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Random forest algorithm identifies miRNA 
signatures for breast cancer detection and 
classification from patient urine samples
Jochen Maurer , Matthias Rübner, Chao-Chung Kuo, Birgit Klein, Julia Franzen, Julia 
Wittenborn, Tomas Kupec, Laila Najjari, Peter Fasching and Elmar Stickeler

Abstract
Background and objectives: Breast cancer is the most common cancer in women, with one 
in eight women suffering from this disease in her lifetime. The implementation of centrally 
organized mammography screening for women between 50 and 69 years of age was a major 
step in the direction of early detection. However, the participation rate reaches approximately 
50% of the eligible women, one reason being the painful compression of the breast, cited as a 
major issue for not participating in this very important program. Therefore, focusing current 
research on less painful and less invasive techniques for the detection of breast cancer is 
highly clinically relevant. Liquid biopsies offer this option by detection of distinct molecules 
such as microRNAs (miRNAs) or circulating tumor DNA (ctDNA) or disseminated tumor cells.
Design and methods: Here, we present the first proof-of-concept approach for sequencing 
miRNAs in female urine to detect breast cancer and, subsequently, intrinsic subtype-specific 
miRNA patterns and implement in this regard a novel random forest algorithm. To this end, 
we performed miRNA sequencing on 82 urine samples, 32 samples from breast cancer 
patients (9× luminal A, 8× luminal B, 9× triple-negative, and 6× HER2) and 50 healthy 
control samples.
Results and conclusion: Using a random forest algorithm, we identified a signature of 
275 miRNAs that allows the detection of invasive breast cancer in urine. Furthermore, we 
identified distinct miRNA expression patterns for the major intrinsic subtypes of breast 
cancer, specifically luminal A, luminal B, HER2-enriched, and triple-negative breast cancer. 
This experimental approach specifically validates miRNA sequencing as a technique for breast 
cancer detection in urine samples and opens the door to a new, easy, and painless procedure 
for different breast cancer-related medical procedures such as screening but also treatment 
monitoring.

Plain language summary 
A new way to detect breast cancer from urine samples using miRNAs

Breast cancer is the most common cancer in women, with one in eight women getting it 
during their lives. To catch it early, a regular screening program using mammograms was 
set up for women aged 50 to 69. However, only about half of the eligible women participate, 
partly because mammograms can be painful due to the breast compression involved. 
Therefore, researchers are looking for less painful ways to detect breast cancer. One 
promising method is called a liquid biopsy, which looks for specific molecules like miRNAs 
or ctDNA in bodily fluids. In this study, we explored using urine samples to detect breast 
cancer by sequencing miRNAs. We analyzed urine from 82 women, including 32 with breast 
cancer and 50 healthy women. We used a special computer algorithm called a random 
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Background
Breast cancer (BC) is still the leading cause of 
cancer-related deaths among the female popula-
tion, affecting one in eight women in her lifetime.1 
Moreover, this disease still places an enormous 
burden on healthcare systems worldwide. In addi-
tion to tumor biology, which guides treatment 
options and therapeutic needs in general, tumor 
stage is still an important risk factor for treatment 
decisions. Implementing mammography-based 
early detection programs consecutively led to 
decreased tumor size (T stage) and decreased 
axillary lymph node involvement (N stage), 
thereby improving survival rates in patients with 
BC.2 Almost 100% of German women aged 50–
69 years are invited to undergo mammography 
screening every 2 years. However, since its imple-
mentation in 2009, the participation rate has 
stagnated at approximately 50%.3

Therefore, it appears reasonable that these pro-
grams could dramatically profit from new early 
detection methodologies, which are less invasive 
than the current standards.

MicroRNAs (miRNAs) are small noncoding 
RNA molecules that regulate gene expression by 
binding to specific target mRNAs, affecting their 
translation. They are found in many different cell 
types and tissues and have been shown to play a 
role in a wide range of biological processes, 
including cell growth and proliferation, differen-
tiation, and apoptosis. Recent studies have shown 
that miRNAs can also be found in body fluids, 
such as blood and urine,4 where they can be easily 
isolated and quantified and can act as biomarkers 
for various diseases, including cancer.5,6

As biomarkers, miRNAs possess high potential 
for cancer detection because they are stable in 
body fluids, which allows easy collection and stor-
age of samples.7 They are also present and 

detectable in very small samples, which makes 
them ideal biomarkers.8 In addition, miRNA-
based diagnostic tests can be noninvasive, which 
is especially important for the early detection of 
cancer.

While, several studies have investigated the use of 
miRNAs as biomarkers for BC and identified 
miR-21, miR-155, miR-205,9–11 miR-424, and 
miR-42312,13 as potential biomarkers for this dis-
ease, additional research is needed to fully estab-
lish the clinical utility of miRNA-based diagnostic 
tests for BC. Generally, miRNAs regulate multi-
ple processes in the body and are used to amplify 
or buffer cellular signaling programs. Therefore, 
it seems unlikely to identify reliable single marker 
miRNAs in body fluid from a heterogeneous pop-
ulation of female cancer patients. By contrast, it 
seems rather feasible to investigate changes in 
groups of miRNAs regulating processes, espe-
cially in the context of cancer.

To investigate the feasibility of whole miRNA 
genome detection as a diagnostic tool for BC, we 
investigated a cohort of 82 urine samples from 
BC patients and healthy individuals using 
miRNA sequencing for the first time. The goal 
was to identify all currently known miRNAs reg-
ulated in BC in a completely unbiased setting 
without prior selection of BC-specific miRNAs 
from the literature. In this proof of concept, we 
present the first step toward the clinical use of 
miRNA sequencing in BC detection and provide 
insight into the stratification of BC patients uti-
lizing this information.

Methods

Patient selection and urine sample preparation
Samples were collected at the University Hospital 
Aachen (ethics vote 206/09) and University 

forest analysis to identify a pattern of 275 miRNAs that could indicate the presence of 
breast cancer in urine. We also found specific miRNA patterns for different types of breast 
cancer: luminal A, luminal B, HER2-enriched, and triple-negative. This research shows 
that miRNA sequencing of urine samples can be a new, easy, and painless way to detect 
and monitor breast cancer, potentially improving screening and treatment monitoring.

Keywords:  breast cancer, classification, expression pattern, HER2, luminal A, luminal B, 
miRNA sequencing, screening, TNBC, urine
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Hospital Erlangen. Participants in Erlangen 
were recruited within the iMODE-B study 
(Imaging and Molecular Detection of  
Breast Cancer; ethical approval by the ethics 
committee of the Friedrich-Alexander-
Universität Erlangen-Nuremberg; #325_19 B). 
Patients were eligible for inclusion if they indi-
cated a diagnostic biopsy due to a suspicious 
breast lesion. The main aim of the iMODE-B 
study was to identify molecular markers that are 
predictive of patient prognosis and treatment 
response at the time of the first diagnosis of BC. 
After the participants provided written informed 
consent in accordance with the Declaration of 
Helsinki, biospecimen sampling was performed.

A total of 355 urine samples were collected 
between November 2019 and July 2020. The 
urine samples were centrifuged at 944g for 10 min 
at room temperature to separate the cell pellet 
and cell-free supernatant, which were stored sep-
arately at −80°C until further use. For miRNA 
extraction, at least 7 ml of cell-free supernatant 
was available, 4 ml was used for miRNA extrac-
tion, and the remaining volume was used as a 
backup. From these 282 participants, 82 were 
randomly selected (n = 50 healthy controls and 
n = 32 cancer patients) for final analysis.

MiRNA sequencing and statistical analysis
Sequencing libraries were prepared with the 
QIASeq miRNA UDI Library Kit (Qiagen, 
Hilde, Germany) according to the manufactur-
er’s instructions. To the recommended 4 µl 
sample input for biofluids, 1 µl of synthetic miR-
NAs from the QIASeq miRNA Library QC Kit 
was added as additional quality control. The 
quality of the libraries was checked on a 
Bioanalyzer or Tapestation (both Agilent, 
Waldbronn, Germany), and the libraries were 
quantified by a Quantus fluorometer (Promega, 
Madison, WI, USA). All the samples were 
sequenced on an Illumina NextSeq 500 instru-
ment (Illumina, San Diego, CA, USA) in 72 bp 
single-end mode. Sequencing yielded a mean 
coverage of approximately five million reads per 
sample.

FASTQ files were generated using bcl2fastq 
(Illumina). To facilitate reproducible analysis, 
samples were processed using the publicly availa-
ble nf-core/smRNAseq pipeline version 2.2.114 
implemented in Nextflow 23.0415 using Docker 
24.0.2 with minimal command. All analyses were 

performed using custom scripts in R version 4.2.2 
using the DESeq2 v.1.38.3 framework.16

One low-quality sample was excluded, leaving 
data from 32 cancer patients and 49 healthy indi-
viduals for downstream analyses. We normalized 
read counts using DESeq2 and employed a five-
fold cross-validation approach to ensure robust 
evaluation. Due to the limited sample size, all 
samples were included in the training process.

Our analysis strategy involved two key steps: first, 
we applied a random forest (RF) algorithm to all 
4039 miRNAs to explore broad interactions. Next, 
we used RF-based feature selection to identify the 
most relevant miRNAs. Supervised learning was 
conducted using a multi-label classification 
approach. Python tools such as scikit-learn, numpy, 
pandas, matplotlib, and seaborn were used for 
analysis and visualization, facilitating a comprehen-
sive exploration of miRNA–target dynamics.

Quantitative PCR
RNA isolation was performed with the miRNeasy 
Mini Kit by Qiagen (#217004) following the 
instructions in the user manual. One 5 ml aliquot 
was isolated to ensure the same volume for each 
sample. After isolation, the RNA was stored at 
−80°C until cDNA transcription. Transcribed 
miRNA samples were analyzed using a TaqMan 
Advanced miRNA Assay (#A25576 Applied 
Biosystems, individual assays were purchased for 
each investigated miRNA, sequences are listed on 
Applied Biosystems Website) in combination 
with TaqMan Fast Advanced Master Mix 
(#4444557 Applied Biosystems, Darmstadt/
Germany). A Roche LightCycler 480 Instrument 
II (#05015243001) was used for detection. The 
samples and master mix were added to 384-well 
plates (#04729749001 LightCycler 480 Multiwell 
Plate white; Roche, Grenzach-Whylen/Germany). 
For correct preparation following the manufac-
turer’s instructions, the samples were diluted with 
0.1× TE. Samples were pipetted in triplicate on 
each plate per assay and the exogenous control 
ath-mir-159a. Primer sequences used are shown 
in Supplemental Table 2. The LightCycler 480 
data were exported as MS-EXCEL files and ana-
lyzed. The resulting Ct values were analyzed 
using the ∆∆Ct method. The microRNA ath-mir-
159a was used as a reference gene to normalize 
the data to the ΔCt, and samples from healthy 
donors served as the second reference to calculate 
the miRNA fold change.
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GraphPad Prism software was used for statistical 
evaluation. Student’s t-test was used to determine 
significant differences.

Results

Analysis of 82 urine samples from BC patients 
and healthy female individuals
We implemented miRNA sequencing as an unbi-
ased method to evaluate the currently known 
miRNA genome from human urine samples. The 
first aim was to implement reliable and consistent 
detection of miRNAs in urine. Since this study 
should evaluate the feasibility of miRNA sequenc-
ing from reasonably small sample sizes, which can 
be obtained during a regular visit in an outpatient 
setting, we tested a sample size of 4 ml of urine in 
this sequencing approach.

Eighty-two individual patient samples were uti-
lized in this study, and the miRNAs were extracted 
from 4 ml urine samples as described in the 
Methods section. The 82 samples were classified 
into 50 healthy tumor-free control, 6 HER2-
enriched, 9 luminal A, 8 luminal B, and 9 triple-
negative breast cancer (TNBC) tumor-bearing 
patient urine samples (Table 1).

MiRNA sequencing of urine samples enables 
the detection of more than 4000 target miRNAs
We analyzed the expression of more than 4600 
miRNAs and detected the consistent expression of 
4039 distinct miRNAs. The mean absolute 
miRNA expression (normalized read counts) of all 
the samples varied between 6.5 and 14.1, with the 
majority of the samples showing an average expres-
sion of 7–8 ± 1 (Supplemental Figure 1). In the 
first step, we attempted to verify a couple of regu-
lated miRNAs by qPCR. Using a 1.5-fold log 
change upregulation or downregulation of expres-
sion with an adjusted p value of 0.05 or less as a 
cutoff, we identified several miRNAs exhibiting 
differential expression between healthy and tumor-
bearing individuals (Figure 1(a) and Supplemental 
Table 1). Unfortunately, expression levels of most 
of these miRNAs identified in the Volcano-Blot 
Figure 1(a) were close to or below a reasonable 
level of detection for the qPCR-based analysis that 
we intended to establish. Nevertheless, we tried to 
further stratify patient subgroups and received a 
number of differentially highly expressed miRNAs 
for luminal A versus healthy (161 miRNAs), 
HER2 versus healthy (30 miRNAs), luminal B 

versus healthy (19 miRNAs), and TNBC versus 
healthy (12 miRNAs) patients. Several of these dif-
ferentially expressed miRNAs were found in more 
than one of the subgroup comparisons and could 
therefore not be used as biomarkers to stratify indi-
vidual patients.

Confirmation of miRNA expression profiles  
by qPCR
To validate our initial results of the sequencing, 
we analyzed the expression of the most highly dif-
ferentially expressed miRNA markers using 
qPCR and confirmed the differential regulation 
of some (Supplemental Figure 2(A)–(H)), but 
not others (Supplemental Figure 3(A)–(G)). 
Overall, it must be stated that the variability in 
the qPCR results far exceeded the variability 
found in the sequencing results. Nevertheless, 
some subgroup-specific expression patterns, such 
as high expression of miR-30a-5p in TNBC, were 
validated (Supplemental Figure 2(F)). In general, 
the detection of cancer in urine compared to 
urine from healthy individuals was more consist-
ent even though it varied distinctly among the 
whole patient population.

The RF approach for data modeling
Even if the generic statistical approach that we 
employed to address the marker identification 
with a classical paradigm captured overall trends 
of miRNAs across samples, it nevertheless failed 
to detect combinatorial expression patterns of 
multiple miRNAs in a patient-specific manner. 
We did not identify a unique reliable marker in 
this manner; we hypothesized that some impor-
tant miRNAs might not exhibit strong individual 
distinctions in tumors; instead, their collective 
expression pattern is decisive. Therefore, we 
applied machine learning methods capable of 
detecting these patient-specific combinatorial 
patterns and identifying potential biomarker 
groups of miRNAs.

An analysis based on the miRNA sequencing data 
showed that the unsupervised clustering of the 
whole dataset did not match distinct patterns 
within the cancer group or a subtype (Figure 
2(a)). Moreover, principal component analysis 
(PCA) did not reveal any distinct patterns (Figure 
2(b)). To investigate the data in greater detail, we 
applied several machine-learning algorithms to 
detect hidden patterns of miRNA expression. 
Figure 2(c) shows the initial benchmark of the 
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shallow learning methods. The RF outperforms 
logistic regression, decision tree, and support vec-
tor machine (SVM) due to its ensemble approach, 
which reduces overfitting, captures complex rela-
tionships, handles high-dimensional data, and 
balances bias-variance trade-offs by aggregating 
diverse decision trees.

Sequencing data indicating the ability of 275 
individual miRNAs to distinguish BC patients 
from healthy women
We trained the RF model with two approaches: 
one with 4039 miRNAs and the other with fea-
ture selection via RF (Figure 3). The prediction 
with 275 miRNAs selected by the RF algorithm 

Table 1.  Description of the patient cohort used for analysis.

Description All Healthy Cancer

N = 82 N = 50 N = 32

Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%)

Age at urine sampling 54.5 (13.2) 50.7 (11.3) 60.4 (13.9)

Age at urine sampling by group

  <50 years 30 (36.6) 23 (46.0) 7 (21.9)

  >50 years 52 (63.4) 27 (54.0) 25 (78.1)

  Age at first diagnosis na na 59.7 (14.1)

  BMI 26.5 (6.6) 25.6 (5.9) 27.6 (7.6)

Tumor size

  T1 na na 16 (50.0)

  T2–4 na na 16 (50.0)

Tumor grade

  G1/2 na na 12 (37.5)

  G3 na na 20 (62.5)

Distant metastasis status

  cM0 na na 29 (90.6)

  cM1 na na 3 (9.4)

Histology

  Ductal na na 25 (78.1)

  Lobular na na 6 (18.8)

  Others na na 1 (3.1)

Molecular-like subtype

  Luminal A-like na na 9 (28.1)

  Luminal B-like na na 8 (25.0)

  HER2 positive na na 6 (18.8)

  TNBC na na 9 (28.1)

HER2, Her2-enriched; TNBC, triple-negative breast cancer.
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(mean area under the curve (AUC) = 0.67; 
Figure 3(a), right) performed much better than 
the prediction with the whole miRNA dataset 
(mean AUC = 0.58; Figure 3(a), left).

Figure 3(b) shows the heatmap showing the 
expression of the filtered miRNAs. The ensem-
ble approach involving the RF algorithm pro-
duced better results than the generic statistical 
approach. This is probably due to the compli-
cated or combinatorial expression patterns of 
miRNAs in urine. The miRNAs in urine are a 
mixture of different tissues and organs at their 
final stop, so their expression patterns are no 
longer obvious and are detectable by generic sta-
tistical methods.

RF algorithms with filtered miRNAs identify 
intrinsic subtypes of BC
Following the approach to distinguish healthy 
controls from women with BC, we applied RF 
analysis to identify miRNA patterns that would 
allow us to substratify patients into the distinct 
BC subtypes of our patient cohort: luminal A, 
luminal B, Her2-enriched, and TNBC.

For HER2-enriched BCs, 175 miRNAs out of the 
4039 miRNAs were sufficient to increase the 
AUC on average from 0.55 ± 38 to 0.68 ± 0.32 
(Figure 4(a), compare left to right). In the case of 
LumA-type cancer, differential expression of 195 
miRNAs was associated with an increase in the 
AUC from 0.7 ± 0.32 to 0.78 ± 0.26 on average 

Figure 1.  Initial analysis and evaluation of the sequencing data. (a) Volcano plot showing a 1.5-fold log change 
upregulation or downregulation of expression with an adjusted p value of 0.05 or less as a cutoff (miRNAs 
identified as red dots were considered significant; those identified as not significant are shown in blue).  
(b) Subclasses of breast cancer could be identified by groups of miRNAs.
HER2, Her2-enriched; LumA, Luminal A; LumB, Luminal B; miRNA, microRNA; TNBC, triple-negative breast cancer.
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Figure 2.  Data analysis. (a) Unsupervised clustering of the whole dataset of miRNA sequencing data. (b) PCA. 
(c) Analysis of several machine learning algorithms to detect hidden patterns of miRNA expression. The initial 
benchmarks of the learning methods used are as follows: logistic regression, decision tree, random forest, 
and SVM.
miRNA, microRNA; SVM, support vector machine.
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(Figure 4(b), compared left to right). As one can 
easily derive from the figures with ever-increasing 
ROCs, an increased number of runs with more 
samples will increase the true-positive rate 
dramatically.

For luminal B-type BC, we found 191 miRNAs 
that distinguish Lum B-carrying patients from 
healthy individuals, the difference in which 
increased the AUC from 0.57 ± 0.2 to 0.71 ± 0.24 
(Figure 5(a), left/right). Finally, TNBC was 

detected by RF analysis of 189 miRNAs, for which 
the AUC was 0.65 ± 0.31 and the AUC was 
0.39 ± 0.22 for all the detectable miRNAs (Figure 
5(b)). We found this to be the most dramatic 
increase in sensitivity among all the subgroups.

The filtered miRNA subgroups exhibited no 
miRNA species overlap
Among the filtered miRNAs above, there were 
very few overlapping miRNAs (Figure 6(a)). 

Figure 3.  ROC curves were generated using sets of miRNAs to distinguish cancer patients from healthy 
individuals. (a) ROC curve analysis of all 4039 detectable miRNAs (left side) and a small subset of 275 filtered 
miRNAs (right side). (b) Cluster dendrogram of all samples for the 275 filtered miRNAs.
miRNA, microRNA; ROC, receiver operating characteristic.
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There were no common miRNAs among the four 
subtypes. This finding suggested that the associ-
ated miRNAs might be distinct across these four 
subtypes. Most of these filtered miRNAs were not 
significantly or differentially expressed according 
to DGEA.

Discussion
BC treatment is based on tumor biology and 
tumor stage. Therefore, early detection has been 
an important step toward improving the curation 
rates observed over the last several decades. 
Today, it is common practice in industrialized 

Figure 4.  ROC curves were generated using sets of miRNAs to distinguish subtypes of breast cancer.  
(a) ROC curve for HER2 patient samples versus healthy individuals using all 4039 detectable miRNAs (left side) 
and with only a small subset of 175 filtered miRNAs (right side). (b) ROC curve for Lum A-type breast cancer 
patient samples versus healthy individuals using all 4039 detectable miRNAs (left side) and with only a small 
subset of 195 filtered miRNAs (right side).
HER2, Her2 enriched; Lum A, luminal A; miRNA, microRNA; ROC, receiver operating characteristic.
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countries to screen the female population for BC 
regularly in national programs based on mam-
mography. Improved mammography approaches 
using machine learning for deeper and more 
accurate image analysis are therefore the next 
logical step to detect BC as early as possible to 
improve treatment and curation options.17,18 

Nevertheless, the tremendous technical and 
timely effort, physical discomfort during the pro-
cedure, and monetary aspects of this technique 
could lead to the use of an easy, fast, and cost-
effective prescreening method, which in the case 
of a positive finding would lead to an additional 
imaging method.

Figure 5.  ROC curves were generated using sets of miRNAs to distinguish subtypes of breast cancer. (a) ROC 
curve for Lum B breast cancer patient samples versus healthy individuals using all 4039 detectable miRNAs 
(left side) and with only a small subset of 191 filtered miRNAs (right side). (b) ROC curve for triple-negative 
breast cancer patient samples versus healthy individuals using all 4039 detectable miRNAs (left side) and with 
only a small subset of 189 filtered miRNAs (right side).
Lum B, luminal B; miRNA, microRNA; ROC, receiver operating characteristic.
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Furthermore, early information about tumor 
biology would likely be useful for stratifying con-
secutive imaging and work-up procedures.

Stratifying cancer patients based on noninvasive 
methods is currently a tremendous challenge. 
Especially in BC, the diagnosis of TNBC has 
much more severe implications for the patient 
than a luminal A-type tumor. Therefore, detect-
ing this disease noninvasively and obtaining fur-
ther information on the type of tumor would be 
extremely beneficial. This approach would give 
the treating physician a distinct advantage for 
subsequent work-up and treatment decisions.

Here, we present the first tightly controlled 
miRNA sequencing effort of urine samples from 
BC patients to gain insight into how the miRNA 
genome is regulated in this disease and its intrin-
sic subtypes. Earlier efforts from our group 
focused on specific miRNAs known to be regu-
lated in BC using a proprietary miRNA amplifica-
tion paradigm.9 These findings already indicated 
that urine samples can exhibit high variability in 
miRNA content due to individual differences in 
diet, hydration status, and collection methods. 
Nevertheless, in the current approach, we imple-
mented miRNA sequencing as an innovative 
approach for urinary analysis to understand how 
many miRNAs in the currently known genome 
are regulated in BC and whether consecutively 
identified signatures might represent specific sub-

classes of BC, allowing their detection from non-
invasive urine samples.

We found the let-7-miRNA family to be strongly 
represented in the cancer cohort, as would be 
expected from studies on other cancer entities 
using different methods of detection. The Let7-
miRNAs are dysregulated in the lung,19 pancre-
atic,20 colorectal,21 and papillary thyroid22 cancers 
and, as recently described, in BC.23 Let7 was fur-
ther shown to regulate cancer stemness.24

Apart from these initial findings, we also detected 
considerable variability among the top regulated 
miRNAs in some samples (e.g., variability of let-7c 
expression in healthy individuals (Figure 2(a)), mak-
ing an individual diagnosis of BC or its subclasses 
less reliable. We therefore applied a machine learn-
ing approach to the sequencing data to investigate 
whether the patterns of multiple miRNAs would be 
more informative than those of several strongly dif-
ferentially regulated miRNAs. Interestingly, the RF 
approach outclassed the decision tree, logistic regres-
sion, and SVM so dramatically, making it the 
method of choice for future analysis of miRNA 
sequencing data from urine samples.

An increase or decrease in a single given miRNA 
did not seem to have as much impact as a whole 
“signature” of miRNA expression changes 
(Figure 1 vs Figure 3). It seems feasible that a 
disease like BC, affecting the whole body and 

Figure 6.  Overlapping and distinct miRNAs were identified in cancer patients and the indicated subgroups.
miRNA, microRNA.
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eliciting multiple cellular and molecular biologi-
cal changes, would lead to a wide-ranged miRNA 
network shift instead of regulating only a couple 
of individual miRNAs. The detection of very spe-
cific subsets of miRNA regulatory networks, spe-
cifically identifying both BC patients and even 
their specific intrinsic subtypes, is innovative and, 
thus far, not known. Nevertheless, more surpris-
ingly, these patterns of miRNAs overlap very little 
with each other; on average, only 10%–15% of 
miRNAs are commonly regulated, whereas most 
miRNAs clearly identify a subgroup or BC in 
general. This, to our knowledge, has not been 
shown before and raises the question of whether 
previous data should be reanalyzed with a more 
unbiased approach to possibly identify yet 
unknown patterns. However, only a machine 
learning approach can unravel this issue, as has 
been shown in other fields of research.25–27

While this study identifies a potential miRNA sig-
nature for BC detection, we were unable to calcu-
late key performance indicators such as sensitivity 
and specificity due to the limited sample size. 
Future studies should include a larger, independ-
ent cohort to provide reliable estimates of sensi-
tivity and specificity and to validate the clinical 
utility of the identified miRNA signature.

Consecutively, an important focus of further 
research should be the reduction and minimiza-
tion of miRNAs included in our identified dis-
tinct miRNA pattern and an expansion of the 
patient cohort. The applicability of our technol-
ogy for screening or early detection also relies on 
the sensitivity, specificity, false-positive, and 
false-negative rates. The optimization of these 
pertinent parameters relies on large cohorts of 
patients and healthy control samples, which will 
have to be analyzed for this purpose.

Conclusion
In summary, our study represents an innovative 
approach and “proof of principle” concept for a 
sensitive noninvasive, urine-based, liquid biopsy 
test to detect BC and its distinct intrinsic sub-
types with a wide variety of application options.
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