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Abstract: A telematics device is a vehicle instrument that comes preinstalled by the vehicle manufac-
turer or can be added later. The device records information about driving behavior, including speed,
acceleration, and turning force. When connected to vehicle computers, the device can also provide
additional information regarding the mechanical usage and condition of the vehicle. All of this
information can be transmitted to a central database via mobile networks. The information provided
has led to new services such as Usage Based Insurance (UBI). A range of consultants, industry com-
mentators and academics have produced an abundance of projections on how telematics information
will allow the introduction of services from personalized insurance, bespoke entertainment and
advertise and vehicle energy optimization, particularly for Electric Vehicles (EVs). In this paper we
examine these potential services against a backdrop of nascent regulatory limitations and against the
technical capacity of the devices. Using a case study approach, we examine three applications that
can use telematics information. We find that the expectations of service providers will be significantly
tempered by regulatory and technical hurdles. In our discussion we detail these limitations and
suggest a more realistic rollout of ancillary services.

Keywords: connected and autonomous vehicles; intelligent transport systems; telematics; regulation

1. Introduction

The prevalence of telematic devices is becoming a fixed constant in new vehicles,
enabling higher computational capabilities and optimized vehicle performance. Data from
telematic devices can contribute to reductions in road accidents and fatalities along with
a host of ancillary benefits such as emission reduction, reducing driver distraction, and
maintaining or enhancing vehicle value. Inter-vehicle connectivity is also possible through
the usage of telematics data, improving traffic flow and vehicle routing. Electric vehicles
(EVs) that incorporate the fuel efficiency capabilities afforded by telematic devices will see
substantial benefits to battery performance and health.

The potential of telematic data will be inhibited, however, by both regulatory and
technical limitations. The EU has recently published a consultation document to specifically
limit third party data access [1]. Future smart systems based on telematics date will be
required to adhere to these regulatory limitations. For example, the usage of sensitive
geolocation data will be restricted [2]. These regulations will also limit the potential safety
and economic benefits afforded by telematic devices. In the context of insurance and
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infotainment systems, tailored packages for the user will also be limited due to regulation
of data.

Telematic devices are limited by their memory storage, CPU processing, and data
transmission capabilities. Improvements in these telematic components are required to
handle to the increase in the computational demands of resource heavy applications [3].
Increases in the computational capabilities of the telematic device can contribute additional
costs to insurers or users of the device [4,5] The aforementioned technical constraints can
further impact the operability of fuel reduction techniques and battery State of Health
(SOH) and State of Charge (SOC) systems used in EVs.

Telematic devices typically monitor acceleration/deceleration, turning force of the
vehicle, velocity, and GPS data. Information provided from these devices can be used to
assess driver behavior and vehicle performance. Telematic devices are typically installed
in vehicles either through black box style installations, embedded systems or through
smartphone devices [6,7]. Compared with installed or embedded systems, smartphone
devices suffer from sensor precision issues due to their unintended usage as telematic
recorders [8]. Telematic devices currently produce 5–15 MB annually, depending on
frequency of trips made by the driver [9] These devices are also capable of transmitting
the data they record from the vehicle, sending information from the vehicle for usage of
high-level applications [10]. Applications that use telematic data can assist in domains
such as safety features and services, entertainment services, fuel efficiency, and traffic
management systems [11,12].

The potential safety features provided by telematic devices are evident in EU white
paper discussions [1,13,14] (European Commission 2016; European Parliament 2018; Euro-
pean Data Protection Board 2020). In the EU 92% of recorded traffic accidents within the
last decade are due to driver error [14]. Advanced Driver Assistance Systems (ADAS) can
mitigate driver error, as limitations in human perception can be reduced through these
automated features. To reduce driver error and improve overall road safety, the EU is
introducing regulation requiring the installation of black box recorders, ADAS systems
(in particular: intelligent speed assistance, driver drowsiness, attention warning, and
advanced driver distraction warning) and tyre pressure monitoring [15].

Safety features using telematics data range from vehicle warning systems to real time
traffic and cooperative driving techniques. ADAS enabled vehicles can reduce driver error
and improve safety by monitoring driver behaviors and environmental conditions [16].
Connected safety features using telematics data can propagate relevant vehicle metrics to a
neighborhood of vehicles [17,18]. Telematics data can be used to alert drivers of nearby
vehicle movement intentions and other potential dangers in connected collision warning
systems [19].

In-vehicle infotainment describes a supply of services which provide a driver with
a range of multi-media, navigation, or networking capabilities. As the transition from
manual to autonomous driving progresses, infotainment services will become inclusive
to the driving experience. Infotainment services will be provided in a similar fashion
to mobile or Internet Service Provider (ISP) packages [20]. Services or applications will
be either embedded, tethered, or integrated into the connected vehicle [21]. Drivers can
expect a multitude of entertainment services which include games, music streaming videos,
weather, navigation, etc. [22]. Third parties can also take advantage of direct in-vehicle
communication with the driver and provide geolocation-based advertising [23].

Vehicles fitted with telematic devices can introduce a wide range of energy efficiency
benefits, either through optimized driving techniques or improved traffic flow. Data
broadcasted in a connected network can enable cooperation between vehicles for efficient
traffic flow. Vehicles with Eco-driving capabilities can alert drivers with real time driving
optimizations such as optimal acceleration and deceleration [24]. Research conducted
by Wu et al. has found that energy consumption can be reduced by 26% when alerting
the driver to fuel intensive behaviors [25]. Additionally, two separate studies by He
et al. and Wadud et al. have shown that features which encourage a vehicle’s optimal
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operation (minimize harsh braking and acceleration) can see benefits of 35–55% in energy
or fuel efficiency costs [26,27]. Energy efficiency can also be achieved through the usage
of network systems. Optimal driver behavior and driver feedback systems have been
shown to improve the overall fuel efficiency of a vehicle. Recent advances in inter-vehicle
communication technology have afforded researchers the ability to further reduce fuel
consumption by using these inter-connected methods. Using a telematic device’s GPS
capabilities; optimal routes can be generated for vehicles in the area, reducing travel time
or traffic congestion [28]. Efficient traffic flow can be achieved by monitoring acceleration
or braking habits of other vehicles [27]. The efficiency of these traffic monitoring techniques
has been described by Cox et al. in their paper [29], which show potential energy savings
between 13 and 20% in vehicles which utilize this technology.

Telematic devices allow for multiple improvements to efficient traffic flow. Informa-
tion such as GPS and speed can be broadcast and alerted to other vehicles for smart traffic
crossings or intersections. Signal Phase and Timing (SpaT) systems is a method of broad-
casting speed and GPS data enabling vehicles to adjust speed to arrive timely on a green
light [30]. Intersections or traffic lights can be optimized for efficient traffic flow, as vehicles
can safely and optimally transverse through without the need for stopping [31,32]. Broad-
casting of GPS information can also be used for re-routing traffic to avoid highly congested
areas promoting efficient traffic flow [33,34]. Broadcasting information from neighboring
motorway lanes will also have the effect of improving traffic flow and efficiency, as vehicles
can change or merge into lanes to promote optimal driving conditions [35,36].

EVs require accurate estimations of battery SOC and SOH to ensure the healthy
operation of the battery. Telematic devices can be used to assist in the battery monitoring
process. Battey SOC can be estimated by a direct estimation approach or by using model-
based methods. Direct estimation algorithms such as amber-hour integral method, estimate
the battery SOC directly from the battery [37]. The initial SOC needs to be known however
to give accurate estimates of the battery’s current charge. Model-based methods such as
Electrochemical Models (EMs), Electrochemical Impedance Models (EIMs), and Equivalent
Circuit Models (ECMs), model the state equations of the battery to accurately depict
the internal SOC and SOH [38,39]. An adaptive or filtering algorithm which can infer
the internal state of the battery will be combined with current state models to create a
SOC/SOH estimation model [40]. An improvement on the adaptive model approach is to
use machine learning algorithms for accurate and precise predictions of battery SOH and
SOC [39].

At an important waypoint before widespread adoption, this research offers a practical
assessment of the potential of telematic benefits. Existing research on telematic usage
focuses on the benefits and applications of telematic data. However, our research will
examine these benefits and applications against the aforementioned constraints. In this
way, we highlight the limitations posed by over regulation in a European context and the
technical constraints on telematic devices and the impacts this may have on connected
vehicles. Risk analysis is also extended to third party services, as regulation may hinder
the ability for these services to operate in a restricted environment. Research is conducted
as a systematic review utilising a case study approach to examine the risks posed by the
constraints on data access and usage from telematic devices.

2. Technical Limitations

Vehicle-to-everything is a communication system that allows communication from the
vehicle to traffic, infrastructure, and the environment [41]. The current network standards
for telematic devices using (V2X) communications, are split between dedicated short-range
communications (DSRC) and long-term evolution vehicle-to-everything (LTE-V2X) con-
nections [18]. LTE-V2X utilizes a Third Generation Partnership Project (3GPP) mobile
connection for both cellular network communication and direct vehicle-to-vehicle commu-
nication. However, there are limitations in the latency and bandwidth of both networking
technologies [42]. Two separate studies by Lyu et al. and Elsadig and Fadlalla have found
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that DSRC suffers significantly with latency issues when introduced to numerous data
transmissions in an intersection or traffic jam [43,44]. Lyu et al. further describes DSRC as
unsuitable for large networks of connected devices, as low latency is a strict requirement for
vehicle safety warnings such as collision warning [43]. The alternative V2X communication,
LTE-V2X, is considered unreliable in a paper by Alasmary and Zhuang. In this paper,
they describe the limitations of V2X due to loss of packets in concurrent transmissions or
blocking of signal by objects [45].

Accurately estimating battery SOH and SOC is challenging. SOC estimations methods
which directly monitor the battery such as amber-hour integral requires initial knowledge
of the battery SOC to operate. However, determining the SOC of a battery in real-time
applications is difficult as this will negatively affect the accuracy of the estimation [37].
Model based methods such as EMs, ECMs and EIMS are criticized by Xiong et al. due to
their limited ability to accurately estimate the battery SOC [40]. Machine learning based
battery SOH measurements are highly dependent on the transmission of high volumes of
data. Acquiring real-time training data for these models using a Machine Learning process
are time-consuming and costly [39].

The technical limitations of battery performance monitoring systems reduce the accu-
rate readings of SOC and battery health. Common SOC estimation methods such as EMs,
ECMs, and EIMs cannot provide a comprehensive description of battery degeneration and
subsequently provide inaccurate readings of SOC [40]. The effects of high SOC levels on
battery degeneration and the reduction of the lifetime of the battery has been researched
by Wikner and Thiringer, further showing the importance of accurate SOC modelling [46].

3. Current and Future Legal Constraints

In the EU, regulation will require the mandatory installation of telematic devices on all
new vehicles by 2024 [15]. Vehicles that are fitted with telematic devices can collect a vast
amount of personal and private information from the user. Current EU regulations that
cover data processing and collection within a vehicle are the ePrivacy Directive [47] and
General Data Protection Regulation (GDPR) [48]. The ePrivacy directive requires consent
from the data controller in the event of requiring access to or storing of data from a device
capable of communication.

The International Working Group on Data Protection in Telecommunications (IWGDPT)
and the European Commission have both stated the importance of data privacy and user
consent in connection to personal driver data [2,13]. The process of requiring consent
should also be afforded to passengers and users of rental vehicles [1,2,49]. The user of
the vehicle should also have the ability to delete profile information and other personal
information relating to them from the vehicle [1,2]. The European Data Protection Board
(EDPB) recommends that manufactures should implement a profile management system in
the vehicle. This will allow a user to easily agree, reject, or delete specific data types from
different vehicle systems.

The processing requirements of data processing and collection from a vehicle will
change. The IWGDPT stipulates that the processing of personal data should be prioritized
within the vehicle, as to avoid transmitting sensitive information to remote servers [2]
(p. 10). The EDBP endorses this requirement, host-data processing should be prioritized
over data transmission. In the event host-data processing is not possible, a qualified third
party should be selected to process the raw telematic data [1] (p. 16). The aforementioned
regulation ensures that a minimal amount of personal data leaves the vehicle.

4. Case Studies

The following case studies have been selected to highlight the impact of technical
and regulatory limitations of telematics devices. The three case studies represent di-
verse applications that are most likely to benefit economically and socially from telematic
based applications.
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4.1. Insurance

The European motor insurance industry is a lucrative market worth GBP 100 billion [50].
Digital based insurance is a growing market currently worth over GBP 15 billon [50]. Third
party insurance is mandatory and insurers traditionally group driver risk by location, age,
occupation etc. Usage Based Insurance (UBI) is a dynamically priced digital insurance
model that monitors driving behavior. GPS data that is collected from telematics devices
by the insurer is used to predict driver behavior. Risky driving behavior such as speeding,
harsh acceleration, de-acceleration, or cornering can result in higher premiums, while safer
behavior will result in lower premiums [51–54]. Insurers thus incentivize safer driving,
saving money for the policyholder and provide bespoke insurance. Monitoring driving
behavior requires a device capable of recording and transmitting driver behaviors and
vehicle status.

There are numerous benefits to UBI insurance schemes for both insurer and policy-
holder. Aside from a reduction in premium price, policyholders can expect economic
benefits (fuel efficiency, and vehicle condition), safety benefits (feedback on driving behav-
ior, and reduced accident risk) and security benefits (recovery of stolen vehicle) [55,56].
For insurers, more accurate pricing and enhanced fraud prevention and detection capa-
bilities are a significant advantage of using UBI schemes [55,57]. Despite this business
appetite, there are regulatory and technical constraints that hamper the implementation of
this service.

EU regulation stipulates that data protection and privacy are an integral part of any
system which processes or records data [1,2,13,14]. Telematic devices are capable of record-
ing sensitive and private information about an individual. Before data processing can occur,
policyholders must provide consent allowing data access by third parties [1,48]. Installed
devices belong to the insurer and require user consent for installation. Embedded devices
however belong to the driver, requiring the insurer to seek consent for data access [1,2].

To ensure full autonomy over data usage, the EU have recommended that processing
of data remains in the host vehicle unless transfer is strictly necessary [1]. The purpose
of local host data processing is to limit third parties from accessing raw telematic data
produced from embedded telematic devices. For insurers, data can either be accessed
from the vehicle after host processing has occurred or sent to a third party for processing
before usage.

The EU require the installation of embedded telematic devices on all new vehicles
by 2024 [15]. Data scoring and aggregation by insurers requires the removal of personal
information relating to the policyholder. Geolocation data has been identified by both
EDPB and IWGDPT as particularly sensitive and revealing of personal habits [1,2]. Both
the EDPB and IWGDPT have recommended restrictions to geolocation data from third
parties. Insurers are limited in their capacity to accurately detect fraudulent claims and
driver behavior without access to geolocation data.

Regulation can also introduce technical challenges for insurers and Original Equip-
ment Manufacturers (OEMs) of embedded telematic devices. Data transmission to au-
thorities or third parties will be required in the event of a crash, offence, or loss of vehicle
(stolen) [1,58]. Data relating to the event will need to be protected and encrypted before
transmission occurs. A typical vehicle may produce 10/15 mb of data annually from a
telematic device [9], transitioning to a connected vehicle/network will see data production
increased up to 25 GB daily [11]. Telematic data required for investigations by insurers can
be delayed through either requiring consent or pre-processing before transmission [1]. The
storage capabilities of the device introduce a technical requirement/cost as data must not
be deleted to assist in the investigatory process.

The technical hurdles to exploit the full advantages afforded by telematic devices
exposes a gap between expectations and technical capabilities. The successful delivery of
UBI products hinges on the cost of data transmission and telematic devices for both insurers
and policyholders. Higher levels of data transmission from a policyholder’s vehicle can
incur significant costs to the insurer. Charges will apply to data transmissions on 3GPP
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architecture (such as LTE-V2X), taking the European data transmission average of GBP 20
per 50 GB, these costs could be significant [59].

Host data processing requires higher specification components to handle the increase
in data flow and memory storage. Standard telematic devices will not be suitable for
the additional processing requirements. Higher specification components with larger
memory and processing capacity comes at a greater cost. For comparison, a standard
telematics device is priced at ~GBP 30 while a higher specification device comes at a cost
of ~GBP 80 with increased storage and networking capabilities. The higher priced model
is built on current processing components, so a device capable of our forecasted storage
and networking requirements is expected to incur a higher price. Embedded devices
with higher specifications will be synonymous with higher priced/high spec vehicles.
Embedded telematic devices also come at the disadvantage to the insurer, as OEMs create
the data access points and communication architecture for telematic data retrieval. Data
retrieval for the insurer would require permission from the OEM for the usage of the
system architecture. In the EU prices for access to vehicle data is charged at GBP 100 [60].
If we assume that an insurer has 20,000 vehicles with telematic enabled policies, the GBP
100 cost per vehicle can contribute an additional GBP 2 million in operational costs for the
insurer. However, depending on brand of vehicle each OEM will require a different process
for data access and can charge a different price. We suggest that interest in UBI insurance
may dissipate as policyholders and insurers are burdened with increasing costs.

The regulatory and operational costs of embedded telematic devices will impact the
availability and economic potential of bespoke insurance schemes. Insurers must prepare
for restricted data access to avoid legal and compliance issues with the EU. Changes must
be made by the insurer to comply with data consent requirements, local host processing
and restrictions on data such as geolocation. The legal ramifications for non-cooperation
could be significant, incurring a fine of up to 2% of annual revenue [61].

Where host processing is unavailable, the insurer must seek a competent third party to
process policyholder data. The tendering process can be costly to the insurer in numerous
ways. The process can be time-consuming, lack of competition can affect the contract price
and a third party will add compliance issues. The selection of third-party vendors for data
processing can price an insurer out of the UBI market. Less competition for UBI insurance
schemes can further increase the premium prices for customers.

There is again a gap between the ability of insures to provide UBI and the emerging
regulatory landscape. The absence of geolocation data will inhibit the ability to accurately
price a policy, detect fraud or calculate the risk profile of a policyholder using telematic data.
Driver behavior monitoring and driver feedback systems that require linking geolocation
data such as orientation, speed, acceleration, and deceleration to a policyholder will become
inoperable due to the inaccessibility of this data.

4.2. Infotainment and Third-Party Services

Infotainment and third-party services will integrate social media, music streaming,
and video services with on-board OEM systems. GPS data can be blended with social media,
weather apps or music streaming services to provide unique experiences to the user. Shared
trip information recommended playlists in certain environments and real time weather
updates are all examples of infotainment and third-party services [62]. Third parties
will benefit from enhanced advertising capabilities afforded by infotainment services as
advertisements can be sent directly to a vehicle [23]. The transition of current vehicles to
entertainment hubs is an attractive prospect for third parties and the consumer.

Third party and infotainment services are highly dependent on access to the user/vehicle.
To operate within the EU however, service providers are required to ask for user consent
before processing can occur [2,13,14]. Third parties must inform users of their intentions for
data processing, gaining consent from users to provide their service. Further restrictions
apply to the sharing of personal information outside the vehicle [1]. The operability of
third-party services are hindered by limited access to data and transmission restrictions.
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Geolocation data is regarded as highly sensitive personal information and as a result
access is restricted by the EU [1]. Third party services can only access data that is relative
to the process. Processing and transmitting data more than necessary is limited [1]. The
operability of services hinges on the accessibility of this data. Services which provide real
time updates are restricted by their over reliance on freely accessible geolocation data.

To communicate between vehicles effectively, low latency and reliable systems are
required. Current limitations are evident in the networking paradigms used for inter-
vehicle communication [43]. Services which use vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communications may come under strain as the underlying cellular-
vehicle-to-everything (C-V2X) communication technology suffers data congestion. Sub-
stantial amounts of data processes will inevitability require large storage requirements. The
transmission of telematic data coupled with third party services will increase the average
data production rate by 25GB [11].

Third party and infotainment services can enrich the driving experience. However,
the gap between the potential range of service and regulatory and technical limitations is
significant. Services which require geolocation data will suffer due to data restrictions. In
some legislative environments, services will not be offered due to these restrictions.

Multiple users of a vehicle require their own personal privacy settings. Shared vehicle
or rental vehicle user privacy is further a problem due to the non-uniform privacy require-
ments. Requiring consent for data access becomes tedious for multiple users of a vehicle.
The EDPB have recommended a centralized service for a user’s data privacy preferences to
simplify the consent requirement process. However, users or passengers might select to
forgo services if the burden of agreeing to multiple terms and conditions is onerous.

Third parties which intend on relating user behavior with products for advertising
will need to explicitly state their intentions for data usage. Subsequently, users are less
likely to agree to the terms of service if numerous consent requests are made. Location
specific advertisements (location of a user in relation to a business) will not have detailed
access to a user’s/vehicle’s position.

4.3. Energy Reduction Schemes

Greenhouse gas (GHG) reduction is a global challenge. In the EU passenger vehicles
contribute 60.6% of the total CO2 emissions from road transportation [63]. Telematic
devices can assist in promoting efficient driver behavior, thereby increasing fuel efficiency,
and reducing emissions. Reductions in emissions is also possible through optimal vehicle
routing. GPS and speed information can be broadcasted to a neighborhood of vehicles,
diverting traffic from congested areas or for efficient arrival at intersections. EVs can also
benefit from the usage of telematic devices as they provide accurate recordings of the
current vehicle state.

The technical limitations of battery performance monitoring systems reduce the accu-
rate readings of SOC and battery health. Common SOC estimation methods such as EMs,
ECMs, and EIMs cannot provide a comprehensive description of battery degeneration and
subsequently provide inaccurate readings of SOC [40]. High SOC levels also contribute to
battery degeneration, reducing the lifetime of the battery [46]. The battery is considered at
the end-of-life when the charging state is reduced by 20% [64]. Inaccurate readings of the
battery and a high state of charge can contribute to 52% reduction in battery lifetime [46].
The average lifetime of a battery is 10 years [46,64], so inaccurate readings of SOC could
reduce the battery lifetime to 5 years.

Stringent regulation on data access can have an adverse effect on the optimal fuel
efficiency recommendations that will be present in EVs. Methods that model driving
behavior for fuel efficiency optimization require access to a driver’s telematic data [65].
Access to raw telematic data will not be freely available, as regulatory requirements for
host vehicle processing or transmitting data to a third party is required [1].

Battery health monitoring is a key factor in efficiently charging an EV and prolonging
the battery lifetime. If the battery health degenerates significantly, the range that the
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EV can travel will be reduced. The cost of replacement of the battery within an EV will
be significant for the driver, typically the battery is valued at 25–30% of the price of the
vehicle [66]. The combination of reduced range and high battery replacement costs may
contribute to poor market acceptance of EVs.

Battery performance and fuel optimization methods that provide customized behav-
ioral analysis of driving behavior will also be limited by the restricted access to telematic
data. Access to personal data will require explicit definitions of how the data is intended
to be used and requires consent before processing. The user has the right to deny access
to their telematic data or in the case of data transmission, can terminate the process. Data
transmission from the vehicle will also be subject to the processing restrictions determined
by the EDBP. Models which provide real-time improvements through the transmission of
telematic data will become inefficient due to the limitations of data access.

5. Discussion

There is significant optimism about the ability of telematics to deliver new services,
reduce energy, and improve driver safety. The benefits of telematic devices will become
more apparent, as widespread acceptance of these devices in bespoke insurance products,
third-party applications, electric, and connected vehicles grows. Based on a case study
approach, we have identified the technical and regulatory limitations that will affect
the growth of telematic devices. Technical limitations in the memory, processing, and
transmission capabilities of the telematic device will introduce limitations in the operations
of energy reduction schemes and third-party services. Similarly, existing, and nascent
regulatory hurdles will further disrupt the operability of these services. Regulation that
restricts access to telematic data and the requirement for host data processing will contribute
heavily to these regulatory overheads. A summary of these technical and regulatory
limitations can be found in Table 1.

Table 1. Summary of Technical/Regulatory Limitations.

Telematic
Constraint Application of Telematics Limitation Cost Reference

Technical
Communication DRSC High Latency [43,44]

LTE-V2X Unreliable [45]
Battery Monitoring System Model Based (EM, ECM, EIM) Inaccurate [40]

Machine Learning Data requirements [41]
Storage Current Memory 15MB Increase to 25GB [9,11]

Regulatory Embedded Telematics ePrivacy Restricted Data Access [47]
GDPR - [48]

User Consent Requirement Ability to delete data EU Requirement [1,2]
Profile Management

Host Vehicle Processing Host processing Computational Cost [2] (p. 10)
Third Party Processing - [1] (p. 16)

Geolocation Restrictions Limited Access Driver Behavior [51–53]
Fraud Detection [51]

5.1. Insurance

In our research, we have described the limitations and restrictions that will affect the
introduction of bespoke insurance products. Within the EU, legislation on the requirement
of embedded telematic devices in new vehicles will come into effect by 2024. Insurers
will not automatically have access to telematic devices and processing and transmitting
substantial amounts of telematic data will be costly, in some cases as much as GBP 46.27
per 50 GB. Restricted access to geolocation data will additionally limit the capabilities
of accurately detecting fraud and driver behaviors. The restriction of access to data and
the requirement of host processing introduces additional operational costs to providing
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bespoke insurance products. These costs can be significant for some insurers, and they may
be forced to either leave the UBI market or amalgamate services.

Insurers will need to seek alternative procedures to accurately detect fraudulent be-
haviors and offer bespoke insurance products effectively. Procedures such as privacy-by-
design [67] or utilising blockchain-based data privacy technologies [68,69] can assist in
privacy preservation during the data collection process. Insurers are likely to consolidate
and collaborate with other insurers to lobby legislators, to seek additional data processing
privileges. Geolocation data access needs to be addressed as it is imperative to model
driving behavior and detecting fraud. Popular methods, such as k-anonymity or location
obfuscation, can be employed to mask a policyholder’s location, preserving their right to
anonymity [70,71]. These methods can give an insurer a general idea of location for fraud
detection, driver behavior analysis and real-time tailored risk classification depending on the
area, (e.g., city driving compared to driving in rural areas). Although, changing the under-
lying data processing and collection procedures may cause initial significant infrastructure
and financial cost, the reward of increased data access may alleviate these overheads.

Embedded telematic devices differ by manufacturing standards and requirements.
The non-standardization of these devices may lead to compatibility issues or obsolescence
of the device, causing issues with delivery of bespoke insurance products [9]. Insurers
will need to communicate with multiple manufacturers to ensure that the networking,
storage, and processing capabilities of the embedded telematics devices meets their mini-
mum requirements. Insurers will need to decide collectively what minimum processing
and transmission requirements are needed to offer bespoke insurance products. Since
third-party vehicle insurance is mandatory, regulation on the minimum requirements
for embedded telematic devices should be considered by national governments. Efforts
have already been made by OEMs to standardize their communication and data access
requirements through Extended Vehicle Data architecture [72]. However, legislators and
insurers should be careful as this leaves OEMs with a privileged market position [60]. An
alternative solution involving a third party should be considered where data is held, and
access is provided by the third party. IBM BlueMIX, Caruso and Otonomo are already
examples of these services. Our suggestions for mitigating these regulatory and technical
constraints are further detailed and summarized in Table 2.

Table 2. Summary of Suggestions and Benefits.

Application of
Telematics Limitation Suggestion Benefit Cost

Data Access and Privacy Privacy-by-Design Privacy and −2% Revenue
Blockchain Privacy Data Access Fine

Geolocation Homomorphic
Encryption Driver Behavior, Deloitte

Insurance Attribute-Based
Encryption Fraud Detection

Consolidation OEM Consolidation Standardization ~GBP 100 per Vehicle
Third Party >GBP 100 per Vehicle

Third Party Services Data Access and Privacy Privacy-by-Design Privacy and Data
Access −2% Revenue

Energy Reduction
Schemes Battery Monitoring Naturalistic Driving

Data
Intermediate
Alternative Battery Life > 5 years

Communication and
Latency Latency and Reliability 5G, Edge Caching,

Vehicle Fog
Increased Transmission
Speed and Reliability 1 ms Latency

5.2. Third Party Services

The burden of multiple consent requirements for users of third-party services as
mentioned in Case Study 4.2 may impact the successful market penetration of infotain-
ment packages and services. Advertising based on a user’s geolocation data or product
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preferences will be limited by privacy and data restrictions. Depending on the service,
customers can create profiles with customised privacy and user settings. User profiles can
be connected with in-vehicle infotainment systems and other third-party services within
the vehicle. Additional consent requests and privacy requirements will be necessary for
interconnected vehicle and user profile services. Third party services will also need to
make explicit their intentions for the usage of their customer’s personal and geolocation
data. The option for easy removal or deletion of profile data is also a requirement in EU
regulation. For users not to be discouraged by the increased volume of data access and
consent requests, third parties should consider uniform or simplified privacy settings that
apply in-vehicle and out.

If third parties intend on offering their services, the principals of privacy-by-design
software development should be considered [67]. Developing a service with data privacy
as a core requirement for the service will alleviate the effects of restrictions to data access,
and its benefits are further detailed in Table 2. The change in the developing process can
still be costly for the third party, as additional time and resources will be required to change
their core software development model. A combination of privacy-by-design principals
and engagement with OEMs on how their device processes/stores data, may significantly
reduce the risks third parties experience when releasing their product.

5.3. Energy Reduction Schemes

Switching to an EV can significantly reduce GHG emission. In case study 4.3, we
examined the limitations of inaccurate readings of battery state and health. Inaccurate
readings of battery SOC introduces a significant level of range anxiety into the user of
the vehicle. Attempts to further improve driver behavior models for fuel efficient driving
or efficient battery usage in EVs are limited by access to private driver telematic data.
This conflict of interest in data privacy and driver behavior modelling improvements will
inevitably lead to inefficient driver feedback suggestions or battery health monitoring
methods. Real-time data modelling may not be possible, but the usage of open naturalistic
driving data sets can be considered as an intermediate alternative, which is further detailed
in Table 2. This conflict of interest will need to be addressed by legislation, whereby
real-time data access can be achieved for the purpose of fuel efficiency or driver behavior
optimization suggestions.

5.4. Communication & Latency

Third party and energy reduction schemes that are dependent on fast and reliable
communication will be limited by the high latency and unreliable connections of DSRC
and LTE-V2X networks. Services which require geolocation data for optimal route finding,
smart intersections or other navigational third-party services are limited by the inability
to send and receive traffic or environmental information reliably and efficiently. Limita-
tions in these communication technologies are most notable in network congested areas
such as intersections or traffic jams. Technologies which can alleviate the effects of poor
networking speeds such as 5G, Adaptive Relay-Node Selection, edge caching, and vehicle
fog technologies are currently in development and can be utilized for networking commu-
nications [73–75]. 5G can achieve 1ms latency for vehicle communications. Third party
services and energy reduction schemes will have a short wait for efficient and reliable
networking capabilities. These enhanced networking paradigms are summarized along
with their benefits in Table 2.

6. Conclusions

In this review paper, we have demonstrated the significant technical and regulatory
limitations of telematic devices. Telematic devices are limited in their data processing,
memory storage and data transmission capabilities. Applications dependent on telematic
devices will be limited or unviable due to these technical constraints. Our research has
indicated that energy reduction schemes dependent on high-speed networking capabilities
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will be adversely affected by slow networking constraints of telematics devices. EVs which
utilize telematic data for battery performance and health monitoring will be subject to
inefficient estimations of SOC and, SOH due the technical constrains of these devices.
Improvements in networking performance and enhanced computational capabilities of
the device will alleviate these technical challenges, however our analysis has shown
that advances in the computational capabilities of the device is subject to significant
operational cost.

The regulatory hurdles of restricted access to telematic data will invariably contribute
significant operational inefficiencies in UBI and third-party services. Legislation requiring
the installation of telematic devices in all new vehicles by 2024 will complicate the issue
of data access and processing. Insurers and third parties will be restricted from accessing
the telematic device directly and will require additional consent requests and alternative
processes to access the telematic data. In this review, the process of in-host vehicle process-
ing has been identified as a significant contributor to these operational costs. Additionally,
access to geolocation data will be restricted, inhibiting insurers form accurately preventing
and detecting fraud. Our analysis predicts that some insurers will inevitably be forced
into an amalgamation of services to alleviate the substantial costs for the operation of UBI
products. Insurers will additionally be required to consolidate, and lobby government
and manufactures to standardize the minimum requirements of telematic devices. Gov-
ernments and OEMs should also consider introducing uniform privacy preferences for
users of the vehicle. The introduction of uniform privacy preferences should simplify and
ease the burden or multiple consent requests for the user. We have also identified utilising
the principals of privacy-by-design and blockchain-based data privacy technologies. We
propose that these principals will facilitate in alleviating privacy concerns and may lead to
additional regulation to support the introduction of these practices.

Future research should consider how technical and regulatory limitations will affect
connected autonomous vehicles, as these limitations may inhibit their operability. Addi-
tional research should consider regulation in other jurisdiction where comparisons could
be drawn between the current and future perspectives of regulation on telematic devices.
In this paper, we have provided a comprehensive analysis of the technical and regulatory
limitations of telematic devices and proposed solutions aimed to alleviate the effects of
these constraints on third parties, insurers, and the consumer.

Author Contributions: Conceptualization, F.M., B.S., G.C. and C.R.; methodology, K.M.; investiga-
tion, K.M. and L.M.; writing—original draft preparation; K.M.; writing—review and editing, K.M.
and F.M.; supervision, F.M. and B.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Science Foundation Ireland (SFI), grant Blended Autonomous
Vehicles administrated by Lero, the SFI Research Center for Software.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
3GPP Third Generation Partnership Project
ADAS Advanced Driver Assistance Systems
C-V2X Cellular-Vehicle-to-Everything
DSRC Dedicated Short-Range Communication
EDPB European Data Protection Board
ECM Equivalent Circuit Model
EIM Electrochemical Impedance Model
EM Electrochemical Model
EV Electric Vehicle
GDPR General Data Protection Regulation
GHG Green House Gas



Sensors 2021, 21, 3517 12 of 14

ISP Internet Service Provider
IWGDPT International Working Group on Data Protection in Telecommunications
LTE-V2X Long Term Evolution-Vehicle-to-Everything
OEM Original Equipment Manufacturer
OJEU Official Journal of the European Union
SOC State of charge
SOH State of Health
UBI Usage Based Insurance
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything

References
1. European Data Protection Board. Guidelines 1/2020on Processing Personal Data in the Context of Connected Vehicles and Mobility

Related Applications; EDPB: Brussels, Belgium, 2020.
2. International Working Group on Data Protection in Telecommunications Connected Vehicles. Available online: https:

//www.datenschutz-berlin.de/fileadmin/user_upload/pdf/publikationen/working-paper/2018/2018-IWGDPT-Working_
Paper_Connected_Vehicles.pdf (accessed on 17 May 2021).

3. Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2018,
5, 19–35. [CrossRef]

4. Castignani, G.; Frank, R.; Engel, T. Driver behavior profiling using smartphones. In Proceedings of the 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 552–557.

5. Handel, P.; Skog, I.; Wahlstrom, J.; Bonawiede, F.; Welch, R.; Ohlsson, J.; Ohlsson, M. Insurance Telematics: Opportunities and
Challenges with the Smartphone Solution. IEEE Intell. Transp. Syst. Mag. 2014, 6, 57–70. [CrossRef]

6. Chen, Z.; Yu, J.; Zhu, Y.; Chen, Y.; Li, M. D3: Abnormal driving behaviors detection and identification using smartphone sensors.
In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON),
Seattle, WA, USA, 22–25 June 2015; pp. 524–532.

7. Siami, M.; Naderpour, M.; Lu, J. A Mobile Telematics Pattern Recognition Framework for Driving Behavior Extraction. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 1459–1472. [CrossRef]

8. Wahlstrom, J.; Skog, I.; Handel, P. Smartphone-Based Vehicle Telematics: A Ten-Year Anniversary. IEEE Trans. Intell. Transp. Syst.
2017, 18, 2802–2825. [CrossRef]

9. Karapiperis, D.; Birnbaum, B.; Brandenburg, A.; Castagna, S.; Greenberg, A.; Harbage, R.; Obersteadt, A. Usage-Based Insurance
and Vehicle Telematics: Insurance Market and Regulatory Implications; CIPR Study Series; CIPR: Kansas City, MO, USA, 2015; 86p.

10. Zhao, Y. Telematics: Safe and fun driving. IEEE Intell. Syst. 2002, 17, 10–14. [CrossRef]
11. Siegel, J.E.; Erb, D.C.; Sarma, S.E. A Survey of the Connected Vehicle Landscape—Architectures, Enabling Technologies,

Applications, and Development Areas. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2391–2406. [CrossRef]
12. Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A Cascaded R-CNN With Multiscale Attention and Imbalanced Samples for Traffic

Sign Detection. IEEE Access 2020, 8, 29742–29754. [CrossRef]
13. European Commission. A European Strategy on Cooperative Intelligent Transport Systems, a Milestone towards Cooperative, Connected

and Automated Mobility; European Comission: Brussels, Belgium, 2016.
14. European Parliament. A European Strategy on Cooperative Intelligent Transport Systems; European Parliament: Brussels, Bel-

gium, 2018.
15. Council of the European Union. REGULATION (EU) 2019/2144. Off. J. Eur. Union 2019, 2019/2144, 40.
16. Ziebinski, A.; Cupek, R.; Grzechca, D.; Chruszczyk, L. Review of Advanced Driver Assistance Systems (ADAS); AIP Publishing:

Collage Park, MD, USA, 2017; p. 120002.
17. Sharma, S.; Kaushik, B. A survey on internet of vehicles: Applications, security issues & solutions. Veh. Commun. 2019, 20, 100182.

[CrossRef]
18. Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A Survey of Vehicle to Everything (V2X) Testing. Sensors 2019, 19, 334. [CrossRef] [PubMed]
19. Ortiz, F.M.; Sammarco, M.; Costa, L.H.M.K.; Detyniecki, M. Vehicle Telematics Via Exteroceptive Sensors: A Survey. arXiv 2008,

arXiv:2008.12632.
20. Yu, Z.; Jin, D.; Song, X.; Zhai, C.; Wang, D. Internet of Vehicle Empowered Mobile Media Scenarios: In-Vehicle Infotainment

Solutions for the Mobility as a Service (MaaS). Sustainability 2020, 12, 7448. [CrossRef]
21. Mourad, A.; Muhammad, S.; Al Kalaa, M.O.; Refai, H.H.; Hoeher, P.A. On the performance of WLAN and Bluetooth for in-car

infotainment systems. Veh. Commun. 2017, 10, 1–12. [CrossRef]
22. Choi, D.-K.; Jung, J.-H.; Koh, S.-J.; Kim, J.-I.; Park, J. In-Vehicle Infotainment Management System in Internet-of-Things Networks.

In Proceedings of the 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January
2019; pp. 88–92.

https://www.datenschutz-berlin.de/fileadmin/user_upload/pdf/publikationen/working-paper/2018/2018-IWGDPT-Working_Paper_Connected_Vehicles.pdf
https://www.datenschutz-berlin.de/fileadmin/user_upload/pdf/publikationen/working-paper/2018/2018-IWGDPT-Working_Paper_Connected_Vehicles.pdf
https://www.datenschutz-berlin.de/fileadmin/user_upload/pdf/publikationen/working-paper/2018/2018-IWGDPT-Working_Paper_Connected_Vehicles.pdf
http://doi.org/10.1109/JAS.2017.7510736
http://doi.org/10.1109/MITS.2014.2343262
http://doi.org/10.1109/TITS.2020.2971214
http://doi.org/10.1109/TITS.2017.2680468
http://doi.org/10.1109/5254.988442
http://doi.org/10.1109/TITS.2017.2749459
http://doi.org/10.1109/ACCESS.2020.2972338
http://doi.org/10.1016/j.vehcom.2019.100182
http://doi.org/10.3390/s19020334
http://www.ncbi.nlm.nih.gov/pubmed/30650658
http://doi.org/10.3390/su12187448
http://doi.org/10.1016/j.vehcom.2017.08.001


Sensors 2021, 21, 3517 13 of 14

23. Jaisingh, K.; El-Khatib, K.; Akalu, R. Paving the Way for Intelligent Transport Systems (ITS): Privacy Implications of Vehicle
Infotainment and Telematics Systems. In Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent
Vehicular Networks and Applications, Valetta, Malta, 13 November 2016; pp. 25–31.

24. Ryan, C.; Murphy, F.; Mullins, M. Semiautonomous Vehicle Risk Analysis: A Telematics-Based Anomaly Detection Approach.
Risk Anal. 2019, 39, 1125–1140. [CrossRef] [PubMed]

25. Wu, C.; Zhao, G.; Ou, B. A fuel economy optimization system with applications in vehicles with human drivers and autonomous
vehicles. Transp. Res. Part D Transp. Environ. 2011, 16, 515–524. [CrossRef]

26. He, Y.; Rios, J.; Chowdhury, M.; Pisu, P.; Bhavsar, P. Forward power-train energy management modeling for assessing benefits of
integrating predictive traffic data into plug-in-hybrid electric vehicles. Transp. Res. Part D Transp. Environ. 2012, 17, 201–207.
[CrossRef]

27. Wadud, Z.; MacKenzie, D.; Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles.
Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [CrossRef]

28. Zhuge, C.; Wang, C. Integrated modelling of autonomous electric vehicle diffusion: From review to conceptual design. Transp.
Res. Part D Transp. Environ. 2021, 91, 102679. [CrossRef]

29. Cox, B.L.; Mutel, C.L.; Bauer, C.; Beltran, A.M.; van Vuuren, D.P. Uncertain Environmental Footprint of Current and Future
Battery Electric Vehicles. Environ. Sci. Technol. 2018, 52, 4989–4995. [CrossRef]

30. Vahidi, A.; Sciarretta, A. Energy saving potentials of connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 2018,
95, 822–843. [CrossRef]

31. Mahmassani, H.S. 50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations
Considerations. Transp. Sci. 2016, 50, 1140–1162. [CrossRef]

32. Malikopoulos, A.A.; Cassandras, C.G.; Zhang, Y.J. A decentralized energy-optimal control framework for connected automated
vehicles at signal-free intersections. Automatica 2018, 93, 244–256. [CrossRef]

33. Guidoni, D.L.; Maia, G.; Souza, F.S.H.; Villas, L.A.; Loureiro, A.A.F. Vehicular Traffic Management Based on Traffic Engineering
for Vehicular Ad Hoc Networks. IEEE Access 2020, 8, 45167–45183. [CrossRef]

34. Ryan, C.; Murphy, F.; Mullins, M. Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous
vehicles. Transp. Res. Part A Policy Pract. 2020, 134, 152–163. [CrossRef]

35. Bevly, D.; Cao, X.; Gordon, M.; Ozbilgin, G.; Kari, D.; Nelson, B.; Woodruff, J.; Barth, M.; Murray, C.; Kurt, A.; et al. Lane Change
and Merge Maneuvers for Connected and Automated Vehicles: A Survey. IEEE Trans. Intell. Veh. 2016, 1, 105–120. [CrossRef]

36. Rios-Torres, J.; Malikopoulos, A.A. A Survey on the Coordination of Connected and Automated Vehicles at Intersections and
Merging at Highway On-Ramps. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1066–1077. [CrossRef]

37. Liu, K.; Li, K.; Peng, Q.; Zhang, C. A brief review on key technologies in the battery management system of electric vehicles.
Front. Mech. Eng. 2019, 14, 47–64. [CrossRef]

38. Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and
management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78,
834–854. [CrossRef]

39. Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring
methods. J. Power Sources 2018, 405, 18–29. [CrossRef]

40. Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles.
IEEE Access 2018, 6, 1832–1843. [CrossRef]

41. MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2X Access Technologies: Regulation, Research, and Remaining Challenges.
IEEE Commun. Surv. Tutor. 2018, 20, 1858–1877. [CrossRef]

42. Chen, S.; Hu, J.; Shi, Y.; Zhao, L. LTE-V: A TD-LTE-Based V2X Solution for Future Vehicular Network. IEEE Internet Things J. 2016,
3, 997–1005. [CrossRef]

43. Lyu, F.; Zhu, H.; Cheng, N.; Zhou, H.; Xu, W.; Li, M.; Shen, X. Characterizing Urban Vehicle-to-Vehicle Communications for
Reliable Safety Applications. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2586–2602. [CrossRef]

44. Elsadig, M.A.; Fadlalla, Y.A. VANETs Security Issues and Challenges: A Survey. Indian J. Sci. Technol. 2016, 9. [CrossRef]
45. Alasmary, W.; Zhuang, W. Mobility impact in IEEE 802.11p infrastructureless vehicular networks. Ad Hoc Netw. 2012, 10, 222–230.

[CrossRef]
46. Wikner, E.; Thiringer, T. Extending Battery Lifetime by Avoiding High SOC. Appl. Sci. 2018, 8, 1825. [CrossRef]
47. Council of the European Union. Directive 2009/136/EC. Off. J. Eur. Union 2009, 26. Available online: https://eur-lex.europa.eu/

LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:en:PDF (accessed on 22 April 2021).
48. Council of the European Union. REGULATION (EU) 2016/679. Off. J. Eur. Union 2016, 88. Available online: https://eur-lex.

europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679 (accessed on 22 April 2021).
49. Privacy International Connected Cars: What Happens to Our Data on Rental Cars? 2017. Available online: https:

//privacyinternational.org/sites/default/files/2017-12/cars_briefing.pdf (accessed on 17 February 2021).
50. Deloitte European Motor Insurance Study: The Rise of Digitally-Enabled Motor Insurance. Available online: https:

//www2.deloitte.com/content/dam/Deloitte/be/Documents/finance/European-Motor-Insurance-Study_2nd-edition_
November-2016.pdf (accessed on 2 March 2021).

http://doi.org/10.1111/risa.13217
http://www.ncbi.nlm.nih.gov/pubmed/30359471
http://doi.org/10.1016/j.trd.2011.06.002
http://doi.org/10.1016/j.trd.2011.11.001
http://doi.org/10.1016/j.tra.2015.12.001
http://doi.org/10.1016/j.trd.2020.102679
http://doi.org/10.1021/acs.est.8b00261
http://doi.org/10.1016/j.trc.2018.09.001
http://doi.org/10.1287/trsc.2016.0712
http://doi.org/10.1016/j.automatica.2018.03.056
http://doi.org/10.1109/ACCESS.2020.2978700
http://doi.org/10.1016/j.tra.2020.01.024
http://doi.org/10.1109/TIV.2015.2503342
http://doi.org/10.1109/TITS.2016.2600504
http://doi.org/10.1007/s11465-018-0516-8
http://doi.org/10.1016/j.rser.2017.05.001
http://doi.org/10.1016/j.jpowsour.2018.10.019
http://doi.org/10.1109/ACCESS.2017.2780258
http://doi.org/10.1109/COMST.2018.2808444
http://doi.org/10.1109/JIOT.2016.2611605
http://doi.org/10.1109/TITS.2019.2920813
http://doi.org/10.17485/ijst/2016/v9i28/97782
http://doi.org/10.1016/j.adhoc.2010.06.006
http://doi.org/10.3390/app8101825
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:en:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:337:0011:0036:en:PDF
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://privacyinternational.org/sites/default/files/2017-12/cars_briefing.pdf
https://privacyinternational.org/sites/default/files/2017-12/cars_briefing.pdf
https://www2.deloitte.com/content/dam/Deloitte/be/Documents/finance/European-Motor-Insurance-Study_2nd-edition_November-2016.pdf
https://www2.deloitte.com/content/dam/Deloitte/be/Documents/finance/European-Motor-Insurance-Study_2nd-edition_November-2016.pdf
https://www2.deloitte.com/content/dam/Deloitte/be/Documents/finance/European-Motor-Insurance-Study_2nd-edition_November-2016.pdf


Sensors 2021, 21, 3517 14 of 14
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