflora in obese mice24, we conducted a secondary endpoint study 
using animals given the same series of diets to test the hypothesis that NNMTi treatment combined with LD, but 
not LD alone, shifts the cecal microbiome profile of obese animals to be similar to age-matched LD controls that 
were never given a high-fat diet. This study used the NNMTi 5-amino-1-methylquinolinium (5A-M1Q), since 
our lab has set precedence using this probe molecule for proof-of-concept studies8.

Additionally, the microbiomes in these treatment groups were compared to both age-matched lean and obese 
controls. Moreover, given the potential links between adipose tissue metabolism and the gut microbiome, cor-
relations between the cecal microbiome and adipose tissue metabolites were examined. Collectively, this study 
provides a solid foundation for future exploration into the impact of NNMTi-and diet-mediated changes to 
the gut microbiome in obese and lean populations, as well as future targets to investigate mechanistically with 
NNMTi treatment.

Methods
Animals.  Animal experiments were performed with adherence to all national and local guidelines and regu-
lations, the Guide for the Care and Use of Laboratory Animals25, and  the ARRIVE guidelines, and with  the 
approval of the Institutional Animal Care and Use Committee at The University of Texas Medical Branch 
(UTMB). Male, 18-week-old C57BL/6J mice, maintained on a 60% high-fat diet (HFD; 60 kcal% fat, 20 kcal% 
carbohydrate, 20 kcal% protein, Research Diets, Inc. OpenSource Diets formula D12492; DIO mice, JAX cat 
no. 380050) or a low-fat (lean) diet (LD; 10 kcal% fat, 70 kcal% carbohydrate, 20 kcal% protein, Research Diets, 
Inc. OpenSource Diets formula D12450B; DIO control mice, JAX cat no. 380056) from 6 to 18 weeks of age, 
and co-housed with counterparts on the same diet, were purchased from The Jackson Laboratory (Bar Harbor, 
ME, USA). Upon arrival at UTMB, the 18-week-old mice were single-housed and provided ad libitum access 
to water and a Western diet (WD; 45 kcal% fat, 35 kcal% carbohydrate, 20 kcal% protein, Research Diets, Inc. 
OpenSource Diets formula D12451) or, if they were previously on an LD, they were maintained continued on 
LD (termed lean control mice). Mice were maintained in one controlled colony room, kept at 21–23 °C and 
45–50% humidity with a 12-h light–dark cycle (lights on 6 a.m.–6 p.m. Central Standard Time [CST]). Cages 
were exchanged for new sanitized cages filled with irradiated bedding every 2 weeks. Water was changed weekly. 
Up to two pieces of enrichment were included in each cage.

The DIO mice were randomized into three treatment groups balanced by baseline body weight and body 
composition (fat and lean mass) measures. Two of the three groups were transitioned from WD to LD for 5 days 
before the start of the study. All mice received 2 days of 10 mL/kg body weight sterile saline subcutaneous injec-
tions before beginning the treatment phase to allow for acclimation to the handling and stress associated with 
injections. Control groups of mice were maintained on LD or WD and given sham (10 mL/kg body weight sterile 
saline) injections throughout the study (termed LD/LD-V, or LD control, and WD/WD-V, or WD control, groups; 
n = 6–8 mice/group). One group of mice that were switched from WD to LD received these same sterile saline 
injections for the remainder of the study (termed the WD/LD-V group; n = 8), while a second group received 
5A-1MQ treatment at 32 mg/kg of active pharmaceutical ingredient (injections of 4 mg 5A-1MQ monochloride 
salt/mL sterile saline dosed at 10 mL/kg body weight) after being switched from WD to LD (termed the WD/
LD-T group; n = 8). Subcutaneous injection was chosen as 5A-1MQ specifically has poor oral bioavailability in 
mice, a phenomenon that does not occur in rats26. This dose was chosen based on a previous dose-escalation 
study and subsequent work demonstrating its efficacy to drive weight loss in a short period of time8. Study design, 
and diet and treatment groups are diagrammed in Fig. 1a. Daily doses were given between approximately 4–6 PM 
CST. Food intake and body weight were measured twice weekly. Body composition was determined weekly with 
an EchoMRI 4in1-500 Body Composition Analyzer (EchoMRI Whole Body Composition Analyzer; EchoMRI 
LLC, Houston, TX, USA). Injection volumes were calculated using the most recently recorded animal weight 
and adjusted weekly; for more details, see Sampson et al., 202113. Mice were euthanized in a non-fasted state 
over 2 days during their sleep cycle; six animals from the LD control, WD control, and WD/LD-V groups and 
five animals from the WD/LD-T group were euthanized the first day. The remaining two LD/LD-V, two WD/
LD-V, and three WD/LD-T mice were euthanized 2 days later. One individual per group was euthanized before 
addressing the next animal in each group to render differences arising from the time of day at euthanization (e.g., 
cecal mass changes resulting from differences in time post-food consumption) comparable across all groups.

Cecal samples.  Cecal weight was measured since the weight of this portion of the intestine appears to be 
highly influenced by the microbiome (e.g., certain antibiotic treatments dramatically increase cecal weight27–31 
but not the colon27). Cecal samples were collected at euthanization, then flash-frozen and stored at − 80  °C. 
DNA was not isolated from the first two samples collected in the LD/LD-V group, and the first sample collected 
in each of the other respective groups, due to the use of saline to flush the cecum (after weighing) during early 
collection (therefore, n = 25 cecal samples). BGI (Yantian District, Shenzhen, China), an established contract 
research organization, isolated DNA from the remaining cecal samples and generated a metagenomic 16s rDNA 
amplicon library. Fusion primers with dual-indexed PCR adapters were used to generate the construct library, 
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and short fragments were removed with AMPure beads. DNA concentration was determined with a Qubit 
dsDNA BR Assay Kit (Thermo Fisher Scientific) and Qubit fluorometer (Thermo Fisher Scientific).

Sequencing, data processing, and analysis parameters.  The study’s primary aim was to determine 
whether 5A-1MQ treatment in combination with a switch from WD to LD rendered the intestinal microbiome 
comparable to that of mice continuously maintained on LD, and distinct from that of DIO mice switched to 
LD but given saline injections or mice maintained continuously on WD. Microbiome 16S V1-V3 rRNA gene 
sequencing, alignment, and initial filtering were performed by BGI. Sequencing was performed using a HiSeq 
2500 (Illumina), with a read length of 300 bp paired-end reads and at least 25,000 tags per sample. Reads with 
an average quality < 20 over a 25 bp sliding window were truncated (phred algorithm32,33), and the trimmed 
reads with < 75% of their original length were removed along with their respective pair. Additionally, reads con-
taminated by the adapter (reads with ≥ 15 bases overlapping between the reads and the adapter with up to 3 
bases mismatching), reads with ambiguous bases, and reads with ≥ 10 identical consecutive bases were removed 
along with each of their respective paired reads. Cleaned reads were assigned to their corresponding samples by 
requiring 0 base mismatches to the barcode sequences, as determined by in-house (BGI) scripts. For paired-end 
reads, a consensus sequence was created using Fast Length Adjustment of SHort reads34 (v1.2.11) with minimal 
overlapping length (15 bp) and a mismatching ratio of the overlapped region ≤ 0.1; paired-end reads not meeting 
this criteria were removed. Combining the paired-end reads with the tags based on overlapping regions gener-
ated 3,360,747 tags identified in total for all samples, with an average of 134,429 tags/sample. Sequences with less 
than four consecutive bases matching the tags at the 3′ end and > 2 mismatches in the bases for the remaining 
part of the primer were removed, and this resulted in a total of 3,332,352 tags, averaging 133,294 tags/sample 
with an average length of 481 bp.

Figure 1.   Diet and NNMTi treatment status substantially altered body weight and fat mass. a After weaning, 
mice were placed on a high-fat diet (HFD, 60% fat) for 12 weeks, transitioned to Western diet (WD, 45% fat) 
for 4 weeks, and then randomized to WD or to lean diet (LD, 10% fat) and vehicle (-V) or NNMTi treatment 
(-T) with 5-amino-1-methylquinolinium (5A-1MQ) for approximately 7 weeks prior to study termination 
and cecal sample collection; a control group remained on LD throughout the study. b,c Body weight and fat 
mass were significantly different between the diet-induced obesity model and the lean control group at study 
start (22.5 weeks of age); at the end of the study, body weight and fat mass were lower in the WD/LD-V group 
than the WD/WD-V control group, and in the NNMTi-treated group these measures were even lower and 
statistically indistinguishable from the LD/LD-V control group when a correction for multiple comparisons 
was not run (n = 6–8). Graphs depict mean + /− SEM; unless specified, multiple comparisons were significant 
before and after FDR correction (p < 0.05 and q < 0.05); further statistical details can be found in Supplementary 
Table S2. *, significantly different from all other groups for that study day; a, significantly different from the lean 
control group (LD/LD-V); b, significantly different from the obese control group (WD/WD-V); c, significantly 
different from vehicle-treated mice switched from WD to LD (WD/LD-V); d, significantly different from 
5A-1MQ-treated mice switched from WD to LD (WD/LD-T); v, p > 0.05 but q < 0.05.
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These sequences were then run through an R script (Supplementary Materials, bash_DADA2 + IDTAXA_
workflow_Illumina-PairedEnd_V1V3.R) which trimmed reverse reads to 260 bp, removed forward reads exceed-
ing a maximum expected error of three, and truncated reverse reads exceeding a maximum expected error of six. 
Filtered reads were then paired-end merged again, and chimeras and non-bacterial sequences were discarded 
from the data. Paired-end FASTQ files were then run through the DADA2 pipeline (v1.8) to generate an ampli-
con sequence variant (ASV) table and assign taxonomy. DECIPHER (v2.6.0) was used to align sequences, and 
FastTree (v2.1.3) was used to generate a phylogenetic tree.

Two analyses were performed to determine the species comprising the genera. The first method used a Basic 
Local Alignment Search Tool Nucleotide (BLASTn; v2.7.1; script in Supplementary Materials Scripts .zip file, 
BLASTn Query) search35,36; this assigned the best hit for each of the ASVs and then provided the percentage 
of identical matches between the sequence of interest and the top hit as well as an e-value (i.e., the number of 
expected hits with a similar quality that could be found by chance). Unfortunately, the e-value is affected by the 
database size and several gaps and mismatches could be present without dramatically influencing the e-value. 
Consequently, a second method, Bayesian Latent Class Analysis-based Taxonomic Classification (BLCA; Python 
v3; https://​github.​com/​qunfe​ngdong/​BLCA; accessed November 25, 2020; script in Supplementary Materials 
Scripts .zip file, BLCA), was used that output bootstrap confidence intervals determined using Bayesian poste-
rior probability and weighing the similarity between database hits relative to the query sequence. In this second 
approach, higher similarity resulted in greater weight and, consequently, greater contribution to taxonomic 
assignment. The species results of these two methods were cross-compared and a result was only considered 
definitive if it was identified using both methodologies.

The BIOM file output from the DADA2 pipeline and the DECIPHER-aligned FastTree phylogenetic tree were 
input into QIIME (v1.9.1) and the scripts in the Supplementary Materials (QIIME Scripts compilation) were 
used to establish the alpha diversity metrics of Chao1 richness estimate, Simpson’s evenness measure E, Shan-
non diversity index H, Simpson’s diversity index, and Faith’s phylogenetic diversity metric (whole tree) as well 
as the beta diversity measures of unweighted and weighted UniFrac analyses (the latter of which factors in ASV 
abundance37) and Bray–Curtis dissimilarity analysis. Principle coordinates analyses (PCoAs) were generated 
based on the distance and dissimilarity matrices.

From the ASV table (Supplementary Table S1), sums of ASVs within each respective phylum or genus for 
each sample were calculated to establish the abundance of each phylum or genus per sample. The sums of the 
number of unique ASVs per sample were compared across groups, with the unclassified sequences excluded for 
the observed ASVs; this was used to estimate richness. Relative abundance of each phylum or genus was calcu-
lated in each sample by dividing the abundance of the respective phylum or genus by the sum of the abundances 
of all phyla or genera for that sample, then multiplying by 100 to generate a percentage. K-means clustering was 
performed on the genera relative abundance data using the R script in the Supplementary Materials Scripts .zip 
file (KMScript), and clusters were plotted. The number of clusters was determined using the sum of squared 
estimate of errors curve.

Statistics.  Statistics were run using GraphPad Prism (v7.05) unless specified otherwise. For the relative 
abundance data, phyla and genera data were first transformed by adding 1e−13 to each sample. Subsequently, 
for these data as well as the alpha diversity analyses, each treatment group (within each phylum or genus for the 
relative abundance data) was analyzed for normal distribution (Shapiro–Wilk test) and the data across groups 
were tested for homoscedasticity (Brown–Forsythe test). Data were log10 transformed if they were non-normally 
distributed and/or heteroscedastic. Alpha diversity analyses did not require the initial 1e−13 transformation as 
all values were > 0. Data that remained non-normally distributed and/or heteroscedastic after log transformation 
were analyzed (not log-transformed, but still 1e−13-transformed) with a Kruskal–Wallis test, while normally 
distributed and homoscedastic data were analyzed with a one-way ANOVA, performed on the log-transformed 
data as necessary. Datasets that included a group demonstrating zero variance between samples were analyzed 
non-parametrically. Significant ANOVA/Kruskal–Wallis test results were then followed with post-hoc testing, 
which underwent the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli correction for mul-
tiple comparisons. Because a large number of comparisons were performed on the relative abundance data, main 
effect results from these analyses also underwent a Benjamini–Hochberg false discovery rate (FDR) correction 
for multiple comparisons, and instances where a result was significant after this correction have been duly noted. 
For the beta diversity analyses, an analysis of similarities (ANOSIM) was performed on each of the distance/
dissimilarity matrices to establish whether observed clustering by treatment group was statistically significant.

In addition to the analyses on the relative abundance data mentioned above, taxa were summarized using 
the Python script labeled QIIME Scripts compilation in the Supplementary Materials Scripts .zip file. The tabu-
lar data were processed with the Huttenhower lab’s linear discriminant analysis (LDA) effect size (LEfSe) tool 
via the Galaxy module (v1.0)38. LEfSe analysis provided a secondary measure to establish differences between 
treatment groups in addition to the one-way ANOVA/Kruskal–Wallis tests performed on each genus/phylum. 
LEfSe is known to reduce false positives and can highlight biological consistency across subclasses, while the 
Kruskal–Wallis test used alone can achieve a lower false-negative rate compared to LEfSe38. For the LEfSe analysis, 
an alpha of 0.05 was set for the Kruskal–Wallis tests among classes, and per-sample normalization was performed 
to bring the sum of the values to 1 M. The log10 LDA score threshold was set to 2.0, and all classes were compared 
against all other classes for multi-class analysis.

Development of a tool for correlational analyses.  Since a secondary aim of this study was to examine 
potential relationships between the cecal microbiome and adipose tissue metabolome, a Python (v3.8) tool, 
which used modules from SciPy39, was created to expedite the correlational analyses between the cecal micro-

https://github.com/qunfengdong/BLCA
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biome and the previously-published epididymal white adipose tissue (EWAT) metabolome13. The tool followed 
the decision tree in Supplementary Fig. S1. It used a Shapiro–Wilk test to assess normality and an F-test to assess 
homoscedasticity, and attempted log-transformation to resolve any lack thereof40. This novel tool, termed the 
Spearman’s-Pearson’s Decider, which expedited the processes needed to decide between a parametric or non-
parametric analysis, is freely available at GitHub (https://​github.​com/​Jerri​nWiley/​Spear​mans_​Pears​ons_​Decid​
er; script and ReadMe in Supplementary Materials Scripts .zip file under Spearmans_Pearsons_Decider and 
ReadMe for Spearmans_Pearsons_Decider, respectively). An assumption of parametric analyses that was not 
tested by the tool was a lack of outliers; this was not included in the tool since the definition of outliers is subjec-
tive. However, outliers were analyzed for these correlations using the interquartile range (IQR) method; quartiles 
were computed in Microsoft Excel and the upper range for outliers was set at quartile 3 + (1.5 × the IQR), and the 
lower range was set at quartile 1 − (1.5 × the IQR). Outliers were then removed, and the data were run through 
the Spearman’s-Pearson’s Decider again. Finally, the correlation coefficient for each combination of genus and 
metabolite with outliers was compared to the coefficient without outliers for the same combination; correlation 
coefficients that changed > 0.2 were noted as being influenced by the presence of outliers; however, these results 
were not excluded from corrections for multiple comparisons or the heat map generated with the data. Benja-
mini–Hochberg false-discovery rate corrections (set to 5%) were applied to the results with and without outliers 
individually.

For each analysis, the statistical test used and n for each group are found in Supplemental Tables 2, 3, or 5; 
all tests were two-tailed and α = 0.05 for each analysis. When comparisons were made, all relevant treatment 
groups were included.

Results
Body weight, fat mass, and cecal mass.  As expected, obese mice (maintained on an HFD followed 
by WD) had significantly higher body weights than mice continuously maintained on LD. However, the body 
weight of 5A-1MQ-treated obese mice (WD/LD-T group), which was indistinguishable from the other DIO 
groups at study start, was indistinguishable from the lean control (LD/LD-V) group at study completion (results 
with FDR correction; study timeline, Fig. 1a; body weight results Fig. 1b, Supplementary Table S2). Fat mass fol-
lowed the same pattern. All mice that were subjected to an HFD had a higher fat mass compared to the LD con-
trol group at the start of the study. Importantly, at study completion, 5A-1MQ-treated mice had a lower fat mass 
than the obese WD controls and their vehicle-treated counterparts and were not significantly different (with 
FDR correction) from the LD control mice (Fig. 1c; Supplementary Table S2). Cecal mass did not significantly 
differ between groups (Supplementary Table S2).

Alpha diversity.  Several alpha diversity measures were analyzed since bacterial evenness and richness can 
be incorporated to varying degrees in different measures41. Bacterial richness measured by the unique ASV 
counts observed did not significantly differ between treatment groups (Fig.  2a). Additionally, no differences 
between treatment groups were identified using Simpson’s evenness measure E (Fig. 2b) or when richness and 
evenness were combined in the Shannon–Wiener Diversity Index H (Fig. 2c). No significant differences between 
treatment groups were observed using the Chao1 richness estimate42, which accounts for ASV rareness in the 
richness measure (Supplementary Fig. S2). Furthermore, there were no differences between treatment groups 
for Simpson’s Diversity Index (Supplementary Fig. S2) or phylogenetic diversity as measured by Faith’s formula 
applied to the whole phylogenetic tree (Supplementary Fig. S2). Although the mean values for each of the alpha 
diversity measures were often largest for the 5A-1MQ-treated group switched from WD to LD relative to all 
other groups (Fig. 2; Supplementary Fig. S2), this trend did not rise to the level of statistical significance.

Beta diversity.  Beta diversity was determined using the unweighted UniFrac, weighted UniFrac, and Bray–
Curtis dissimilarity measures. PCoAs were generated using the distance matrices from unweighted (Fig. 2d-f) 
and weighted (Supplementary Fig. S2) UniFrac analyses and Bray–Curtis dissimilarity analysis (Supplementary 
Fig. S2). These graphs suggested that there may be, at least some degree of, clustering by treatment group. Con-
sequently, ANOSIM testing was also performed, which showed that clustering by treatment group was signifi-
cant in each of the diversity measures (unweighted UniFrac: R value = 0.369, p = 0.0010; weighted UniFrac: R 
value = 0.190, p = 0.0240; Bray–Curtis: R value = 0.165, p = 0.0060).

Phyla.  Six distinct phyla were identified in the cecal microbiomes, but not all were present in each sample. 
Sequences that could not be definitively assigned to a phylum were labeled “unclassified” (Fig. 3a; Supplemen-
tary Table S3). Of these seven groups, the Firmicutes, Proteobacteria, and Verrucomicrobia phyla demonstrated 
a significant main effect of treatment group on relative abundance after Benjamini–Hochberg correction for 
multiple comparisons, while Bacteroidetes and Actinobacteria demonstrated significant main effects of treat-
ment group on relative abundance before Benjamini–Hochberg correction. Post-hoc comparisons showed that 
the Firmicutes phylum’s relative abundance was significantly higher in WD control mice compared to mice in 
the vehicle- and 5A-1MQ-treated groups switched from WD to LD (Fig. 3b). In contrast, Proteobacteria relative 
abundance was significantly higher in both the vehicle- and 5A-1MQ-treated groups switched from WD to LD, 
compared to both the LD and WD control groups (Fig. 3c). Verrucomicrobia relative abundance was significantly 
higher in vehicle-treated mice switched from WD to LD compared to both the LD and WD control groups 
(Fig. 3d). Actinobacteria showed a significantly greater relative abundance in WD control mice compared to all 
other groups (Fig. 3e). Finally, Bacteroidetes relative abundance was significantly increased in 5A-1MQ-treated 
mice switched from WD to LD relative to WD control mice (Fig. 3f), and its relative abundance was lowest in 
WD control mice compared to all other groups.

https://github.com/JerrinWiley/Spearmans_Pearsons_Decider
https://github.com/JerrinWiley/Spearmans_Pearsons_Decider
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The ratio of Firmicutes to Bacteroidetes is a commonly-studied change with an increase often linked to 
HFD consumption/obesity in mice43,44 and humans45,46 (for review, see John and Mullin, 201647). In the cur-
rent study, the ratio of Firmicutes to Bacteroidetes was significantly higher in WD control mice compared to 
both groups of mice transitioned from WD to LD (Fig. 3g). Although there was a clear trend for a higher 
Firmicutes:Bacteroidetes ratio in the WD control group relative to the LD control group, this difference did not 
rise to the level of statistical significance. On average, the Firmicutes:Bacteroidetes ratio for the WD control group 
was more than 2-fold greater than the groups that ended the study on LD.

Genera.  Fifty-nine bacterial genera were definitively identified in the cecal samples. Sequences which could 
not be unambiguously assigned to a genus were labeled “unclassified” (Fig. 4a; Supplementary Table S3). The 
most abundant genus was Ileibacterium, a relatively novel genus of the Firmicutes phylum48. Consistent with the 
distribution of Firmicutes in the cecal samples, the relative abundance of Ileibacterium was highest in the WD 
controls (average relative abundance 68%), second highest in the LD controls (average relative abundance 51%), 
and lowest in the vehicle- and 5A-1MQ-treated mice switched from WD to LD (average relative abundances of 
40% and 41%, respectively).

Significant main effects of treatment group (prior to Benjamini–Hochberg correction since none were sig-
nificant after correction, although the necessity of correction for multiple comparisons in exploratory analyses 
remains unresolved49) were observed for the unclassified group and ten classified genera, namely, Acetatifactor, 
Akkermansia, Erysipelatoclostridium, [Eubacterium] coprostanoligenes group, Family XIII UCG-001, Lactobacillus, 
Parasutterella, Ruminiclostridium 6, Ruminococcaceae UCG-004, and Ruminococcaceae UCG-009. Akkermansia 
relative abundance was significantly higher in the vehicle-treated group switched from WD to LD compared to 
both the WD and LD control groups (Fig. 4b). Erysipelatoclostridium relative abundance was significantly greater 
in the vehicle-treated group switched from WD to LD relative to all other groups (before FDR correction, Fig. 4c). 
Uniquely, Lactobacillus relative abundance was dramatically higher in the 5A-1MQ-treated group switched 
from WD to LD compared to all other groups (Fig. 4d, statistically significantly different from LD controls and 
vehicle-treated mice switched from WD to LD). Parasutterella relative abundance was significantly higher in 
both the vehicle- and 5A-1MQ-treated groups switched from WD to LD relative to the LD and WD control 
groups (Fig. 4e). Acetatifactor relative abundance was greater in 5A-1MQ-treated mice switched from WD to LD 
compared to WD (without FDR correction) and LD controls (Supplementary Fig. S3). The relative abundance of 
the [Eubacterium] coprostanoligenes group was greater in both the vehicle- and 5A-1MQ-treated groups switched 
from WD to LD compared to the LD control group (Supplementary Fig. S3). Similarly, the relative abundance 
of Family XIII UCG-001 was greater in the vehicle-treated (before FDR correction) and 5A-1MQ-treated groups 
switched from WD to LD compared to the LD control group (Supplementary Fig. S3).

Figure 2.   Alpha diversity measures did not differ significantly across treatment groups, and unweighted 
UniFrac beta diversity analysis exhibited partial clustering by treatment group. Observed unique ASV count (a), 
Simpson’s Evenness Measure E (b), and Shannon Diversity Index H (c) were all statistically indistinguishable 
between groups; graphs depict mean + /− SEM. Unweighted UniFrac analysis is presented as a PCoA (d–f) and 
exhibits distinct clustering, with a large separation of the LD control group from the other groups.
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Since Ruminiclostridium 6 was only observed in the LD control group, it was unsurprising that its relative 
abundance was significantly greater in this group compared to all other experimental groups (Supplementary 
Fig. S3). Ruminococcaceae UCG-004 was only present in the LD and WD control groups, with similar average 
relative abundances in both groups; however, the only statistically significant difference was between the LD 
control group and both groups switched from WD to LD, regardless of their treatment (Supplementary Fig. S3). 
In contrast, Ruminococcaceae UCG-009 was present in all experimental groups, and exhibited significantly greater 
relative abundance in both the LD control group and the 5A-1MQ-treated group switched from WD to LD 
compared to the WD control group (both significant before FDR correction; Supplementary Fig. S3). Finally, 
the relative abundance of sequences that could not be assigned to a defined genus was significantly higher in 
vehicle- and 5A-1MQ-treated mice switched from WD to LD relative to the WD control group (the former before 
FDR correction only; Supplementary Fig. S3).

Species.  Several ASVs mapped with high confidence directly to a specific species (Supplementary Table S4), 
with considerably more species mapped using the BLASTn method compared to the BLCA method. Both meth-
ods generated the same species assignments for 60 ASVs, whereas 11 ASVs were mapped to dissimilar species by 
the different methods. Importantly, all ASVs within six of the genera mapped to identical species when analyzed 
by both methods. For Erysipelatoclostridium, every ASV mapped to [Clostridium] cocleatum. The only ASV 
identified as Lactococcus mapped to Lactococcus lactis. All ASVs for Parasutterella mapped to Parasutterella 
excrementihominis. Every ASV for Romboutsia mapped to Romboutsia ilealis; the only ASV identified for Staphy-
lococcus mapped to Staphylococcus xylosus, and the only ASV found for UBA1819 mapped to Ruthenibacterium 
lactatiformans. In six instances, ASVs that had not been assigned a genus by DECIPHER mapped consistently to 
a genera and species across the BLASTn and BLCA methods; the majority (i.e., four) of these ASVs mapped to 
Dubosiella newyorkensis while the remaining two ASVs mapped to Romboutsia ilealis.

Figure 3.   Microbial phyla exhibit dramatic shifts predominantly mediated by diet switch as opposed to diet 
composition. (a) Relative abundance for each of the phyla identified in the mouse cecal samples as well as the 
remaining sequences which could not be assigned (unclassified). (b–d) Three bacterial phyla demonstrated 
significant differences following Benjamini–Hochberg correction for multiple comparisons: Firmicutes, 
Proteobacteria, and Verrucomicrobia. (e–f) Actinobacteria and Bacteroidetes both demonstrated significant 
differences before (but not after) Benjamini–Hochberg correction. (g) The ratio of Firmicutes:Bacteroidetes was 
significantly lower in the WD/LD-T mice compared to those maintained on WD, and there was a trend for a 
similar effect in the WD/LD-V mice. Graphs depict mean + /− SEM; unless specified, multiple comparisons 
were significant before and after FDR correction (p < 0.05 and q < 0.05); further statistical details can be found in 
Supplementary Table S3. a, significantly different than the lean control group (LD/LD-V); b, significantly 
different than the obese control group (WD/WD-V); ^, p < 0.05 but q > 0.05.
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Linear discriminant analysis (LDA) effect size (LEfSe).  LEfSe, which highlights biological consist-
ency across subclasses38, identified (log10 LDA score > 2.0) many of the same genera and phyla noted as signifi-
cant (p < 0.05) by one-way ANOVA/Kruskal–Wallis tests (i.e., the phyla Verrucomicrobia, Proteobacteria, and 
Firmicutes; the genera Akkermansia, [Eubacterium] coprostanoligenes group, Erysipelatoclostridium, and Rumi-
nococcaceae UCG-009). These calculations (Fig. 5) attest to the excellent rigor and reproducibility of the one-way 
ANOVA/Kruskal–Wallis analyses of microbiome differences between treatment groups. While the majority of 
the analyses herein focused on the largest taxonomic rank below bacteria (phylum) and the smallest taxonomic 
rank this data could reasonably assign (genus), the LDA helped demonstrate how changes to the smallest rank 
resulted in dramatic shifts at the level of the largest rank below bacteria. Importantly, the LDA maintained the 
nearest taxonomic distinction, unlike the analyses that pooled together unclassified organisms.

Supporting the above data analyses, the LDA demonstrated that the Verrucomicrobia, Proteobacteria, and 
Firmicutes phyla had large effect sizes, suggesting that these particular phyla play a dominant role in differen-
tiating the treatment groups from one another. The largest median was observed for Verrucomicrobia in the 
vehicle-treated group switched from WD to LD (WD/LD-V group), for Proteobacteria in the 5A-1MQ-treated 
group switched from WD to LD (WD/LD-T group), and for Firmicutes in the WD control (WD/WD-V) group 
(Fig. 5a). For classified genera (those not labeled “other” in the LEfSe analysis) in the microbiome, the largest 
effect sizes were observed in Akkermansia, [Eubacterium] coprostanoligenes group, Erysipelatoclostridium, Family 
XIII-UCG-001, Parasutterella, Ruminococcaceae UCG-009, Acetatifactor, and Lactobacillus (Fig. 5a), suggesting 
that the relative abundances in these genera are critical characteristics differentiating the treatment groups. 
Akkermansia, [Eubacterium] coprostanoligenes group, and Erysipelatoclostridium had the largest medians in the 

Figure 4.   Microbial genera exhibited distinct effects of 5A-1MQ treatment and diet switch. (a) Relative 
abundance of the genera identified in the mouse cecal samples; sequences which could not be assigned 
(unclassified) were pooled with sequences composing less than 5% of any given mouse’s microbial genera 
only to simplify the graph. (b–e) Average relative abundance of the most interesting genera demonstrating 
significant differences between groups; the remaining genera can be found in Supplementary Figure S3. Graphs 
depict mean + /− SEM; unless specified, multiple comparisons were significant before and after FDR correction 
(p < 0.05 and q < 0.05); further statistical details in Supplementary Table S3. a, significantly different than the lean 
control group (LD/LD-V); b, significantly different than the obese control group (WD/WD-V); c, significantly 
different than vehicle-treated mice switched from WD to LD (WD/LD-V); ^p < 0.05 but q > 0.05.
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vehicle-treated group transitioned from WD to LD (WD/LD-V group), while Family XIII-UCG-001, Parasutte-
rella, Ruminococcaceae UCG-009, Acetatifactor, and Lactobacillus had the largest medians in the 5A-1MQ-treated 
group transitioned from WD to LD (WD/LD-T group) (Fig. 5a).

Figure 5.   LEfSe strongly supported the results of the one-way ANOVA/Kruskal–Wallis tests. (a) Microbial 
classes identified in the LEfSe analysis as having a log10 LDA score > 2.0; each of the (non-“other”) phyla 
and genera identified by LEfSe was also identified as having a main effect (p < 0.05) of group in the one-way 
ANOVA/Kruskal–Wallis analyses. (b) The cladogram shows the relatedness of the phyla and genera findings; 
written labels begin with the highest class (phylum) in the outermost layer and end with the lowest class (genus) 
in the innermost layer. This figure was generated using the Huttenhower lab’s Galaxy module (http://​hutte​
nhower.​sph.​harva​rd.​edu/​galaxy/) for LEfSe v1.0102.

http://huttenhower.sph.harvard.edu/galaxy/
http://huttenhower.sph.harvard.edu/galaxy/
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When these LEfSe results were plotted as a cladogram (Fig. 5b), it became clearer that the treatment group 
with the largest median in a given class (e.g., genus) with a log10 LDA score > 2.0 was often consistent with the 
hierarchical class directly above it, if that class also had a log10 LDA score > 2.0. Additionally, the cladogram 
highlighted the large variety of microbes identified within the Firmicutes phyla, which was much greater than 
the microbe variation found in the other phyla. Finally, the cladogram (in addition to Supplementary Table S1) 
clearly illustrated that the unclassified genera fell within multiple orders/families; thus, analysis of pooled unclas-
sified genera has severe limitations.

K‑means clustering.  Five clusters were used for k-means clustering, per the results of the sum of squared 
estimate of errors curve, on the ASV relative abundance data with clustering by animal (n = 25). The two largest 
clusters contained 18 and 4 animals (Fig. 6). The latter cluster contained exclusively 5A-1MQ-treated animals 
switched from WD to LD (the WD/LD-T group), representing ~ 60% of all WD/LD-T animals. The other three 
treatment groups were represented approximately equally in the largest cluster, with a maximum of one animal 
per treatment group outside the cluster; however, the largest cluster included only two mice from the 5A-1MQ-
treated group switched from WD to LD. The lack of substantial overlap between these two predominant clusters 
suggests that the WD/LD-T group has a distinct pattern of ASV relative abundances in its microbiome com-
pared to the other treatment groups.

Linkage between the cecal microbiome and adipose tissue metabolome.  The relative abun-
dance of a large number of microbial genera correlated with EWAT metabolite abundances. A total of 10,200 
calculations were performed (in replicate, with and without outliers included) to identify potential links between 
microbiome genera and EWAT metabolites, and 439 genera-metabolite correlations were identified as statisti-
cally significant (p < 0.05, without Benjamini–Hochberg correction and with outliers excluded; Supplementary 

Figure 6.   K-means clustering of the ASV relative abundance data by animal resulted in two primary clusters, 
one of which exclusively contained 5A-1MQ-treated mice transitioned from WD to LD (the WD/LD-T group). 
Cluster 1 contained only one vehicle-treated mouse transitioned from WD to LD (WD/LD-V). Cluster 2 
contained four 5A-1MQ-treated mice transitioned from WD to LD (WD/LD-T), while Cluster 3 contained five 
LD control mice (LD/LD-V), five WD control mice (WD/WD-V), six WD/LD-V mice, and two WD/LD-T 
mice. Cluster 4 contained one LD/LD-V mouse and Cluster 5 contained one WD/LD-T mouse. Collectively, 
k-means clustering supported the conclusion that 5A-1MQ treatment elicits a unique ASV profile relative to the 
other treatment groups.
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Table S5). A heat map of this data was generated using only the genera and metabolites that had previously 
demonstrated significant main effects of treatment group (Fig. 7); in total, 9 genera (including the unclassified 
group) and 38 metabolites met these criteria (metabolites published in Sampson et al., 202113). Of note, the rela-
tive abundance of the Parasutterella genus, which was significantly enriched in both the vehicle- and 5A-1MQ-
treated animals transitioned from WD to LD compared to both the WD and LD control groups, was observed 
to be significantly correlated (either positively or negatively) with 30 EWAT metabolites, both with and without 
outliers included.

Discussion
Effective interventional treatments are critically needed to address ever-increasing rates of global obesity and 
obesity-linked comorbidities. NNMTi-treatment offers a promising therapeutic approach to address this unmet 
need8,9,13. There is growing evidence that the microbiome may be critical for establishing, maintaining, and 
reversing obesity14–16, and that both diet composition and adiposity each contribute to modulation of the mouse 
gut microbiome profile49. Consequently, it is important to understand how the microbiome responds to NNMTi-
focused obesity treatments.

Multiple mechanisms may interrelate NNMTi treatment with the microbiome. Since NNMT is expressed in 
adipose, hepatic, and gut tissues50–52, and these tissues heavily cross-talk with the gut microbiome53–55, NNMTi 
treatment or its resulting weight loss effects8,9 may modulate the microbiome. Additionally, the NNMT substrate 
nicotinamide12 is metabolized by the microbiome56,57, and thus NNMTi may modulate substrate availability, 
potentially influencing microbial metabolic capacity to drive the NNMTi-mediated weight loss.

Given these potential mechanisms, this study was designed to test the hypothesis that DIO mice restored 
to the weight and adiposity of LD controls through NNMTi treatment and LD switch13 have a similar micro-
biome profile to mice continuously maintained on LD. Interestingly, we observed that the cecal microbiome of 
previously-obese animals returned to the lean state through NNMTi treatment and LD switch was distinct from 
the cecal microbiome of continuously lean control animals. Although we expected the largest microbiome dif-
ferences to occur in the lean control group relative to the obese control group, we found that the diet-switched 
groups exhibited a greater number of differences from the control groups than the control groups did from one 
another. Importantly, this proof-of-concept study showed that the relative abundance of Lactobacillus, a genus 
associated with weight loss58, was uniquely increased and Erysipelatoclostridium was distinctly decreased in 
mice given 5A-1MQ treatment and an LD switch compared to mice switched to LD and given vehicle treatment. 
Erysipelatoclostridium is a member of the Erysipelotrichaceae family, which has been linked to obesity and related 
metabolic issues59.

The distinct microbiome profile of 5A-1MQ-treated mice was also supported by k-means clustering. Further-
more, the relative abundance of Akkermansia, a genus positively associated with improvements in obesity-related 
metabolic issues60, was increased in the vehicle-treated group that underwent diet switch relative to the WD 
control group, suggesting a potential for distinct microbiome-mediated mechanisms of weight loss subsequent to 
diet switch from those of diet switch in combination with 5A-1MQ treatment. However, the relative abundance of 
the genus Parasutterella, commonly decreased by HFD61, was increased in both the 5A-1MQ- and vehicle-treated 
mice switched from WD to LD, and the abundance of Parasutterella in all mice exhibited several correlations the 
EWAT metabolome. This may suggest that Parasutterella changes are linked to the diet switch or the series of 
diets the animals have experienced in their lifetime. A summary of these key results is found in Fig. 8 (graphic 
generated by ADW using creative commons- and Adobe-licensed images and PowerPoint).

Figure 7.   Correlations between the epididymal white adipose tissue metabolome and the microbiome strongly 
suggest that cecal Parasutterella abundance is linked to the abundance of many adipose metabolites. Significant 
correlations between genera and metabolites that demonstrated significant main effects of treatment group 
(significant prior to Benjamini–Hochberg correction) were used to generate a heat map colored by correlation 
coefficient. The data used to generate the heat map removed outliers by both metabolite and genus. Thus, the n 
varied per correlation. Correlations from the data including outliers can be found in Supplementary Table S5. 
Eu., Eubacterium. 
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In the present study, the cecal microbiome differed significantly across treatment groups, despite tightly 
controlling for several variables known to alter the microbiome in rodents. For example, parameters that have 
been shown in other studies to alter cecal and fecal microbiomes (e.g., vendor source62,63) were consistent across 
experimental groups in this study. Importantly, animals were singly housed to eliminate the exchange and cross-
contamination of intestinal microbiomes, a factor that potentially biases studies with group-housed animals by 
minimizing microbiome variations for co-housed animals within a cohort. Unfortunately, singly housing is not 
commonly reported. For instance, the majority (58%) of mouse microbiome studies published in 2018–2019 did 
not report the number of mice per cage, and less than 20% of studies reported using singly-housed animals64. 
While singly-housed animals may experience stress that impacts metabolism, body weight, and adiposity65–69, 
the singly-housed animals in this study were treated identically (to the best of the experimenter’s ability) to 
minimize and equalize stress across all animals and reduce confounding variables.

Alpha diversity measures, calculated using several distinct methods, did not significantly differ between 
treatment groups. However, groups switched from WD to LD (WD/LD-V, WD/LD-T) tended to show greater 
alpha diversity compared to the control groups (WD/WD-V and LD/LD-V), which was not surprising since 
these animals experienced the most diet transitions with variable nutrient resources during their lifetime. Fur-
thermore, this trend toward increased alpha diversity in the obese groups placed on an LD that had consequently 
experienced weight loss aligns with clinical observations, where low gene richness has been associated with 
increased adiposity, insulin resistance, and dyslipidemia70 while increased gene richness has been observed fol-
lowing dietary intervention in obese and overweight individuals71.

Singly-housing animals, which prevents inter-animal coprophagy, reduces beta diversity of the microbiome 
compared to stressful (chronic subordinate colony) co-housing conditions72. Furthermore, decreased bacterial 
richness has been linked to high carbohydrate73 and high-fat/low-protein concentrations74, as found in the lean 
and Western diets, respectively, the latter result only in old-aged rats74. However, irrespective of whether ASV 
abundance was weighted in the analysis, beta diversity analyses revealed distinct clustering by treatment group. 
The LD control group was particularly distinct from the other groups in the unweighted UniFrac and Bray–Curtis 

Figure 8.   Key results summary. This figure was generated using a combination of open-source images, 
purchased Adobe stock photos, and PowerPoint.
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dissimilarity analyses’ plots, suggesting that animals exposed to the same diet at an early age in life diet develop 
similar microbiome profiles that persist even after an acute change in diet.

Microbiome differences were greater between the two groups switched from WD to LD (i.e., WD/LD-V 
and WD/LD-T) and the two diet control groups (i.e., LD/LD-V and WD/WD-V) compared to the microbiome 
differences observed between the lean (LD/LD-V) and obese (WD/WD-V) control groups. Importantly, the 
various diets contained identical fiber and protein content and varied primarily by the percentage of fat- and 
carbohydrate-derived kilocalories. Although dietary fiber has been associated with microbiome changes75, this 
is unlikely to account for the microbiome changes observed herein since fiber content was the same across diets. 
It is likely that the larger number of statistically significant changes to the microbiome observed in the groups 
switched from WD to LD reflects their more numerous exposures to different diets, longitudinal changes in 
dietary exposure, the stress associated with diet switch, the negative energy state achieved by treatment and/or 
diet-driven weight loss, or a combination of these factors, but it may also be related to differences in terminal 
body weight and fat mass since both adiposity and diet composition have been shown to modulate the mouse 
gut microbiome profile.

The finding of Ileibacterium as the most abundant cecal microbiome genus in every experimental group is 
relatively novel and may reflect experimental factors such as diet, housing conditions, and mouse strain. Mice 
from a different substrain and vendor, but fed similar lean and high-fat diets to this study, showed a predomi-
nance of the family Erysipelotrichaceae, of which Ileibacterium is a genus, in their cecal microbiomes76. Future 
studies using varied diets are needed to determine whether the predominance of Ileibacterium in the cecal 
microbiome holds pathological relevance.

One of the commonly reported microbiome differences between obese/HFD-fed animals and lean controls 
is an increased Firmicutes:Bacteroidetes ratio43,44. However, this ratio was not significantly different between this 
study’s obese and lean control groups. Several technical reasons may explain our distinctive findings, including 
differences in the microbiome sampling site, the limited n per group, singly housing mice, or the use of highly 
similar lean, Western, and high-fat diets which systematically exchanged fat content with carbohydrate content. 
Supporting a dominant role for diet composition in establishing the Firmicutes:Bacteroidetes ratio, previous 
work has shown that mice maintained on a high-fat diet had a similar cecal Firmicutes:Bacteroidetes ratio to 
those maintained on a high-carbohydrate diet77. This suggests that long-term maintenance on an LD rich in 
carbohydrates may confound some of the microbiome differences commonly reported between mice on HFDs 
and those on lean control diets which contain fewer carbohydrates.

Previous work has reported relatively increased Firmicutes and Proteobacteria and decreased Bacteroidetes 
in mice on an HFD, regardless of concomitant obesity (weight gain was minimized using a RELMβ knockout 
mouse78)78,79. These microbiome changes reversed rapidly, however, when the obese mice were returned to a 
normal, lean diet79. Similarly, in the current study, DIO mice from both groups that were switched from WD to 
LD exhibited higher Bacteroidetes and significantly lower Firmicutes relative abundances compared to DIO mice 
maintained on WD (WD controls; WD/WD-V). In contrast, DIO mice in both groups switched from WD to 
LD each had significantly increased Proteobacteria relative abundance (represented solely by the genus Parasut-
terella) compared to both the WD and the LD controls, suggesting that Proteobacteria relative abundance may 
be largely influenced by stress or the differences in net energy expenditure (or associated body weight changes) 
caused by the diet switch. Since decreased Parasutterella relative abundance may accompany increased stress80,81, 
the increased Parasutterella relative abundance that occurred in this study following diet switch likely arose from 
the weight loss-mediated negative energy state. Providing support for a causal link between a negative energy 
state and increased Parasutterella abundance, a rat model of obesity, which showed similar Parasutterella relative 
abundances in animals maintained on HFD and those maintained on normal chow but exhibited a treatment-
induced increase in Parasutterella relative abundance, displayed a negative correlation between Parasutterella 
and body weight82. Our results also align with a previous observation that resveratrol treatment is associated with 
Parasutterella blooming in stool samples; both NNMT and resveratrol modulate Sirtuin 1 (Sirt1) activity83,84, and 
resveratrol83 and 5A-1MQ increase Parasutterella abundance, suggesting a potential causal link.

Parasutterella colonization has been shown to alter tryptophan, tyrosine, and xanthine metabolism in mouse 
cecal samples61. In this study, significant positive correlations were observed between tryptophan, tyrosine, and 
xanthine abundances in the EWAT and the relative abundance of Parasutterella in the cecal microbiome (Sup-
plementary Table S5, outliers removed). Whether this observation is solely the consequence of translocation of 
Parasutterella bacteria from the intestine to the EWAT or driven by more indirect mechanisms such as bacterially-
produced metabolites85 is yet to be determined. However, the large number of significant correlations noted in 
this study between Parasutterella relative abundance and EWAT metabolites strongly supports the relevance of 
this genus to the EWAT metabolome.

Groups switched from WD to LD had a greater average relative abundance of Verrucomicrobia (represented 
solely by the genus Akkermansia). In this genus, the relative abundance of the vehicle-treated group transitioned 
from WD to LD was significantly higher than both the lean and obese control groups. The Akkermansia species 
muciniphila has been shown to alter glucose and lipid metabolism as well as intestinal immunity86, to strengthen 
the integrity of the enterocyte monolayer to possibly improve intestinal barrier integrity87, and to improve glucose 
tolerance and reduce visceral adipose tissue inflammation in mice fed an HFD88. Cecal levels of Akkermansia 
muciniphila have been strongly correlated with physiological metrics including glycemia and insulinemia89, 
and Akkermansia has correlated negatively with obesity-related measures90 and has been implicated in DIO 
prevention91,92. 5A-1MQ-treated mice switched from WD to LD (WD/LD-T) showed a rather reduced relative 
abundance of Akkermansia compared to vehicle-treated DIO animals switched from WD to LD (WD/LD-V), 
suggesting a unique microbiome mechanism associated with weight loss in the vehicle-treated group switched 
from WD to LD compared to the 5A-1MQ-treated group that underwent the same diet switch.
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5A-1MQ-treated mice switched from WD to LD were particularly distinct from mice in the other groups 
when k-means clustering was applied to the ASV relative abundance data. This result may have been driven 
by Erysipelatoclostridium and Lactobacillus, the only two microbial genera that significantly differed between 
the 5A-1MQ-treated and the vehicle-treated mice both switched from WD to LD. The relative abundance of 
Erysipelatoclostridium was increased in vehicle-treated mice that underwent the WD to LD switch (WD/LD-V) 
relative to the two control groups (LD/LD-V and WD/WD-V) but was not increased in 5A-1MQ-treated mice 
that underwent the same diet switch (WD/LD-T). Cecal levels of Erysipelatoclostridium abundance have been 
positively correlated with dyslipidemia93, and a report that WD decreased the relative abundance of Erysipelato-
clostridium and that the abundance of Erysipelatoclostridium negatively correlated with obesity-related indices90 
may partially explain our observation that decreased levels of Erysipelatoclostridium were present in the 5A-1MQ-
treated group and the WD control group relative to the vehicle-treated group switched from WD to LD.

Unlike Erysipelatoclostridium, Lactobacillus was significantly and dramatically increased in 5A-1MQ-treated 
mice switched from WD to LD relative to their vehicle-treated counterparts and the LD control group. Several 
Lactobacillus species require nicotinamide or nicotinic acid for growth94; these metabolites are components 
of the NAD+ salvage pathway that are directly upstream of NNMT12. In addition, nicotinamide, the primary 
NNMT substrate95,96, is broken down by Lactobacillus arabinosis into nicotinic acid and ammonia56. Nicotinic 
acid is then assimilated into Lactobacillus arabinosis during growth97. We have previously demonstrated an 
increased nicotinamide:nicotinic acid ratio in the adipose tissues of 5A-1MQ-treated DIO mice13. NNMTi-
mediated changes to the availability of nicotinamide/nicotinic acid in conjunction with the presence of moderate 
amounts of Lactobacillus may promote a positive feedback loop further increasing the abundance of Lactobacil-
lus. Human studies using Lactobacillus as a probiotic have often demonstrated decreased body weight and/or 
body fat in a strain-dependent manner (for a review of human studies, see Crovesy et al., 201758), suggesting 
that the NNMTi-and-LD-mediated changes to Lactobacillus relative abundance may be critical to NNMTi-
mediated weight loss. Lactobacillus-mediated weight loss may be brought about, at least in part, by changes 
to lipid absorption and triglyceride synthesis, since orally-administered Lactobacillus rhamnosus GG reduces 
intestinal lipid absorption and the expression of triglyceride synthesis-related genes in mice98. Previous work has 
shown that the abundance of Lactobacillus reuteri (normalized to a control group) decreases during the onset 
of obesity and remains suppressed even after dieting in mice99, which parallels our observations that vehicle-
treated diet-switched mice had lower levels of Lactobacillus than the 5A-1MQ-treated mice, the latter of which 
also demonstrated greater weight loss.

Although fundamental 5A-1MQ and LD-mediated changes to the microbiome were identified, this work 
is similar to many current studies where further investigations will clarify if changes in the microbiome are 
causative or associative100. Furthermore, this study’s robust design is not without limitations. Singly-housed 
rodents may have increased adiposity101 and, moreover, singly-housed mice in standard caging can engage in 
coprophagy of their own feces that may impact their cecal microbiome102. Changes to the microbial phyla and 
genera observed in the 5A-1MQ-treated group switched from WD to LD could have been driven by additive, 
synergistic, or independent mechanisms relative to those induced by diet switch alone, which could not be 
determined with the current study design that lacked a group treated with 5A-1MQ and maintained on WD. 
Since the first-line intervention for obesity is typically lifestyle change(s)4, this study purposefully combined LD 
switch with 5A-1MQ treatment; the effects of 5A-1MQ treatment on the microbiome of animals maintained 
continuously on LD or WD have yet to be determined. Additionally, the specificity of these results to the NNMTi 
5A-1MQ and the dosage used herein also require further evaluation. Finally, although the correlations between 
the metabolome and microbiome were established using robust statistical analyses, there was limited statistical 
power and there are also limitations to the statistical approaches used herein (e.g., log transformation to resolve 
non-normal distribution and/or heteroscedasticity103). Nonetheless, this work has identified novel findings that 
support future studies to determine whether microbiome changes are contingent upon the combination of both 
NNMTi and LD switch and mediated through direct NNMTi-driven mechanisms or through indirect mecha-
nisms such as weight or fat loss8,13.

Data availability
The datasets generated and analyzed during this study are included in the Supplementary files.
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