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Knot Energy, Complexity, and 
Mobility of Knotted Polymers
Fernando Vargas–Lara1, Ahmed M. Hassan   2, Marc L. Mansfield3 & Jack F. Douglas1

The Coulomb energy EC is defined by the energy required to charge a conductive object and scales 
inversely to the self–capacity C, a basic measure of object size and shape. It is known that C is minimized 
for a sphere for all objects having the same volume, and that C increases as the symmetry of an object 
is reduced at fixed volume. Mathematically similar energy functionals have been related to the average 
knot crossing number 〈m〉, a natural measure of knot complexity and, correspondingly, we find EC to 
be directly related to 〈m〉 of knotted DNA. To establish this relation, we employ molecular dynamics 
simulations to generate knotted polymeric configurations having different length and stiffness, and 
minimum knot crossing number values m for a wide class of knot types relevant to the real DNA. We 
then compute EC for all these knotted polymers using the program ZENO and find that the average 
Coulomb energy 〈EC〉 is directly proportional to 〈m〉. Finally, we calculate estimates of the ratio of the 
hydrodynamic radius, radius of gyration, and the intrinsic viscosity of semi–flexible knotted polymers in 
comparison to the linear polymeric chains since these ratios should be useful in characterizing knotted 
polymers experimentally.

Experiments have shown a remarkable correlation between the migration speed of knotted DNA in gel electro-
phoresis and average knot crossing number, the number of places where a knotted polymer crosses itself when 
projected onto a surface1,2. An early study indicated a correlation between DNA mobility in gels with the min-
imum knot crossing number m1, but Stasiak et al.2 later found a better correlation of knotted DNA electropho-
retic mobility with the crossing number averaged over all polymer conformations, 〈m〉. The minimum crossing 
number m is a topological invariant found in knot classification3,4, but numerical studies have established that the 
configurationally averaged 〈m〉 varies with chain length, chain stiffness, and the strength of the excluded volume 
interaction5. These previous experimental and computational studies raise questions6 about which property of 
knotted polymers dominates the DNA separation process by electrophoresis and about the accurate computation 
of traslational friction coefficient of knotted polymers for comparison to both sedimentation and electrophoresis 
measurements.

The utilization of energy functionals to classify object shape has a long history. For example, it has been appre-
ciated since the time of the ancient Greeks that a sphere has the minimum surface area of all the objects having 
a given volume and it is common to classify particle shape in terms of the relative surface area of a particle to a 
sphere having the same volume, i.e., “sphericity”7,8. In many applications, minimum surface area directly corre-
sponds to a minimizing energy, e.g., the interfacial energy of a droplet defines an “energy functional” and fluid 
droplets of ordinary fluids are accordingly spherical in order to minimize their interfacial energy and thus their 
surface area. Poincaré first proved that the electrostatic capacity C of a finite volume region is similarly minimized 
by a spherical shape in connection with his study of the rotation of liquid droplets9, and Szegö later proved this 
“isoperimetric” relation rigorously10. Pólya and Szegö embarked on a ambitious program of object shape clas-
sification in terms of C and other energy functionals related to the Laplace’s equation (hydrodynamic virtual 
mass, magnetic, and electric polarizability)11–13. In each case, a scalar energy functional can be defined which is 
minimized by a sphere for all objects having a finite volume. Garboczi et al. have illustrated the dependence of 
these functionals on shape in the case of ellipsoidal particles as part of a study of the shape dependence of the 
percolation threshold of overlapping objects14.

Capacity is an especially important energy functional because of its many physical applications. It governs 
the rate of heat transfer from an object based on Newton’s law of cooling, the rate of diffusion–limited reactions, 
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scattering lengths in acoustic and quantum theory, as well as its well known interpretation in electrostatics12,14,15. 
Historically, the use of this functional for shape classification has been limited by the difficulty of calculating C for 
complicated shaped objects. For example, the calculation of C for a cube is still an unsolved analytic problem12. 
Numerical path–integration methods, however, have recently allowed the accurate numerical computation of C 
for regions having essentially arbitrary complexity16,17. Tests against exactly solvable cases show these path–inte-
gral calculations provide accurate estimates of C for reasonable computational times15,16. We are now in position 
of calculating C for the purpose of shape and topology classification and we are interested in the present paper in 
classifying knotted polymers in terms of C. This enables an extension of the shape classification program initiated 
by Pólya and Szegö to describe the topological properties of objects using basic energy functionals12.

Since C is important in our discussion below, it is worth recalling its mathematical definition. Consider a 
conductive object Γ having a fixed charge q that is distributed at the equilibrium on the object surface ∂Γ. The 
“Coulomb energy” EC of the equilibrium charge distribution on a conductive object equals,

π ε
=E q

C8
, (1)C

2

where ε is the dielectric constant of the medium in which the charged object is placed. The “Coulomb constant” 
(1/4 π ε) in this relationship defines the proportionality factor of the Coulomb potential, and following mathe-
matical conventions, we take this quantity, along with q, to be equal 1 so that EC = 1/2 C. The Coulomb energy is 
familiar in a physical chemistry context as the basis of the Born theory for calculating ion solvation energies18,19, 
where ions are modeled as charged spheres. Duhr and Brown20 have argued that the solvation energy of duplex 
DNA can be estimated from an extended Born model where the effective radius of the charged DNA molecule is 
estimated from the DNA hydrodynamic radius, which as we will see below is related to C.

The Coulomb energy can also be defined as an energy functional (Kelvin’s principle)12,17,

∫ ∫
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which is minimized by the equilibrium charge density ρ(R) normalized so that, ∫∂Γρ(R)dR = 1, where R is a point 
on ∂Γ. Alternatively, C can also be defined through the minimum energy of the potential field gradient exterior 
to the conductive object (Dirichlet’s principle). This complementary definition of C shows that this equation 
describes the asymptotic decay of the solution of the Laplace’s equation on the exterior of a region at distances far 
from the object where the solution of Laplace’s equation is constant on the boundary. This is the classic exterior 
Dirichlet problem17. This last interpretation forms the basis of a probabilistic understanding of C involving the 
hitting region with random walk trajectories launched from the exterior of the particle21. Numerical methods 
utilizing this idea has been developed in the recent years22,23, and presently we can compute C with an accuracy 
easily better than 1% for particles of essentially any shape16,22,23.

Returning to our discussion of knots, there has been some previous interest in classifying knots in terms of 
energy concepts similar to EC. These definitions usually involve unphysical force laws or mathematical devices 
that insure that EC remains finite for smooth curves (See discussion below). It is known that C for any smooth 
curve or any finite collection of smooth curves equals zero in three dimensions, so that EC is then formally 
infinite24. This property evidently makes EC unsuitable for discussing the topology of closed smooth curves25, but 
this limitation disappears as soon as the curve is endowed with a finite thickness or becomes fractal as in the case 
of the trajectories describing Brownian motion.

Hubbard and Douglas15,26 have recently shown that the translational friction coefficient ft of Brownian parti-
cles having general shape is directly related to C,

π η≈f C6 , (3)t

to a high degree of approximation, (1 %). In Eq. (3), η is the fluid viscosity of the liquid where the particles are 
immersed, and the units of C are chosen so that the capacity of a sphere equals its radius. Eq. (3) has a simple 
physical interpretation; ft describes the steady state diffusion of momentum away from diffusing object since η is 
the momentum diffusion constant.

The generalized Stokes–Einstein law, Eq. (3), provides a direct relation between knot shape, as measured by C, 
and the mobility μ of knotted DNA undergoing diffusion in solution,

μ = .f1/ (4)t

The sedimentation coefficients of a Brownian particle of general shape is proportional to μ27. The general 
hydrodynamic–electrostatic relation, Eq. (3), is restricted to uncharged and rigid objects with a stick hydro-
dynamic boundary condition. Eq. (3) is based on the simple observation that angular averaging of the Oseen 
tensor gives rise to the Green’s function for the Laplacian26. Kholodenko and Rolfson employed an angular, and 
an additional configurational preaveraging approximation to relate the average knot crossing number 〈m〉 to an 
ensemble averaged “knot energy”28, and this work, in part, stimulated the present study. Our calculations of the 
knot energy using ZENO do not require a configurational preaveraging approximation, reducing the uncertainty 
in the analysis of the relation between EC and 〈m〉.

In the present work, we argue about an approximate relationship between the Coulomb energy of a curve EC 
and 〈m〉, thus giving a relation between chain mobility μ and 〈m〉. We first describe the coarse–grained molec-
ular model used to generate polymeric knot configurations having different knot complexity and we use these 
configurations to test the aforementioned approximation, as well as to determine other shape descriptors that are 
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related to knot complexity. We then explore the energy and shape properties of knotted rings having fixed length 
and different rigidity, as well as the properties of knotted rings having fixed rigidity and different length. We sum-
marize our findings in the conclusion section.

Knot Energies and Crossing Number
The Coulomb energy functional in Eq. (2) is a natural functional to define the complexity of knotted DNA since 
DNA is a highly charged macromolecule. It is well known that EC is infinite for any smooth curve in 3 dimen-
sions so this functional has not much been considered in relation to quantifying knot complexity. A generalized 
knot energy based on the potential |R|−2, the “Mobius energy”, has been much considered because this energy is 
invariant to reparametrization of the arc length, suggesting that this quantity might be a useful measure of knot 
complexity28–30. In this direction, Freedman et al.30 showed that the “regularized Mobius energy”,
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where β = 2, is directly related to the average crossing number of knotted curves,

π π+ ≤ .m E2/ /2 (6)F

Kholodenko and Rolfson28 considered an extension of the Mobius energy to the generalized potential |R|−β 
and and achieved further simplification by ensemble averaging EF over random walk paths. This simplification 
is associated with the fact that 〈EC〉 is finite for Brownian paths in 3 dimensions so that EC divergence issues no 
longer exist when the paths defining the knotted structures are highly irregular31,32,33. Evidently, we need to con-
sider the shape regularity (i.e., differentiability) of knotted curves in connection with the determination of 〈EC〉.

Based on the combined arguments of Freeman et al.30 and Kholodenko and Rolfson28, we conjecture that the 
Coulomb knot energy EC should be nearly linear in the average crossing number 〈m〉,

∼⟨ ⟩ ⟨ ⟩E m , (7)C

where the constant of proportionality in this scaling relation is unspecified. In the next sections, we explore 
the validity of this theoretically motivated approximation through a consideration of knotted polymer chains 
generated by molecular dynamics simulations and we use ZENO to determine 〈EC〉. Below, we find evidence 
supporting Eq. (7) for a selected family of knots of significance for the characterization of real DNA molecules 
and determine the prefactor in Eq. (7).

Molecular Dynamics Simulations of Knotted Rings
Generation of Semi–flexible Knotted Rings.  In this section, we describe a coarse–grained molecular 
model utilized in previously modeling of DNA in solution36,37 to generate the knotted polymeric configurations 
(Fig. 1). In this molecular model, each polymeric knot is represented by L = (63, 126, 200, or 252) connected 
beads (bead–spring model38). To generate the steric interaction among the beads, we use a Weeks–Chandler-
Andersen (WCA) potential,
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Here, r is the radial distance between the centers of two beads, and σ and ε are the length and energy Lennard–
Jones parameters, respectively. Neighboring beads along the chain are connected via a finitely extensible, nonlin-
ear elastic (FENE) anharmonic spring potential,
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with the bond strength k = 30 ε/σ2 and maximum bond extension R0 = 1.5 σ. In particular, we are interested in 
the properties of double–stranded DNA (dsDNA), we relate σ ≈ 2.8 nm to the diameter of dsDNA, a representa-
tive value for dsDNA in ≈1 mol l−1 of NaCl solution35, so that the knotted polymer lengths analyzed in this study 
corresponds to L = (176.4, 353.8, 560.0, 705.6) nm. We include a three–body bending potential Ubend among 
every three neighboring beads forming an angle θ,

θ θ= −U k( ) [1 cos( )], (10)bend bend

where kbend is the bending constant and we consider kbend = (1, 3, 5, 10, 20) ε to vary the knot polymeric stiffness. 
We characterize the rigidity of the polymer by computing the persistence length lp for the linear polymeric chains, 
where lp is defined as the average projection of the chain end–to–end distance Re on the first bond of the chain 
l1 39,

= ⋅ .l lR l / (11)e 1p 1

The values of kbend indicated before lead to lp = (5.8, 9.2, 13.7, 25.5, 50.2) nm for polymers having a linear 
topology.
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Molecular dynamics (MD) simulations on this coarse–grained polymer model were performed to generate 
large ensembles of knot configurations. All simulations were performed at fixed number of particles, volume, 
and temperature (NVT ensemble). We chose temperature in the range 0.2 ≥ T ≥ = 3.0 ε/kB and a Nosé–Hoover 
thermostat40,41 to generate and equilibrate chain ensembles. Here kB is the Boltzmann constant. We first carry out 
our simulations for periods of time ≥ 107 time steps δt, where δt = 0.006 σ(m/ε)1/2 to achieve the thermal equilib-
rium for each system. We performed our MD simulations by using the Large–scale Atomic Molecular Massively 
Parallel Simulator (LAMMPS)42. We report the average property for each system resulting from 4000 differ-
ent configurations after it has reached thermal equilibrium. The property calculations were obtained by using 
the path–integration program ZENO22,23,43 based on a sampling of 106 random walks. We use Visual Molecular 
Dynamics VMD44 to render representative configurations of the different knotted polymers.

Generation of Canonical Knotted Rings.  The characterization of knotted polymers is evidently com-
plicated by the vast number of configurations that these polymers can have subject to topological constraints 
that define the knotted polymer type. This is a general problem in the recognition of a classes of objects sharing 
common topological or geometrical properties. A human, for example, normally has a head, two arms and two 
legs and articulation, points, or joints that allow a large number of possible configurations that humans explore 
in the course of their daily activities. The objective identification of humans, and other objects in data bases, has 
been facilitated by the identification of unique “canonical forms” associated with the entire class of objects that 
can serve to identify the object class45–47. In image recognition algorithms, canonical forms have been defined 
by associating an energy functional with a schematic representation of a member of the shape ensemble and the 

Figure 1.  Initial configurations of the polymeric structures analyzed in this study. The properties of linear 
polymeric chains are used for comparison with those of knotted polymers. We follow the Alexander–Briggs 
knot classification notation34 where the main number is the minimal crossing number m and the subscript is an 
arbitrary number specifying sub–classes of knots having the same m. Knots having a subscript equal to unity 
are usually referred to “prime” knots and tend to be relatively “symmetric” in shape as class. All of the polymers 
on this figure are formed by 126 beads, corresponding to a length L = 352.8 nm, and a diameter d = 2.8 nm, 
appropriate for dsDNA35. The bead size has been scaled in the figure so that the whole polymer can be visualized 
on a common scale.



www.nature.com/scientificreports/

5Scientific Reports | 7: 13374  | DOI:10.1038/s41598-017-12461-w

shape is then adjusted incrementally until the energy functional is extremized, subject to the geometrical invari-
ants that define the class of objects.

We follow this approach to classify knot types based on the Coulomb knot energy. In particular, we take any 
representative knot polymer configuration where the polymer chain is considered to be a conductor, and each 
bead has a fix charge and the beads are connected. We then allow the knotted rings to relax to the equilibrium 
configuration that minimizes the ensemble average Coulomb knot energy. By iterating this process and pro-
gressively increasing the charge magnitude on the beads of the polymer chain, we find the knotted polymers 
approaches an apparently unique “canonical” knot form for each class of knotted polymers. In particular, we 
achieve the generation of canonical knots by adding an electrostatic repulsive interaction Ucoul among all the 
beads that form the polymer,

σ
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where the charge Z is Z = 10. The qualitative idea of generating knots having minimal energy has been explored 
before before25,48–50 which are usually based on knot energies motivated by mathematical convenience rather than 
physical concerns. Figure 2 shows representative images for a 41

34 knot before and after introducing the repulsive 
charge interaction.

The application of this charging procedure reveals that a particular knot invariant as being of primarily signif-
icance in this classification scheme of knots, the minimal or essential crossing number m. The average crossing 
number 〈m〉 is obtained by averaging over the whole ensemble of possible knot configurations and this quantity 
is evidently larger than the minimal crossing number. In particular, 〈m〉 is larger for flexible chains than for 
rigid ones. Since m and 〈m〉 are important in our discussion below, we illustrate in greater detail how they are 
calculated.

Figure 3 illustrates ideal canonical forms for knotted polymers having fixed m. It is apparent that the Coulomb 
canonical knots closely resemble “ideal” knots generated by increasing the polymer diameter incrementally rather 
than charging. In each case the knotted rings adapt an apparently unique “swollen” configuration3, although we 
are not aware of any rigorous proof of the uniqueness of this structure. Coulomb canonical knots provide a refer-
ence point in our discussion below of semi–flexible knotted polymers which exhibit highly complex and diverse 
configurations which are better characterized by 〈m〉 than m.

Properties of Knotted Rings: Effect of Polymer Stiffness
In this section, we define the average crossing number 〈m〉 and explore its relation to 〈EC〉 and m. Additionally, we 
report the shape and size properties for knotted rings having fixed length L = 352.8 nm and fixed diameter d = 
2.8 nm, and variable knot complexity and rigidity. The classification of the polymeric chains based on their rigid-
ity is given by the calculation of their persistence length39. In our discussion below, we refer the persistence length 
lp of linear polymeric chains having the same bending rigidity parameter kbend as our measure of polymer rigidity.

Average Crossing Number of Semi–Flexible Knotted Rings.  We initially describe the methodology 
used to compute the average crossing number 〈m〉 for the thermally equilibrated knot configurations. For sim-
plicity, we calculate 〈m〉 for a simple knot geometry. Figure 4 shows an example calculation of 〈m〉 for an initial 
configuration of a 31 knotted polymer in the conveyed knot classification scheme34. Here, a knot having a crossing 
number m = 3 is projected onto the xy, xz, and yz planes. We count the crossing points in each plane, giving by 
the intersection of the monomers (e.g., 3 red circles shown on projected polymer in the xy plane) and then we 

Figure 2.  Representative configurations for a 41 polymeric knot before (left) and after (right) including a 
repulsive charge interaction on the polymer beads. The addition of an electrostatic repulsive interaction reduces 
the average Coulomb energy and the fluctuations in the knotted ring shape arising from thermal fluctuations. 
The number of chain configurations decreases progressively with increasing Z until the knotted ring adopt an 
apparently unique configuration, the “canonical form”.
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average over the crossing value determined in each plane to determine 〈m〉. The calculation of 〈m〉 for an individ-
ual knotted polymer involves projecting the polymer onto an infinite number of planes having a relative angular 
distribution having uniform distribution. This type of avergaing is simplified by our Monte Carlo Sampling pro-
cedure which explores all angular orientations of the knotted polymer while the planes remain fixed. Having three 
orthogonal planes improves the sampling, but is not required in our method of angular averaging through our 
molecular dynamics based exploration of polymer conformational space. For the thermal equilibrated knotted 
polymers, 〈m〉 is obtained by averaging the 4000 configurations. Figure 4 shows 〈m〉 as a function of m for knot-
ted polymers having different stiffness and fixed length L = 352.8 nm.

For flexible knot polymers, it is more challenging to visualize its minimal crossing number m, but using the 
procedure described above, we can compute 〈m〉. Figure 5 shows 〈m〉 as a function m for knotted polymers 
having different stiffness, but a fixed length, L = 352.8 nm. These images correspond to representative knot con-
figurations for the polymers interacting with a bending energy amplitude kbend = 10 ε (blue triangles). We find 
an approximately proportional relation between 〈m〉 and m where increasing polymer stiffness shifts the curves 
downwards, reflecting the fact that rigid polymers have a smaller average number of crossing points.

Relations between 〈EC〉, m, and 〈m〉.  We next compute the average Coulomb energy 〈EC〉, m, and 〈m〉 
for the polymeric knots configurations generated using the coarse–grained model described in the previous sec-
tion for a selected family of knot types relevant to the characterization of real DNA. Figure 6 shows the average 
Coulomb energy 〈EC〉 as a function of the minimum crossing number m (a) and average crossing number 〈m〉 
(b) for polymers having the same length L = 352.8 nm and different degree of stiffness. All our data has been nor-
malized by the Coulomb energy for the canonical unknotted polymer, E0, which corresponds to the lowest energy 
structure among all knotted rings. We find a linear relationship between 〈EC〉 and m, where the intercept evidently 
depends on the rigidity of the polymer chain. However, 〈EC〉 normalized by E0, is nearly a universal function of 

Figure 3.  Representative rendering images for the ideal or “canonical” knotted polymeric structures 
generated by the process described in this section. All of the polymers on this figure are formed by 126 beads, 
corresponding to a length, L = 352.8 nm, and the diameter, d = 2.8 nm, appropriate for dsDNA in solution 
containing 1 mol l−1 NaCL35. The bead size has been scaled in the figure so that the whole polymer can be 
visualized on a common scale.
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〈m〉, as its indicated in Fig. 6(b). We also see from Fig. 6(b) that the average mobility 〈μ(m)〉 of knotted polymers 
having a fixed m is directly proportional to the Coulomb knot energy to within the good approximation; See Eq. 
(4). The mobilities of knotted polymers in sedimentation measurements have been observed to exhibit the same 
linear scaling between 〈μ(m)〉 and 〈m〉49. Recent sedimentation measurements on knotted polymers having ideal 
knot configurations (defined by strong repulsive excluded volume interaction rather than charge interaction) also 
follow this scaling relation to a reasonably good approximation, although the data is somewhat noisy. Figure 6(b) 
confirms the proposed relation between 〈EC〉 and 〈m〉 in Eq. (7). We have not made an exhaustive sampling of 
all knot types in our analysis here, but rather have focused on knots that seen to be of practical significance in 

Figure 4.  Example calculation for the average crossing number 〈m〉 for an initial configuration of 31 knotted 
polymer. The knot is projected onto the xy, xz, and yz planes. We indicate the crossing points in each plane (i.e., 
3 red circles in the xy plane) and we average over the crossing value determined in each plane 〈m〉. For this 
specific case, 〈m〉 = 4.66. For the flexible polymer cases, the averaging is performed over 4000 knotted polymer 
configurations generated as the knotted ring explores it configuration space.

Figure 5.  The average crossing number 〈m〉 as a function of the minimum crossing number m for polymeric 
knots having different stiffness (See legend) and fixed length L = 352.8 nm. The images corresponds to 
representative knot configurations for the polymers interacting with a bending energy amplitude kbend = 10 ε, 
corresponding to linear chains having lp = 25.5 nm (blue triangles).
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relation to observations on real DNA molecules. Further work shall include other less “symmetric” knots to fully 
verified the generality of the linear relation between 〈m〉 and 〈EC〉.

Basic Measurement of Size and Shape of Knotted Polymers Relevant to Experimental 
Characterization.  To characterize the shape of polymers and particles, it is common to determine the 
radius of gyration tensor, Rg, which can be experimentally obtained by scattering techniques and it is formed by 
9 components,
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where Λi are the eigenvalues of Rg
2 and Λ1 ≤ Λ2 ≤ Λ3. The ratios Λ3/Λ1 and Λ2/Λ1 constitute shape descriptors and 

represent each knot as an ellipsoid which main axis are Λ1, Λ2, Λ3 and also define the average anisotropy of the 
particle or polymer52. The ratio C/Rg is another important shape descriptor, which indicates the changes between 
and open structure (small values) to a more closed compact one (higher values)53. For instances, C/Rg = 0 
approaches 0 for a needle and this ratio for a solid spherical particle, C/Rg = 1.2954. Figure 7 shows these shape 
descriptors for knotted polymers having fixed length (L = 352.8 nm) and different polymer rigidities.

We next consider basic measures that are commonly used to determine the topological structure of macro-
molecules21. In particular, we directly compare the knotted polymer properties to those of a linear polymer having 
the same molecular mass,

Figure 6.  The average Coulomb energy 〈EC〉 as a function of the minimum crossing number m (upper panel) 
and average crossing number 〈m〉 (lower panel) for polymers having the same length L = 352.8 nm and 
different chain rigidities. Here, 〈EC〉 has been normalized by the energy of the canonical form of the unknotted 
polymer, E0, which corresponds to the lowest energy configuration for a polymer of fixed length, diameter, and 
rigidity. We find a linear relationship between 〈EC〉 and m. However, when we plot 〈EC〉/E0 as a function of 〈m〉, 
all the data collapse onto a universal curve (lower panel).
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where C ≈ Rh and [η] is the intrinsic viscosity of the polymeric structure. [η] is proportional to the average 
electric polarizability tensor and describes how the addition of the polymer alters the viscosity of the polymer 
solution in the low polymer concentration limit14. We plot these transport property ratios as a function of the 
minimum crossing number m in Fig. 8. We see that these ratios generally decrease with increasing m and increas-
ing chain stiffness.

Comparison between our gh, gs, and gη calculations with experiments on synthetic polymers is complicated 
by the fact that the knot complexity of ring polymers is normally “locked in” at the time of synthesis, leading to 
structures that are topologically polydisperse, meaning that many different types of knotted polymers can be 
generated in the synthesis process. Specifically, the end–linking of the linear polymer chain precursor molecules 
is often performed in a poor solvent where there are appreciable self–attractive polymer–polymer interactions 
in order to increase the probability of the chain ends to react and to form a ring. While these thermodynamic 
conditions do enhance ring formation, they can also be expected to greatly influence the probability of the rings 
to be knotted. This general trend can be appreciated by considering how 〈m〉 varies with T for rings having a 
fixed m. Figure 9 shows 〈m〉 as a function of the reduced temperature T/ε, where ε is the well depth parameter of 
the Lennard–Jones interaction potential. We see that 〈m〉 varies from a large value at low temperature where the 
knotted rings are in a collapsed configuration towards a value that gradually seems to be approaching the mini-
mal crossing number m with increasing T. Unexpectedly, 〈m〉 becomes insensitive to m for a specific value of T. 
This variation of 〈m〉 with T is remarkably similar to the variation of the number of nearest–neighbor contacts 
of self–avoiding walks with an attractive nearest–neighbor interaction55,56, which is natural since the projected 
structure of the knotted polymers on a planar surface (See Fig. 4) has the form of a branched polymeric structure.

Figure 7.  Shape characterization of the knotted ring polymers as a function of the minimum crossing number 
m. Here, the polymeric knots have fixed length L = 352.8 nm. In the upper panel, the ratio between the largest 
Λ3 and the smallest Λ1 eigenvalues of the radius of gyration tensor. The inset shows Λ2/Λ1 to complete the shape 
description of the knots as an object embedded in a spheroid whose main axis are Λ1, Λ2, Λ3. Higher ratios 
indicate higher anisotropy of the polymers. In the lower panel, we show the ratio Rh/Rg, where Rh is simply equal 
to C. This ratio indicates the changes between and open structure (small values) to a more closed compact one 
(higher values).
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This “memory effect” of the knot complexity of ring polymers in solutions on the thermodynamic conditions 
of cross–linking means that the g–ratios are defined as a weighted average,

Figure 8.  Basic solution characterization of knotted rings having variable rigidity. We compare size related 
properties of knotted and linear polymers having the same length, L = 352.8 nm. The different colors and 
symbols represent polymers having different stiffness specified by the persistence length of the linear polymer, 
lp, indicated in the inset. In panel (a), hydrodynamic radius ratios gh(m), in panel (b), radius of gyration ratios 
gs(m), and in panel (c), intrinsic viscosity ratios, gη(m). These ratios evidently decrease with increasing m and 
chain stiffness.

Figure 9.  Average crossing number 〈m〉 as a function of the reduced temperature T/ε for polymeric knots 
having fixed chain stiffness lp = 5.8 nm, diameter d = 2.8 nm, and length L = 176.4 nm. Dashed lines are a 
guide to the eye.
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where P(i, m) is the probability of the ring polymer is in a topological state having a minimal cross–linking num-
ber m and subclass i. For polymeric rings of moderate length L that is synthesized in a good solvent, we can expect 
almost all the rings to be in the unknotted state (m = 0) so that g ≈ g0(m = 0), but knots of increasing complexity 
should arise if the synthesis is performed under poor solvent conditions. The g–ratios for molecules synthesized 
in this way are inherently non–universal, even in the limit, L → ∞. This type of memory effect also arises in the 
cross–linking of macroscopic polymer networks57 and individual polymers58.

The fact that the knot complexity depends on chain length for even self–repelling chains adds to the variation of 
these g–ratios. Future work will evidently need to focus on the dependence of P(i, m) on solvent quality and chain flex-
ibility to enable the computation of g–ratios for quantitative comparisons of our calculations to experiment.

Properties of Knotted Rings: Effect of Polymer Length
The calculations above were made for knotted polymers having a fixed length and diameter. Short chains are 
inherently “stiffer” so that we might expect that increasing the chain length should have an effect size similar 
to increasing the chain rigidity. In this section, we confirm this expectation through direct computation of the 
properties of knotted rings having different lengths and chain stiffness, lp = 50.2 nm, and chain diameter d = 2.8 
nm. This choice of chain parameters is appropriate to describe double–stranded DNA in solution at salt concen-
trations sufficiently high for charge interaction to be screened (1 M NaCL).

Dependence of 〈EC〉 and 〈m〉 on Chain Length.  Figure 10(a) shows the reduced energy 〈EC(m)〉/E0 and rel-
ative mobility 〈μ(m)〉/μ0 as a function of m (panel a) and length L (panel b). We find that 〈EC(m)〉/E0 increases linearly 
with m and varies weakly with L. On the other hand, 〈m〉 varies nearly linearly on m and L, as illustrated in Fig. 10(c,d), 
respectively. Larger chains exhibit a larger number of average crossing points 〈m〉 for all m. Correspondingly, Fig. 5 
shows that more flexible chains having a fixed length have a greater average number of crossing points.

Size and Shape of Knotted Polymers Having Different Chain Length.  The size ratios, gh(m), gs(m), 
and gη(m) also depend on the chain length; these ratios being larger for larger chains in the case of polymers having 
a stiffness and diameter compatible with double–stranded DNA, as it is illustrated on Fig. 11. These basic size ratios 
become progressively smaller with increasing m, a trend similar to star branched polymers having an increasing 
number of arms59. Again, we note that this is a natural trend since the projection of a knotted polymer onto a plane is 
a branched polymer and the gi ratios for branched polymers tend to decrease with the degree of branching59.

The chain length range in our study is rather limited and our uncertainties in estimating asymptotic power 
and law scaling of size measurements (Rh, Rg, and [η]) and correspondingly dimensionless ratios gh(m), gs(m), and 
gη(m) in the long chain limit are probably large. Previous studies have compared the ZENO model estimates of 
Rh, Rg, and [η] for linear chain dsDNA over a very large range of mass range where quantitative agreement of the 
modeling with a worm–like chain model with an appropriate diameter and persistence length was found60. The 

Figure 10.  Knot energy, mobility, and average crossing number. The average Coulomb energy 〈EC〉 normalized 
by the canonical form energy E0 of unknotted polymer for variable L and fixed chain rigidity (lp = 50.2 nm) 
and diameter (d = 2.8 nm). Relative mobility, 〈μN〉/μ0. (c) Average crossing number 〈m〉 as a function of (c) the 
minimum crossing number m and (d) the knotted polymer length L.
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scaling properties of knotted polymers relating to size in the long chain limit were also investigated extensively 
in a previous computational study61,62. However, this former work did not emphasize the ratios gh(m), gs(m), and 
gη(m) and the importance of the knot complexity m on the properties of knotted polymers having fixed length or 
the influence of chain rigidity on the properties of knotted polymers.

Figure 12(a), and its inset, shows the eigenvalue ratios, Λ3/Λ1 and Λ2/Λ1, respectively, of the radius of gyration 
tensor as a function of the minimum crossing number m for polymeric knots having fixed rigidity lp = 50.2 nm 
and diameter d = 2.8 nm. The variation of the average shape of knotted polymers with chain length is rather com-
plex, exhibiting a relatively sharp change near m = 4, similar to star polymers having 5 to 6 arms63. With increas-
ing crossing number m, the knotted polymer becomes more spherical, when the polymer is stiff. An examination 
of the resulting knotted stiff polymers for m > 4 indicates that these structures are more like woven sheets than a 
sphere, a phenomenon that we did not expect.

Conclusions
Some important conclusions can now be drawn from the above relations. First, we have confirmed that the aver-
age Coulomb energy 〈EC〉 provides a natural measure of knot complexity that is directly related to measurements 
of DNA and often knotted structures. Simple knotted chains should have a lower average knot energy EC and the 
“unknot” (m = 0) should have the lowest or “ground state” knot energy (conjuncture). From the discussion above, 
the average crossing number 〈m〉 is a related measure of knot complexity and indeed these functionals are propor-
tional to a good approximation, Eq. (7), for the knots considered in this studied. Knots with higher complexity and 
less symmetry will be tested in a follow up study. The hierarchy of knot complexities, as reflected by the energy 〈EC〉, 
is directly reflected in the translational mobilities of knotted polymers through the generalized Stokes law, Eq. (3). 
The Coulomb energy thus directly pertains to an understanding of the mobility of knotted DNA. We emphasize that 
the proportionality relation between 〈EC〉 and m does not provide an obvious explanation of the proportionality 

Figure 11.  The knot–linear polymeric ratios as a function of m polymer length L for chains having fixed chain 
rigidity (lp = 50.2 nm) and diameter (d = 2.8 nm). The ratios decrease with knot complexity and increase with 
the knotted ring length.
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between the electrophoretic migration speed and 〈m〉. While Stokes law is clearly appropriate for dilute polymer 
solutions the factors that governs chain mobility in gels are still not completely understood64,65.

We also draw on ideas introduced in the field of image recognition to define “ideal knots” characterizing 
distinct families of knots sharing a knot complexity defined by the crossing number m, along with other indices 
prescribed by convention. In particular, we define canonical knots as polymer configurations that results from 
charging the beads of our knotted polymer. Increasing this charge progressively, and then letting the system relax 
after each step, leads to an apparently unique knotted ring conformation that maximizes C and minimizes the 
Coulomb energy. In the imaging processing context, the energy function is normally taken to be a more complex 
than the Coulomb energy, while this energy functional is quite natural for DNA, a highly charged polyelectrolyte 
in the absence of much salt added to solution. These “canonical knots”, and their properties provide a natural 
point of comparison to rings of variable flexibility and no charge where the conformations have numerous com-
plex forms with statistically define average properties that define their properties. We note that there has been a 
previous definition of ideal knots by progressively increasing the size of the beads in the chain where excluded 
volume repulsion is enforced3. Their conformations appear to be rather geometrically similar to our canonical 
form knots, but we prefer our definition since it has a more physical motivation in relation to DNA.

One of the other problems arising in characterizing knotted ring polymers, and predicting the properties 
that derive from such topologically defined polymers, is that it is often difficult to control the knot complexity in 
their synthesis. Nature has evolved enzymes to regulate chain topology in DNA, but synthetic chemists have a 
much more limited control of knot complexity, e.g., controlling the solvent quality conditions under which the 
chains are linked together. Under such conditions, it is imperative to have measurement methods and validated 
theoretical models that quantify how knot complexity influences average molecular shape along with standard 
measurements of hydrodynamic properties (Rh, [η], S) and static (Rg) size that are normally used to characterize 
polymers in solution27. We calculate all these basic polymer solution characterization properties as a function of 
the knot complexity m chain stiffness lp and over a range of chain length, allowing an estimation of long chain 
limit values of gh, gη, and gs. The range of knot complexities explored is not exhaustive, but rather representative 
of the classes of knots found in the characterization of real DNA and presumably real synthetic macromolecules. 
We expect these results to be of great use in characterizing knotted polymers in solution.

Figure 12.  Shape characterization of the knotted ring polymers as a function of the minimum crossing number 
m for polymeric knots having fixed rigidity lp = 50.2 nm and diameter d = 2.8 nm. In the upper panel, the ratio 
between the largest Λ3 and the smallest Λ1 eigenvalues of the radius of gyration tensor. The inset in panel (a) 
shows the ratios Λ2/Λ1 which provide a basic measure of the anisotropy of the shape of the knotted polymer. 
In (b), Rh/Rg gets smaller with increasing length and approaches a saturation value with increasing knot 
complexity. The images in panel (b) are representative configurations taken from different orientations to show 
the anisotropy for knotted polymers having L = 176.4 nm.
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We emphasize that the analytic calculation of the hydrodynamic properties of even flexible linear polymers, 
beyond a mean–field theory approximation, has long eluded theoretical description. The errors in existing theo-
ries in case of flexible polymers can be as large as (20%)15, creating a significant uncertainty in analytic theoret-
ical modeling of how chain topology influences polymer solution hydrodynamic properties. Our numerical 
treatment of these problems does not alleviate the inherent errors in this type of analytic calculation, but we hope 
that our precise numerical estimates of knot energy functionals will provide impetus for further theoretical efforts 
aimed at calculating the hydrodynamic properties of polymers in solution. The main problem here is that rela-
tively rare, more extended conformations can give a disproportionate contribution to the hydrodynamic proper-
ties so that the properties calculated for “typical” configurations do not describe ensemble average properties. The 
problem is especially great for flexible polymers when these fluctuation effects are large.

Now that we have characterized many of this basic solution properties of knotted polymers over a range of knot 
complexities, chain stiffness, and chain length, we plan to extend this work to MD of knotted polymers in the melt state. 
Since many of the properties of knotted polymers in solution are altered as the knot crossing number m is varied, which 
is similar to prior findings for star polymers having a variable number of arms, we expect to see similar trends relating 
to the configurational properties of knotted rings and star polymers in the melt state and the properties of the result-
ing materials when the topological structure of the molecules causes them to have similar average molecular shapes. 
Simulations of knotted ring and star polymers in the melt state the problems are currently in progress.
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