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An Amish founder population reveals
rare-population genetic determinants
of the human lipidome
May E. Montasser 1✉, Stella Aslibekyan2,7, Vinodh Srinivasasainagendra2, Hemant K. Tiwari2, Amit Patki2,

Minoo Bagheri2,3, Tobias Kind4, Dinesh Kumar Barupal4, Sili Fan4, James Perry 1, Kathleen A. Ryan 1,

Alan R. Shuldiner5, Donna K. Arnett 6, Amber L. Beitelshees1, Marguerite Ryan Irvin2 & Jeffrey R. O’Connell1

Identifying the genetic determinants of inter-individual variation in lipid species (lipidome)

may provide deeper understanding and additional insight into the mechanistic effect of

complex lipidomic pathways in CVD risk and progression beyond simple traditional lipids.

Previous studies have been largely population based and thus only powered to discover

associations with common genetic variants. Founder populations represent a powerful

resource to accelerate discovery of previously unknown biology associated with rare popu-

lation alleles that have risen to higher frequency due to genetic drift. We performed a

genome-wide association scan of 355 lipid species in 650 individuals from the Amish founder

population including 127 lipid species not previously tested. To the best of our knowledge, we

report for the first time the lipid species associated with two rare-population but Amish-

enriched lipid variants: APOB_rs5742904 and APOC3_rs76353203. We also identified novel

associations for 3 rare-population Amish-enriched loci with several sphingolipids and with

proposed potential functional/causal variant in each locus including GLTPD2_rs536055318,

CERS5_rs771033566, and AKNA_rs531892793. We replicated 7 previously known common

loci including novel associations with two sterols: androstenediol with UGT locus and estriol

with SLC22A8/A24 locus. Our results show the double power of founder populations and

detailed lipidome to discover novel trait-associated variants.
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Cardiovascular disease is the leading cause of death
worldwide1. Besides the well-known role of traditional
lipids (total [TC], low-density lipoprotein [LDL], and

high-density lipoprotein [HDL] cholesterol and triglycerides
[TG]) in CVD risk and progression, molecular lipid species
(lipidome) were also found to be an independent contributors2.
Previous studies identified ceramides as a key player in
atherogenesis3, found variable effects of phospholipids and TG
species on CVD based on the degree of saturation4–7, and was
able to improve risk prediction by adding lipid species6,8. Iden-
tifying the genetic determinants of inter-individual variation in
lipidome may provide deeper understanding beyond traditional
lipids, and may lead to additional insight into the mechanistic
effect of lipid variants and their role in CVD risk and
progression2. Previous studies tested lipidome genetic determi-
nants either as a small part of large metabolite studies or in a
small number of candidate lipid species (full list of studies
available in Hagenbeek9), with the exception of a published study
that performed a focused lipidome genome-wide association scan
(GWAS) for 141 lipid species in 2181 Finnish individuals. Here,
we performed a GWAS in 650 individuals from the Old Order
Amish (OOA) founder population using an expanded number of
355 lipid species from 14 classes that included 127 not previously
tested for genetic association. Founder populations can facilitate
the identification of previously unknown disease associations with
variants that are enriched to a higher frequency through genetic
drift. Multiple examples have been recently reported of highly
enriched variants with large effect sizes associated with complex
diseases and traits in homogenous populations in Iceland10,
Sardinia11, Greenland12, Samoa13 and OOA14–21. While such
drifted variants are often rare or absent in the general population,
their associations can inform biological mechanisms and ther-
apeutic targets relevant to all humans. The population-based
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)
study22–25 was used for replication and fine mapping, and publicly
available association results databases from several large biobanks
were used to look up the top results. We identified five rare-
population but Amish-enriched loci, three of which are novel, and
replicated 7 previously known common loci including two loci
with novel trait associations. These results demonstrate the power
of detailed lipidome profiling in a founder population to identify
novel rare variants enriched through genetic drift to accelerate
lipid loci discovery and substantially advance our understanding
of the genetic role in lipid biology.

Results
Additive and dominant heritability. The narrow sense herit-
ability, defined as the ratio of additive variance to phenotypic
variance, was estimated for each lipid species and traditional lipid
using a mixed model with pedigree kinship covariance matrix.
We also tested if dominance variance contributes to lipidome
genetic architecture by comparing the additive model to a model
that included a dominance and additive effect using a likelihood
ratio test. No lipid species or traditional lipid showed significant
dominant variance after Bonferroni correction, indicating that the
lipidomic genetic architecture is primarily additive.

The full list of heritability estimates of the 355 lipid species
measured in 650 individuals from the Old Order Amish (OOA)
founder population (Supplementary Data 1) with and without
adjustment for 4 Amish-enriched large effect lipid variants
(APOB_rs574290415, APOC3_rs7635320314, B4GALT1_rs5515646
8321, TIMD4_rs89895600320) (4 variants) is provided in Supple-
mentary Data 2. Figure 1a shows that the heritabilities range
between 0 and 0.7, with significant attenuation when adjusting for
the 4 variants as they account for a significant proportion of the

phenotypic variance. The (near-) zero estimates reflect potential lack
of genetic contribution to the lipid species. The histogram suggests a
bi-modal distribution with second mode near 0.55 driven mainly by
sphingolipids including ceramides (Cer), sphingomyelins (SM) and
glycosphingolipids (GlcCer). Figure 1b shows heritability estimates
for each lipidome class with and without 4 variants adjustment.
Each class has non-zero median heritability, and most classes show
considerable variability. The highest heritability was reported for
GlcCer (0.35 – 0.69) while acylcarnitines (ACT) was the lowest (0.01
- 0.22). Consistent with previous reports26–28, we found sphingo-
lipids to have higher heritability than glycerolipids. The contribution
of the 4 variants varied across class. The classes with the biggest
difference were cholesteryl ester (CE), Cer, GlcCer, SM and
phosphatidylethanolamine (PE) primarily driven by the LDL-
increasing APOB_rs5742904 variant. Many classes showed little
change in median or variation, including triglycerides (TAG), where
the overall impact of APOC3_rs76353203 null variant on heritability

Fig. 1 Heritability of the lipid species. a Histogram showing the heritability
distribution for all lipid species. b Box plot for the heritability by class.
Heritabilities presented as unadjusted and adjusted for 4 Amish-enriched lipid
variants (APOB_rs574290415, APOC3_rs7635320314, B4GALT1_rs55156468321,
TIMD4_rs89895600320). The upper, center, and lower line of the boxplot
indicates third quartile (Q3), median, first quartile (Q1), respectively. The upper
and lower whisker of the boxplot indicates Q3+ 1.5 * interquartile range (IQR)
and Q1− 1.5 * IQR. Outliers are suppressed from the plot for readability.
ACT Acylcarnitine, CE Cholesteryl ester, Cer Ceramide, DAG Diglycerides,
FA Fatty acids, GlcCer Glycosphingolipids, LPC Lysophosphatidylcholines,
LPE Lysophosphatidylethanolamines, PC Phosphatidylcholines,
PE Phosphatidylethanolamine, PI Phosphatidylinositol, SM Sphingomyelin,
TAG Triglycerides, ST Sterols, TRAD Traditional lipids.
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was small. The difference between the two variants can be explained
by their different impact on traditional lipids: APOC3_
rs76353203 accounts for ~3% of the TG variance (h2= 0.398 vs
0.368 adjusted) whereas APOB_rs5742904 accounts for ~18% of
LDL-C variance (h2= 0.68 vs 0.5 adjusted).

Genetic contribution of traditional lipids to lipidome. To
estimate the genetic contribution of previously identified tradi-
tional lipid GWAS variants to lipidome variance, a SNP genetic
relationship matrix (SNP GRM) was constructed using the var-
iants and included with the kinship matrix in the mixed model for
joint variance estimation. The impact of SNP GRM on the her-
itability estimates in the joint model compared to baseline herit-
ability with no SNP GRM is shown in Fig. 2. In general, known
lipid GWAS variants had a small contribution to the genetic
variation which vary between classes and by lipid SNP GRM
within class. The greater the contribution of the SNP GRM to
lipidome class variance, the lower the residual heritability esti-
mates. For example, between lipid SNP GRM variability is small
within sterols but significant within Lysophosphatidylcholines
(LPC) and within Lysophosphatidylethanolamines (LPE). HDL
and TG associated variants almost explain no variance of SM
while LDL and TC associated variants explain over 15% of SM,
which agrees with the role of SM and cholesterol in the structure
of plasma membranes. TG associated variants explain a larger
proportion of TAG than other lipid associated variants, as
expected.

Genetic and phenotype correlation. Pairwise genetic and phe-
notypic correlation for 355 lipid species and 4 traditional lipids
combined are shown in Supplementary Data 3 and Supplemen-
tary Fig. 1 (heatmap). In general, genetic and phenotypic corre-
lation were lower between classes than within classes. SMs, TAGs,
and diglycerides (DAGs) exhibited the strongest within class
correlation, and as expected the strongest between class correla-
tion was found for TAGs with DAGs. While TAGs exhibited the

strongest within class correlation, we found that the correlation
between TAG pairs where both species have >= 54 carbons
and >= 4 double bonds were significantly stronger and less
variable (p < 2.2E-16) than correlation between pairs where one
or both species have <54 carbons and <4 double bonds (Sup-
plementary Fig. 2). The phenotypic correlations have both smaller
median values and less variance than genetic correlations even
with larger number of pairs due to phenotypic correlations having
greater precision since there is no maximum likelihood estima-
tion required.

The correlation with traditional lipids were also generally
limited, with the exception of TAGs and DAGs that had the
strongest positive genetic correlations with traditional TG, and
the strongest negative correlation with HDL. These results are in
line with a previous finding26 and explain the limited contribu-
tion of traditional lipid genetics to the lipid species (Fig. 1b). This
limited overlap highlights the value that lipid species would
contribute to understanding CVD risk factors beyond traditional
lipids8.

Lipidome contribution to traditional lipids. Understanding the
relative contribution of each lipid species to traditional lipid and
the interplay between components will help us to gain insight into
their architecture. The estimated proportion of each traditional
lipid variance explained by kinship and each lipidome class are
shown in Supplementary Fig. 3. The lipidome class was included
in the mixed model by constructing covariance matrix between
the species in the class (see Methods). All classes explained a
significant proportion of lipid variation with different magnitudes
(Supplementary Data 4). For example, while PC was the most
statistically significant class for HDL and LDL, it was the 2nd for
TC and the 3rd for TG. Not surprisingly, the most significant
class across all lipids is TAG with TG. The least significant class
on average was acylcarnitines (ACT).

We also performed a sequential analysis to determine which
lipidome classes jointly with the kinship explain the greatest
amount of variance of each traditional lipid. Supplementary

Fig. 2 Contribution of previously identified lipid GWAS variants to lpidomics variance. Heritability estimates using adjusted kinship separately (Adjusted
for 4 Amish-enriched lipid variants (APOB_rs574290415, APOC3_rs7635320314, B4GALT1_rs55156468321, TIMD4_rs89895600320) and then jointly with a
SNP GRM for each traditional lipid. Analysis restricted to 194 lipid species with baseline significant heritability (Kinship+ 4V heritability p-value < 0.01). The
upper, center, and lower line of the boxplot indicates third quartile (Q3), median, first quartile (Q1), respectively. The upper and lower whisker of the boxplot
indicates Q3+ 1.5 * interquartile range (IQR) and Q1− 1.5 * IQR. Outliers are suppressed from the plot for readability. ACT Acylcarnitine, CE Cholesteryl
ester, Cer Ceramide, DAG Diglycerides, FA Fatty acids, GlcCer Glycosphingolipids, LPC Lysophosphatidylcholines, LPE Lysophosphatidylethanolamines,
PC Phosphatidylcholines, PE Phosphatidylethanolamine, PI Phosphatidylinositol, SM Sphingomyelin, TAG Triglycerides, ST Sterols.
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Data 5 shows the decomposition with the class, remaining
unexplained heritability, and residual error variance estimates.
HDL maxed out at 3 classes, LDL and TC at 5 classes and TG at 4
classes. Compared to the single class model in Supplementary
Data 4 the magnitude and precision of the estimates in the multi-
class models may differ due to potential correlation between
classes. The heritability estimates in the multi-class are reduced to
less than 0.16 as more of the additive variance is accounted for by
additional lipidome classes. The decomposition differs by lipid.
TG is primarily composed of TAG (34%) with DAG and PC,
accounting for ~ 5%, while the 3 other lipids have at least two
classes with high proportions. LDL has the lowest residual
variance at 20% indicating the phenotypic architecture of LDL
may be more influenced by lipidome than other lipids. Overall,
the variance component analyses show that lipidome classes
contribute a significant portion of the variance of traditional
lipids but there remains 10-15% heritability unexplained by
lipidome, which again indicate the differences in genetic
architecture.

GWAS results. We performed a GWAS for 355 lipid species with
~8 million genetic variants in 639 Amish individuals with both
phenotype and genotype information. We identified 12 sig-
nificantly associated signals (p < 4.5E-10, using 5E-08/110, based
on the first 110 principal components explaining > 95% of the
variance in the 355 lipid species), five were Amish-enriched rare-
population variants, three of which have not been previously
reported, and seven were common variants that were previously
associated with lipid species (Table 1, Figs. 3 and 4).

The genetic architecture of the Amish is characterized by long
runs of homozygosity as a result of founder effects29, so the
Amish-enriched associated loci are usually long haplotypes with
many variants in strong LD, making it difficult to statistically
separate variants to identify the potential causal variant. All
results with p < 5E-08 are listed in Supplementary Data 6.

Rare-general population but Amish-enriched loci. The most
interesting finding among the five Amish-enriched loci is a rare
population missense variant rs536055318 (A263T) (MAF= 0.07
vs 0.001 in the general European population) in an active tran-
scription start site (aTSS) within the promoter region of the
glycolipid transfer protein domain containing 2 (GLTPD2) gene
on chromosome 17 that was strongly associated with lower level
of SM(d40:0) (p= 1.1E-12) and suggestively associated with
SM(d36:0, d38:0). To the best of our knowledge, these 3 SMs have
never been previously interrogated for genetic association.
Another independent African enriched variant (rs73339979)
downstream of GLTPD2 was previously associated with lower
total and LDL cholesterol30. Also, a Finnish-enriched GLTPD2
intronic variant (rs79202680) was recently associated with lower
level of several SMs and reduced atherosclerosis26.

The second interesting Amish-enriched but rare-population
finding (MAF= 0.04 vs 0.01) was on a 5Mb long haplotype on
the short arm of chromosome 12 that was significantly and
suggestively associated with lower levels of SM(d32:2) and
SM(d30:1), respectively. Other independent variants in this region
were previously associated with alanine, 1,5-anhydroglucitol (1,5-
AG), and creatine, but not with any lipid species. One of the top
variants is a splice donor missense variant (rs771033566,
Val344Leu, p= 2.2E-14) in the ceramide synthase 5 (CERS5)
gene and classified as disease-causing by the Mutation Taster
software31. Another common coding variant in this gene was
previously associated with increased systolic/diastolic blood
pressure and hypertension32,33. The sphingolipid metabolic path-
way has been previously linked to blood pressure regulation and T
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response to thiazide diuretics34–36, suggesting that CERS5 may
affect blood pressure level through alteration of sphingolipids.

Another Amish-enriched 8Mb long haplotype (MAF= 0.04 vs
0.01 for the top variant) on the long arm of chromosome 9 was
strongly associated with lower levels of all tested glucosylceramide
species (GlcCer(d38:1), (d40:1), (d41:1), (d42:1), (d42:2)) except
the one with the shortest acyl chain (GlcCer(d34:1)), which
reflects the strong phenotypic correlation between the first 5
(r= 0.6–1.0) compared to their much lower correlation
with GlcCer(d34:1) (r < 0.2). Other independent variants in
this region were previously associated with total cholesterol37,
urate, p-acetamidophenylglucuronide, and LPC(28:0)A9. Based
on the pattern of the association results (Fig. 4b), we expect
the functional variant to be one of the top 27 variants with
p-values < 8.5E-16 and r2 > 0.75 with the top variant

(Supplementary Data 7). These 27 variants are located within 9
genes (LINC00474, ATP6V1G1, C9orf91, LOC100505478,
DFNB31, LOC101928775, DEC1, AKNA, and COL27A1), none
of which are obvious candidate genes. Formal fine mapping
analysis using PAINTOR38 with different parameters and
functional information consistently identified the top associated
variant (rs7863920, p= 6.2E-18) to have the highest posterior
probability of causality at 0.87. Functional annotation highlighted
one intronic variant (rs531892793, p= 3.9E-17) as a strong
potentially functional variant (Supplementary Table 1). This
variant is highly enriched in the Amish (MAF= 0.04 vs 0.0001)
and located in a promoter flanking region in the AT-hook
transcription factor (AKNA) gene; it has the top ENCODE DNase
score of 1000 indicating very strong evidence of a DNase I
hypersensitivity site39, an eigenPC score of 3.5 (top 1%)

AP
O

B

LI
N

C0
04

74

GL
TP

D2

AP
O

C3
RA

CG
AP

1

U
GT

1A
/3

/1
0

SL
C2

2A
24

FA
DS2

LI
PC

EL
O

VL
2

SP
TL

C3
LO

C1
01

92
94

86Amish-enriched loci 
Known signals 
Known signals with novel trait associa�on

b

c

a

Fig. 3 Lipidomic association results. a Manhattan plot for the association results of all 355 lipid species in 639 Amish subjects. Amish-enriched loci
denoted in red, previously known signals denoted in blue and previously known signals with novel trait association and/or novel variant in known loci in
green. Blue line marks a genome-wide suggestive threshold (5.0E-08) and red line marks a genome-wide significant threshold (4.5E-10). b GWAS results
for all significantly associated lipid species in Amish-enriched loci. c GWAS results for all significantly associated lipid species in previously known loci.
All p-values based on t-test using additive genetic model. CE Cholesteryl ester, Cer Ceramide, GlcCer Glycosphingolipids, PC Phosphatidylcholines,
PE Phosphatidylethanolamine, SM Sphingomyelin.
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indicating a strong functional prediction based on conservation
and allele frequency40, and is predicted to affect transcriptional
factor binding with a 2a RegulomeDB classification41. The variant
is located in a weak transcription site in the islet and skeletal
muscle, in a genic enhancer region in liver tissue, and in an active
enhancer region in adipose tissue42.

We also have two well-established Amish-enriched variants that
we previously reported their strong association with traditional
lipids, but have never been interrogated for association with lipid
species. The first is the missense variant R19X (rs76353203) in the
APOC3 gene (MAF= 0.02 vs 0.0008) that we first reported its
association with lower TG, higher HDL, and cardioprotection14. In
this analysis, we report significant association of this variant with
lower levels of 3 phosphatidylethanolamines (PE(36:2), (38:6),

(34:2)) and suggestive association with lower level of another PE,
one di- and three triglyceride species. The second is the well-
established Amish-enriched familial hypercholesterolemia (FH)
causing variant R3527Q (rs5742904) in the APOB gene (MAF=
0.06 vs 0.0004) that was previously linked to LDL and TC by our
group and others15,43. As expected, this variant was significantly
associated with increased levels of several cholesterol esters,
sphingolipids and phospholipids while there was no association
with acylcarnitine, fatty acids, sterols, and glycerolipids.

Common known loci. We also replicated 7 previously well-
known lipid signals including UGT1A/3/10 genes on chromo-
some 2, ELOVL2 gene on chromosome 6, SLC22A8/A24genes
and FADS genes on chromosome 11, LIPC region on

Fig. 4 Rare-population but Amish-enriched loci. Locus zoom for 5 loci in a, chromosome 2 with SM(d34:1) b, chromosome 9 with GlcCer(d42:2)
c, chromosome 11 with PE(36:2) d, chromosome 12 with SM(d32:2) and e, chromosome 17 with SM(d40:0). All p-values based on t-test using additive
genetic model. GlcCer Glycosphingolipids, PE Phosphatidylethanolamine, SM Sphingomyelin.
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chromosome 15, and 2 independent signals in the SPTLC3
region on chromosome 20.

A ~500 kb haplotype at the end of chromosome 2 in a region
with a cluster of several uridine diphosphate glucuronosyltrans-
ferase (UGT) genes was strongly associated with higher levels of
androstenediol. UGT transforms small lipophilic molecules, such
as steroids, bilirubin, hormones, and drugs, into water-soluble,
excretable metabolites. Our top variant (rs887829) was previously
associated with lower LDL37 and higher bilirubin44, however the
association with androstenediol is novel.

We also identified a novel strong association for a 300 kb
haplotype on chromosome 11 with increased estriol level. The top
associated variant (rs184061227, p= 1.0E-15) located in a
previously known region encompassing SLC22A8/A24, which
are expressed only in kidney. This region was previously
associated with etiocholanolone glucuronide (ETIO-G), which is
an endogenous, naturally occurring metabolite of testosterone45.

The nearby FADS region on chromosome 11 was the most
significant (p= 6.3E-36) and associated with 29 different lipid
species including many phosphatidylcholines and cholesterol
esters consistent with previous reports9,26.

We also replicated 2 additional known common loci. The first
within the fatty acid elongase 2 (ELOVL2) gene on chromosome 6
was associated with PC(42:5) consistent with the previous
association of the same variant with DHA_DPAN3 (docosahex-
aenoic acid, or DHA(22:5)), and (docosapentaenoic acid (DPA)
(22:6) omega3)9. The second was the well-known lipid loci lipase
C, hepatic type (LIPC) gene region on chromosome 15, associated
with several phosphatidylethanolamines (PEs), similar to pre-
vious reports9,26.

Finally, we replicated two overlapping but independent signals
on chromosome 20 within the serine palmitoyltransferase long
chain base subunit 3 (SPTLC3) gene that encodes a subunit of the
SPTLC complex which catalyzes the rate-limiting step in
sphingolipid biosynthesis. Consistent with previous reports9,26,
both signals were associated with several ceramides and
sphingomyelins, the first signal is very common (MAF= 0.47)
and associated with decreased levels, while the second was less
common (MAF= 0.07) and associated with increased levels of
lipid species.

Replication/fine mapping in GOLDN. Replicating Amish-
enriched rare population loci can be a challenge due to the rar-
ity or absence of variants in outbred populations. However,
outbred populations can provide evidence of exclusion even when
only a few copies are present as the LD between the causal and
non-causal variants that confounds the Amish signal is absent or
reduced. If the causal variant is present, it will generally show
strong validation with few copies depending on effect size, but
non-causal variants will not replicate even if expected replication
power is extremely high. The familial hypercholesterolemia
causing APOB variant rs5742904_R3527Q15,43 which is enriched
in the Amish provides an extreme example. The variant increases
LDL by ~50 mg/dl and has a p-value=7.8E-25 in our 639 Amish,
and through LD generates genome-wide significant signals at
441 surrounding variants in a 10MB region. Those associations
disappear when the Amish LD is accounted for in a conditional
analysis with rs5742904 (Supplementary Data 7). Fifty out of the
441 variants were absent in GOLDN, including rs5742904. The
remaining 391 variants (MAF: 0.001-0.48) were non-significant in
GOLDN, providing confidence they are non-causal. We also
performed the same analysis with the APOC3 TG lowering causal
variant rs76353203_R19X on chromosome 11, which was also
absent in GOLDN, and all R19X LD-driven significant Amish
variants were not significant in GOLDN. These two examples

support applying this approach to the other 3 Amish-enriched
loci that we identified, where the causal variant is unknown and
most likely not in GOLDN. Power calculations using the observed
Amish effect size (or half to adjust for winner’s curse) can
quantify exclusion thresholds for given variants found in outbred
samples. The fine-mapping approach provides a reduced set of
potential variants for future follow-up.

For common variants, look up in GOLDN provides direct
replication. The basic demographic and clinical characteristics of
the GOLDN replication cohort are presented in Supplementary
Data 1. All GOLDN association results for our top results are
listed in Supplementary Data 6. We had two novel trait
associations for androstenediol and estriol. These two sterol lipids
did not replicate, however, these two variants had p-values of
1.9E-04 and 2.9E-04 with PC(36:4)A, and PC(38:4), respectively in
GOLDN. The other five known significant common loci in the
Amish had p-values between 7.5E-03 and 1.4E-35 in GOLDN.

Full data for the 5 Amish-enriched loci with the GOLDN
results are shown in Supplementary Data 7. The table and the
locus zoom plots in Fig. 4 show that each of these 5 loci is a long
haplotype ranging from 4Mb to 10Mb.

The GLTPD2 locus on chromosome 17 has 13 variants with
P < 5.0E-08 (3 significant), 12 of which were not significant in
GOLDN, despite all being common (MAF > 0.07) and some with
more carriers than Amish (MAC 110-389), while the missense
top variant rs536055318 was absent. More importantly this top
variant was the only one out of the 13 variants that was
suggestively associated with lower level of TG in UKBB (p= 6.9E-
08), further supporting our hypothesis that it is the most probable
functional variant in this region, pending experimental validation.

The chromosome 12 locus haplotype extends ~5Mb with
38 significant variants, 15 of which have similar p-values ~E-14
due to the strong LD. The top variant was among 30 variants that
did not replicate in GOLDN and hence can be excluded as
potential functional/causal variants (in particular 18 variants with
MAF > 0.015 and power between 0.79 and 0.99 for significant
replication). The splice donor missense variant (rs771033566,
p= 2.2E-14, Val344Leu) in the ceramide synthase 5 (CERS5)
gene which is our best candidate for causal variant is absent
in GOLDN.

The chromosome 9 locus is an 8Mb long haplotype with
202 significant variants, 27 of which were prioritized based on
p-value and LD with the top variant. Only 4 of these 27 variants
were present in GOLDN and none was significant including the
top variant. Our best candidate causal variant AKNA_rs531892793
based on functional annotation was absent in GOLDN.

Suggestive associations. The GWAS yielded 246 suggestive asso-
ciations (4.5E-10 < p < 5E-08) within 31 loci, 30 of which were
previously reported. Among the top suggestive results, we identified
an association between ACT(10.0) (p= 3.5E-08) and common
variants in the ACADM gene which encodes the medium-chain
specific acyl-Coenzyme A dehydrogenase that plays a role in the
fatty acid beta-oxidation pathway and was previously associated
with several carnitines (Supplementary Data 6). We also identified
an association (p= 1.3E-08) between GlcCer(d40:1) and common
variants in the ATPase phospholipid transporting 10D (ATP10D)
gene. Another independent signal in ATP10D was previously
associated with several glycosphingolipids46. These 2 signals were
also replicated in GOLDN (p= 8.4E-07 and p= 2.1E-05, respec-
tively). These results provide added confidence that other signals in
our suggestive interval may be true associations but require larger
sample size to achieve significance. The only locus that may be
considered novel, if replicated, was an association between
Cer(d42:2)B and a rare variant (rs79384120, MAF= 0.018,
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p= 8.3E-09) in the synuclein alpha interacting protein (SNCAIP)
gene on chromosome 5, that is linked with Parkinson’s disease47,48,
but no known link in this locus to any lipid trait. Ceramides play a
role in the physiology and pathophysiology of the central nervous
system49, this role may be genetically determined, at least partially,
by SNCAIP. This variant did not replicate in GOLDN, indicating
that it is either a false positive or the functional variant is another
linked variant.

Lookup of previously identified loci in our results. While there
are many published GWAS for metabolomics, Tabassum26 is the
only published large GWAS that focused on lipidomics and has
the most overlap with our study. Thus, we report our results for
their top associated variant in Supplementary Data 8. In their
Supp Data 2, Tabassum et al.26 reported 3754 lipidomic-variant
pair associations with p < 5.0 × 10-8 comprising 820 variants and
80 lipid species. For 702 variants present in our data, the top
associated traits had p-values ranging from 0.051 to 6.3E-36, of
which 219 (31%) met the Bonferroni replication significance
threshold (0.05/702= 7.1E-05). We also report our association
results for the same trait and variant for 1476 trait-variant pairs,
of which 359 (24%) have a p-value less than the Bonferroni
replication threshold of 3.3E-05, and 1082 (73%) with p < 0.05.
These Bonferroni thresholds are conservative as they do not
account for the correlation between lipid species and the LD
between variants. This high level of consistency with previously
reported loci highlights the quality of our data and confirms the
generalizability of findings in a founder population to outbred
populations.

Association testing using lipidome compared to traditional
lipids. To assess the power of the lipidome to identify genetic
signals compared to traditional lipids we tested the association of
226 known lipid associated variants available in Amish with both
lipidome and traditional lipids using the same 639 Amish sub-
jects. As previously reported26, the lipidome showed higher
power in identifying the association signals compared to tradi-
tional lipids where only APOB had stronger association with LDL
using the same sample size (Supplementary Fig. 4). Similarly,
when we tested the association between 1,602 variants with
p < 5.0 E-08 in any lipid species with traditional lipids in the same
sample size, we found strong signals only for APOB and APOC3
(Supplementary Data 9) and only APOB had stronger association
with LDL.

Discussion
Here we report the GWAS results for 355 lipid species, the largest
number tested in a single study to date.

We identified three novel rare-population variants that are
enriched in the Amish on chromosomes 9,12 and 17 that have
not been previously associated with any lipid species or tradi-
tional lipids. Leveraging results from the GOLDN study we were
able to finemap large numbers of variants present on long Amish-
enriched haplotypes to identify a potentially functional variant in
a biologically plausible gene for each of the three loci.

The first is a missense variant in the promoter of the GLTPD2
gene that is mainly expressed in liver and kidney and plays a role
in the intermembrane transfer of glycolipids but not neutral or
phospholipids50, consistent with its association only with
SM(d40:0) in this study. While two independent studies pre-
viously pointed to this gene26,30, neither identified variant had an
obvious functional mechanism. The position of this rare missense
variant rs536055318 (A263T) in an aTSS within the promoter
region of GLTPD2 can alter its expression leading to lower levels
of SM and reduced atherosclerosis26. Moreover, rs536055318 was

recently associated with lower levels of TG in UKBB with a
suggestive p-value of 6.9E-08. This finding is consistent with
previously observed changes in cellular lipid metabolism as a
result of up and down regulating GLT protein51. Several SM
species were previously associated with CVD4,52,53. Collectively,
these findings suggest GLTPD2 as a potential therapeutic target
for CVD protection. Future Mendelian Randomization studies
may help to disentangle the direction of causality. This strong
association (p= 1.1E-12) with a lower level of SM(d40:0) was
identified using only 650 Amish subjects, while it required
461,140 UKBB subjects to find a suggestive association with TG.

The second is a potentially disease-causing splice donor mis-
sense variant (rs771033566, Val344Leu) in the CERS5 gene,
associated with lower SM(32:2). Another common coding variant
in this gene was previously associated with increased systolic/
diastolic blood pressure and hypertension32,33. The sphingolipid
metabolic pathway was previously linked to blood pressure reg-
ulation and response to thiazide diuretics34–36, suggesting that
CERS5 may affect blood pressure level and drug response through
alteration of sphingolipids, which may have personalized medi-
cine implications. CERS5 is one of the six members of the cer-
amide synthase gene family which plays a major role in the
sphingolipid metabolic salvage pathway2, and while many genetic
variants in CERS4 have been previously associated with several
SMs2, this is the first association of a SM species with a CERS5
genetic variant.

The third is an intronic variant (rs531892793) that was asso-
ciated with lower levels of five glucosylceramide species with acyl
chains of 38 or more carbons, but not with the species with 34
carbons. This result is consistent with a recent study that found
significantly increased serum levels of only glucosylceramide
species with acyl chains of 38 or more carbons among CAD cases
compared to controls8, but not with 2 shorter carbon species.
This variant has very strong regulatory function prediction and is
located in the widely expressed AKNA gene that encodes AT-
hook transcription factor. This transcription factor is essential for
normal development and immune function, as indicated by the
gene name that means ‘mother’ in Inuit and Mayan language54.
AKNA knock out mice were weak, short lived and suffered from
systemic inflamation55. Other common variants in AKNA were
previously associated with TC, HDL, ApoA1, ALT, AST, and
testosterone30,56–58. Collectively these data support our hypoth-
esis that AKNA_rs531892793 is the best potential functional gene
and variant in this locus, however more work is needed to con-
firm this result as we cannot rule out the possibility that some
other variant that may failed genotyping or imputation is the real
causal variant driving this association signal.

Two well-known rare-population lipid variants that are Amish-
enriched and previously reported by our group are the FH variant
APOB_R3527Q and the cardioprotective APOC3_R19X. Given
the rarity of these variants in the general population they have
never been interrogated for association with lipid species. While
this is, to the best of our knowledge, the first report for the
associations of these variants with lipidomics as detailed herein,
these associations are not unexpected based on the structure and
function of associated traditional lipids. The association of the
missense rare population variant APOC3_R19X with lower TG,
higher HDL, and cardioprotection14 was first reported by us and
was later replicated in other studies59–62 and led to the devel-
opment of APOC3 antisense molecules that are currently in phase
III clinical trials for the treatment of hypertriglyceridemia63,64.
Similarly, the three novel variants reported here may lead to novel
treatment and/or personalized medicine once there is a large
enough general population study for replication and functional
study to prove causation. Replicating the association of these
three novel variants would require larger sample sizes with

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03291-2

8 COMMUNICATIONS BIOLOGY |           (2022) 5:334 | https://doi.org/10.1038/s42003-022-03291-2 | www.nature.com/commsbio

www.nature.com/commsbio


similar lipid species measured and whole genome sequence data,
which currently does not exist but may soon be available through
large consortia like TOPMed65.

We also replicated seven previously well-known lipid signals
including UGT, ELOVL2, SLC22A8/A24, FADS, LIPC, and two
independent signals in the SPTLC3 gene, among these seven, we
have two cases of novel trait associations in UGT and SLC22A8/
A24. First, in addition to previous associations of UGT_rs887829
with lower LDL37 and higher bilirubin44, we also found an
association with higher androstenediol. This pleiotropic effect
may explain the inverse association of bilirubin with LDL66 and
CVD protection67,68. However, androstenediol taken as a dietary
supplement was associated with increased LDL and unfavorable
CHD risk in men participating in a high-intensity resistance
training program69, pointing to the potential difference between
beneficial endogenous effects of a genetic variant that both
decreases LDL and increases androstenediol compared to the
potential deleterious opposite exogenous effects of androstenediol
as a dietary supplement. Second, we found the SLC22A8/A24
locus that was previously associated with ETIO-G to be associated
with higher estriol. Estriol is a weaker form of estrogen, and
interestingly, in UKBB, this region was associated with chole-
cystitis without cholelithiasis (inflamed gallbladder without gall-
stones). This association may be the underlying inflammatory
first step in the process that leads to two-fold increase gallstone
formation in women of reproductive age or on birth control
medication that have estrogen compared to males70, and maybe
informative in personalized medicine. This association is inde-
pendent of the nearby FADS gene region that has been associated
with gallstones71 and assumed to work through its effect on
lipids. However, given the lack of replication in GOLDN, further
investigation is warranted.

The phenotype and genotype correlation pattern as well as the
heritability estimates in our study were generally in line with
other general population studies. This study also replicated many
of previously identified common variants which highlight the
generalizability of the Amish results to the general population,
besides its added value in identifying rare population variants
enriched by drift. While traditional lipids explained a small
proportion of the variance of the lipidome, and the lipidome
explained a significant proportion of the genetic variance in tra-
ditional lipids, the overlap was incomplete leaving a significant
proportion in both sides remained to be explained. This limited
overlap highlights the difference in the genetic architecture and
the complimentary value in using both traditional lipids and
lipidome in understanding lipid genetic architecture.

While this study may be limited by a relatively small sample
size, we were still able to identify three novel rare-population
variants. Larger sample size in Amish and other founder popu-
lation will undoubtedly identify more rare variants which would
be challenging to identify in the general population and can
inform biological mechanisms and therapeutic targets relevant to
all humans. While this GWAS included 355 lipid species, the
largest to date, we excluded lipid species with low quality data, so
more complete profiling is warranted for comprehensive
interrogation.

Methods
Study populations. The Old Order Amish (OOA) population of Lancaster
County, PA immigrated to the Colonies from Central Europe in the early 1700’s.
There are currently around 40,000 OOA individuals in the Lancaster area, nearly
all of whom can trace their ancestry back about 15 generations to approximately
750 founders. Investigators at the University of Maryland Baltimore have been
studying the genetic determinants of cardiometabolic health in this population
since 1993. To date, over 7000 Amish adults have participated in one or more of
our studies as part of the Amish Complex Disease Research Program72. The
samples used in this study were participants of Heredity and Phenotype

Intervention (HAPI) Heart Study73. Briefly, HAPI was initiated in 2002 to identify
the genetic and environmental determinants of responses (blood pressure, trigly-
ceride excursion and platelet aggregation) to four short-term interventions
including a cold pressor stress test, a high salt diet, a high fat challenge, and an
aspirin therapy in a four-week time period. HAPI recruited 1003 OOA, and the
interventions were carried out in 868 relatively healthy OOA adults (>=20 years of
age). Participants were asked to discontinue the use of all medications, vitamins
and supplements for at least 7 days prior to the first visit and during the inter-
ventions, to fast at least 12 h prior to their visit, and to restrain themselves from
doing excessive physical activity on the morning of their appointment. Baseline
blood drawn from 650 participants was used for the lipidomic profiling in this
study. The study protocol was approved by the institutional review board at the
University of Maryland. Informed consent was obtained from each of the study
participants.

GOLDN (Genetics of Lipid Lowering Drugs and Diet Network), the largest
study of postprandial dyslipidemia that offers NMR, clinical lipid, and lipidomic
measures, was initiated to assess the interaction of genetic factors with
environmental interventions (intake of a high-fat meal and/or fenofibrate
treatment)74. Briefly, the study recruited European American families with at least
two siblings from two field centers (Minneapolis, MN and Salt Lake City, UT) of
the Family Heart Study (FHS). Participants were excluded if they (1) had fasting
triglycerides (TGs) ≥ 1500 mg/dL, (2) had a history of kidney, liver, pancreas, or
gallbladder disease, recent myocardial infarction or revascularization, or nutrient
malabsorption, (3) reported a current use of insulin, and (4) were pregnant or
lactating. Of the 1327 participants who were initially screened, 1048 (including 546
women) met the eligibility criteria and were included in the study. A written
consent form was provided for each participant and the protocol of the study was
reviewed and approved by the institutional review boards at the University of Utah,
University of Minnesota, and Tufts University/New England Medical Center.

Lipidomic profiling. The technical details of the laboratory protocols and methods
of the lipodomics experiments are described in our previous paper24 and repro-
duced here for completeness.

Baseline HAPI and GOLDN lipidomics data includes neutral lipids and
phospholipids that were collected using UPLC–QTOFMS at the West Coast
Metabolomics Center at University of California Davis. The protocol for this
measurement was described in detail elsewhere75,76. Briefly, the whole process was
divided into three steps: lipid extraction and separation, data acquisition and lipid
identification. Methyl tert-butyl ether (MTBE), methanol, and water were used to
extract plasma lipids. The quality control (QC) samples were method blanks and
pooled human plasma (BioreclamationIVT). The separated non-polar phase was
injected into a Waters Acquity UPLC CSH C18 (100 mm length × 2.1 mm id;
1.7 μm particle size) with an additional Waters Acquity VanGuard CSH C18 pre-
column (5 mm × 2.1 mm id; 1.7 μm particle size) maintained at 65 °C was coupled
to an Agilent 1290 Infinity UHPLC (Agilent Technologies) for ESI positive and
negative modes. Mobile phase modifiers included ammonium formate and formic
acid for positive mode and ammonium acetate (Sigma–Aldrich) for negative mode.
The same mobile phase composition of (A) 60:40 v/v acetonitrile:water (LC-MS
grade) and (B) 90:10 v/v isopropanol:acetonitrile was used for both positive and
negative modes. An Agilent 6550 QTOF with a jet stream electrospray source was
employed for acquiring full scan data in the mass range m/z 65–1700 in positive
and negative modes with scan rate of 2 spectra/second. Instrument parameters
were as follows for the ESI (+ ) mode – gas temperature 325 °C, gas flow 8 l/min,
nebulizer 35 psig, sheath gas temperature 350 °C, sheath gas flow 11, capillary
voltage 3500 V, nozzle voltage 1000 V, fragmentor voltage 120 V and skimmer
65 V. In negative ion mode, gas temperature 200 °C, gas flow 14 l/min, fragmentor
175 V, with the other parameters identical to positive ion mode. Data are collected
in centroid mode at a rate of 2 scans per second. Injection volume was 1.7 μL for
the positive mode and 5 μL for the negative mode. The gradient started at 15% B,
ramped to 30% at 2 min, 48% at 2.5 min, 82% at 11 min, 99% at 11.5 min and kept
at 99% B until 12 min before ramping down to 15% B at 12.1 min which was kept
isocratic until 15 min to equilibrate the column. The total run time was 15 min and
the flow rate was 0.6 ml/min. Data were acquired in nine batches and every ten
samples, one quality control sample was analyzed. MS1 data were acquired for all
samples, and MS/MS data were acquired for a set of pooled samples. Data were
processed with the Agilent Quant 7.0 software. Lipids levels were reported as
chromatographic peak heights. Stringent quality control was performed for the
lipidomics data using eight previously reported measures77. We observed very low
missing data rate of approximately 0.5% for known profiled lipids in positive
ionization mode. The missing data rate was higher for certain molecular weight of
the lipid compound and retention behavior. For example for a few low intensity
compounds such as high molecular weight triacylglycerols (TG (62:4) or TG (60:6))
the missing data rate was up to 20%. Missing value imputation was performed
using our previously developed computational routine78 before SERRF
normalization78. After normalization, the relative standard deviation of quality
control samples is 4.7% and 3.4% for negative and positive mode respectively. Lipid
identification was performed by converting the acquired MS/MS spectra to the
mascot generic format (MGF) and then a library search using the in-silico MS/MS
library LipidBlast. After quality control, 355 lipid compounds were included in the
HAPI lipidomic GWAS and 328 in the GOLDN replication study.
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HAPI chip genotyping and imputation. Genomic DNA was extracted from whole
blood from 1856 individuals of the OOA and quantitated using PicoGreen.
Genome-wide genotyping was performed with Affymetrix 500 K (n= 1252,
including all HAPI participants) and Affymetrix 6.0 (n= 604) arrays at the Uni-
versity of Maryland Biopolymer Core Facility. The BRLMM algorithm was used for
genotype calling. Prior to imputation, the two chips were merged into a single file.
Samples with call rate <0.93, high level of Mendelian error, or gender mismatch
were excluded. Variants with >2% missing data, Hardy-Weinberg expectation
(HWE) p-value < 1E-10, Mendelian errors >1% or with MAF < 0.01 (N= 366,169)
were excluded. We also excluded variants on the Y chromosome and mitochondrial
genome, palindromic variants with frequency >0.4, and variants that were not in
the TOPMed Freeze 5b reference panel. These QC procedures left 1,833 partici-
pants and 307,238 variants in the genotype file for imputation. The genotype data
were uploaded to the Michigan Imputation Server79 where the pre-phasing was
performed using Eagle v2.480, and then imputation to the TOPMed Freeze 5b
reference panel was performed using Minimac448. Following imputation, we
excluded variants with imputation quality/INFO < 0.9, MAF < 0.01 or deviation
from HWE at p < 1.0E-09. These processes left 7,917,357 variants for the asso-
ciation analysis with 639 samples with both phenotypes and genotypes.

Whole-genome sequencing for GOLDN. Whole-genome sequencing (WGS) for
the Trans-Omics in Precision Medicine (TOPMed) program was supported by the
National Heart, Lung and Blood Institute (NHLBI). WGS for “NHLBI TOPMed:
Genetics of Lipid Lowering Drugs and Diet Network” (phs001359) was performed
at the North West Genomics Center, University of Washington. Centralized read
mapping and genotype calling, along with variant quality metrics and filtering were
provided by the TOPMed Informatics Research Center. Data management,
sample-identity QC, and general study coordination were provided by the
TOPMed Data Coordinating Center. Library preparation and whole-genome
sequencing were performed on 967 GOLDN samples by North West Genomics
Center, University of Washington. The NHLBI Informatics Resource Core at the
University of Michigan performed alignment, base calling, and sequence quality
scoring and variant calling of all TOPMed samples using the GotCloud pipeline81.
Variant calling used a support vector machine (SVM) trained using known var-
iants. Variants passing all quality filters with read depth at least 10 were delivered
in BCF format and used for association analysis. Further variant QC included
removing all sites in low-complexity regions82, and on the X chromosome. There
were 835 GOLDN samples with both lipidome and WGS data and used for
the GWAS.

Phenotype preparation. In HAPI, to adjust for potential technical artifacts and
non-normality of raw lipidomic values, each lipidomic was first regressed in a
linear model adjusting for age, age squared, sex, and experimental technical arti-
facts including batch, box, row, position and plate, then the regression residuals
were inverse normalized. No adjustment for medication was included as none of
the HAPI subjects were on lipid lowering medication. These transformed lipidomic
values were used in all Amish analyses. The identical procedure was applied to lipid
phenotypes, excluding technical artifacts from the linear regression, to standardize
analyses combining both lipid and lipidome.

In GOLDN the exact same lipid panel was completed and an inverse rank
normal transformation was used on each lipid class phenotypes.

Variance decomposition. Mixed model variance component analysis was used to
partition observed phenotypic variance σ2p into causal components σ2k and resi-
dual error σ2e, that is,

σ2p ¼ σ21 þ σ22 þ ¼ þ σ2n þ σ2e ð1Þ
The variance components σ2k correspond to random effects bk assumed to

follow multivariate Gaussian distribution bk ~N(0, σ2k Σk), with mean zero,
covariance matrix Σk. The matrix Σk contains pairwise covariance values between
subjects and the variance components σ2k are estimated using mixed model
maximum likelihood methods incorporating corresponding covariance matrices.
For interpretability the estimated variances σ2k are converted to the proportion of
phenotypic variance explained, called λk, by dividing by the phenotypic variance
σ2p, that is, λk= σ2k/σ2p. Likelihood ratio test (LRT) p-values can be used to
compare nested models of different random effects to determine if the model with
more components provides significantly better fit of the data. The LRT is applied
using standard sequential procedures to build the most parsimonious causal
component decomposition of the phenotypic variance using a predefined p-value
threshold of 0.05. At each step LRT p-values are computed comparing the current
best model with that model plus one of the remaining random effects. The current
model is then updated with the remaining random effect with the smallest p-value.
The procedure is repeated until no LRT p-value is less than 0.05.

Additive and dominant heritability. The pedigree kinship coefficient measures
the expected probability that two subjects share an allele identical by descent given
the pedigree structure. An Amish kinship covariance matrix was constructed using
a single 14-generation pedigree that connects all 650 subjects back to their 18th
century founders. The Amish population structure provides unique opportunities

to separate genetic and environmental effects important in lipidome as many
distant relative pairs, such as cousins, share genes from the same founder but not
common environments such as diet and lifestyle. A dominance covariance matrix
was also constructed using the pedigree structure that measures the probability that
two subjects share a genotype identical by descent.

Data-derived covariance matrices. In multivariate statistics the sample covar-
iance matrix can be constructed using any set of variables measured across subjects.
First consider the design or data matrix X that contains measured variables such as
lipidome on subjects that is used in regression to estimate the effect of the variables
as fixed effects. To construct the covariance matrix the variables in X are first mean
centered and normalized to remove potential scale differences between them. Then
the subject-by-subject sample covariance matrix S is defined as S= XX’, where X’ is
the transpose of X. We describe details of how covariance matrices were con-
structed using genetic markers, lipidomics and lipids.

Lipidome variance explained by known lipid variants. To measure the pro-
portion of lipidomic and traditional lipid variance due to genetic markers asso-
ciated with HDL, LDL, TC and TG lipid levels, genetic relatedness matrices (GRM)
were constructed using SNPs identified from the literature30,37,83–86 as being
genome-wide significant for each lipid plus known Amish-specific variants
(APOB_rs574290415, APOC3_rs7635320314, B4GALT1_rs55156468321,
TIMD4_rs89895600320) (4 variants). The number of literature SNPs that were
present in the Amish genotype data and used were 99 for HDL, 77 for LDL, 97 for
TC, and 67 for TG. This analysis was restricted to 194 lipid species with baseline
significant heritability (Kinship+ 4 V heritability p-value < 0.01). We chose to use
(Kinship+ 4 V) as the base model in this analysis to focus on the effect of common
known lipid variants rather than the strong effect of these 4 Amish-enriched rare-
population variants, however, we included APOB, B4GALT1 and TIMD4 variants
in the LDL and TC GRMs and the APOC3 variant in the TG and HDL GRMs to
account for any confounding/residual effect of these variants with other common
variants, if any. SNP genotyping was available on the 639 subjects with lipidomics.
To estimate the genetic contribution of GWAS SNPs associated with lipidomic and
traditional lipids as phenotypes a mixed model analysis was performed including
kinship and lipid SNP GRM as random effects.

Genetic and phenotypic correlation. The software biMM87 was used to calculate
additive genetic correlations between 359 variables (355 lipidomics and 4 tradi-
tional lipids (HDL, LDL, TC, TG)) on data from 639 subjects using the Amish
kinship matrix. biMM returns bivariate mixed model maximum likelihood esti-
mates of genetic and environmental correlation that includes estimates of herit-
ability of each trait genetic correlation between them allowing for residual errors
between traits. biMM does not constrain genetic correlation estimates to be in the
range [−1,1], thus out-of-range correlations, which were common when one or
both traits have low heritability, were set to missing as estimates were not deemed
reliable. There were 7428 with values <−1.0 and 9020 with values > 1.0. Out-of-
range estimates are represented by white squares in the heatmap, and only 64,621
correlation are included in Supplementary Data 3. R88 was used to calculate the
pairwise phenotypic Pearson correlations for lipid species and traditional lipids.

Traditional lipid variance explained by lipidome classes. Covariance matrices
were constructed for each of the 13 lipid classes (ACT, CE, Cer, DAG, FA, GlcCer,
LPC, LPE, PC, PE, PI, SM, TAG) using mean centered and normalized raw lipi-
domic values from each class in the data matrix X. These covariance matrices were
used in a mixed model with traditional lipid (HDL, LDL, TG and TC) as the trait
and kinship and lipidomic class as random effects. We estimated the marginal
contribution of each lipid class separately and also performed a sequential analysis
as described above to determine the best multi-class model fit for each lipid which
estimates the joint proportion of traditional lipid variance accounted for by the
lipidomic class.

Association analyses. In HAPI, genetic association analysis of inverse normalized
lipid species was performed using linear mixed models to account for familial
correlation using the genetic relationship matrix (GRM) as implemented in the
Mixed Model Analysis for Pedigree and population (MMAP)89. For 180 lipid
species that showed nominal association (p < 1.0E-03) with any of the 4 Amish
enriched lipid variants (APOB_rs5742904, APOC3_rs76353203,
B4GALT1_rs551564683, TIMD4_rs898956003), we reran the association analyses
adjusting for the variant(s) as detailed in Supplementary Data 2. The effect size for
all traits is reported in standard deviation units for comparability. Multiple testing
adjusted significance threshold of 4.5E-10 was determined by dividing the standard
GWAS level of 5E-08 by the number of principle components (110) that
explained >95% of the variance in the 355 metabolomic variables. All associations
between 5E-08 and 4.5E-10 were considered suggestive. The number of indepen-
dent signals at each locus was determined using sequential conditional analysis.
The novel loci were determined by conditioning on preidentified variants within
1 Mb from the top associated variant.

In GOLDN we performed a parallel linear mixed model analysis on the inverse
normally transformed lipid phenotypes in Saige-0.29 pipeline deployed in Encore
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analytics framework (i.e. Fast linear mixed model with kinship adjustment (saige-
qt)). Pre-derived top 10 PCs from TOPMed WGS cohort was adjusted as covariates
along with age, sex and center.

Bonferroni corrected p-value of 1.3E-05 was used for GOLDN replication
accounting for 3631 trait-variant pairs of GOLDN association results included in
Supplementary Data 6

Annotation and biobank lookups. Look ups of top results in publicly available
PheWAS databases including UK Biobank90–93, FinnGen94 and BioBank Japan95

was performed using the “Omics Analysis, Search and Information System”
(OASIS)96, a web-based application for mining and visualizing GWAS results via
integration with a broad spectrum of available databases for functional annotation
such as dbSNP97, gnomAD98, GTEx99, Open Targets Genetics100, eigenPC40,
RegulomeDB41, The ensembl regulatory build101 chromatin state in four different
tissue42, and the UCSC Genome Browser102 to visualize their proximity to func-
tional regions (e.g. binding sites, Dnase hypersensitivity sites, enhancer/promoter
regions).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Amish phenotype, genotype, and lipidome data are available to academic investigator via
a Data Use Agreement with UMB. GOLDN phenotype, genotype, and lipidome data are
available to academic investigator via a Data Use Agreement with UAB. Please contact the
corresponding author to initiate the data request. Source data underlying Figs. 1b and 2
are presented in Supplementary Data 2. Summary statistics are available through the
GWAS Catalog (https://www.ebi.ac.uk/gwas/home) under accession GCP000299.

Received: 27 August 2021; Accepted: 17 March 2022;

References
1. World Health Organization https://www.who.int/news-room/fact-sheets/

detail/cardiovascular-diseases-(cvds).
2. Tabassum, R. & Ripatti, S. Integrating lipidomics and genomics: emerging

tools to understand cardiovascular diseases. Cell Mol. Life Sci. 78, 2565–2584
(2021).

3. Bismuth, J. et al. Ceramide: A common pathway for atherosclerosis?
Atherosclerosis 196, 497–504 (2008).

4. Sigruener, A. et al. Glycerophospholipid and sphingolipid species and
mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study.
PLoS One 9, e85724 (2014).

5. Würtz, P. et al. Metabolite profiling and cardiovascular event risk: A
prospective study of 3 population-based cohorts. Circulation 131, 774–785.
(2015).

6. Alshehry, Z. H. et al. Plasma lipidomic profiles improve on traditional risk
factors for the prediction of cardiovascular events in Type 2 diabetes mellitus.
Circulation 134, 1637–1650 (2016).

7. Razquin, C. et al. Plasma lipidome patterns associated with cardiovascular risk
in the PREDIMED trial: A case-cohort study. Int J. Cardiol. 253, 126–132
(2018).

8. Poss, A. M. et al. Machine learning reveals serum sphingolipids as cholesterol-
independent biomarkers of coronary artery disease. J. Clin. Invest. 130,
1363–1376 (2020).

9. Hagenbeek, F. A. et al. Heritability estimates for 361 blood metabolites across
40 genome-wide association studies. Nat. Commun. 11, 39 (2020).

10. Helgadottir, A. et al. Variants with large effects on blood lipids and the role of
cholesterol and triglycerides in coronary disease. Nat. Genet. 48, 634–639
(2016).

11. Sidore, C. et al. Genome sequencing elucidates Sardinian genetic architecture
and augments association analyses for lipid and blood inflammatory markers.
Nat. Genet. 47, 1272–1281 (2015).

12. Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle
insulin resistance and type 2 diabetes. Nature 512, 190–193 (2014).

13. Minster, R. L. et al. A thrifty variant in CREBRF strongly influences body mass
index in Samoans. Nat. Genet. 48, 1049–1054 (2016).

14. Pollin, T. I. et al. A null mutation in human APOC3 confers a favorable
plasma lipid profile and apparent cardioprotection. Science (N.Y.) 322,
1702–1705 (2008).

15. Shen, H. et al. Familial defective apolipoprotein B-100 and increased low-
density lipoprotein cholesterol and coronary artery calcification in the old
order amish. Arch. Intern. Med. 170, 1850–1855 (2010).

16. Horenstein, R. B. et al. The ABCG8 G574R variant, serum plant sterol levels,
and cardiovascular disease risk in the Old Order Amish. Arteriosclerosis,
Thrombosis, Vasc. Biol. 33, 413–419 (2013).

17. Daley, E. et al. Variable bone fragility associated with an Amish COL1A2
variant and a knock-in mouse model. J. Bone Miner. Res.: Off. J. Am. Soc. Bone
Miner. Res. 25, 247–261 (2010).

18. Albert, J. S. et al. Null mutation in hormone-sensitive lipase gene and risk of
type 2 diabetes. N. Engl. J. Med. 370, 2307–2315 (2014).

19. Welty, F. K. et al. Identification and molecular analysis of two apoB gene
mutations causing low plasma cholesterol levels. Circulation 92, 2036–2040
(1995).

20. Montasser, M. E. et al. An APOO Pseudogene on Chromosome 5q Is
Associated With Low-Density Lipoprotein Cholesterol Levels. Circulation
138, 1343–1355 (2018).

21. Montasser, M. E. et al. Genetic and functional evidence links a missense
variant in. Science 374, 1221–1227 (2021).

22. Liu, Y. et al. The SCARB1 gene is associated with lipid response to
dietary and pharmacological interventions. J. Hum. Genet. 53, 709–717
(2008).

23. Tsai, M. Y. et al. Comparison of ultracentrifugation and nuclear magnetic
resonance spectroscopy in the quantification of triglyceride-rich lipoproteins
after an oral fat load. Clin. Chem. 50, 1201–4 (2004).

24. Bagheri, M. et al. A lipidome-wide association study of the lipoprotein insulin
resistance index. Lipids Health Dis. 19, 153 (2020).

25. Slade, E. et al. Age and sex are associated with the plasma lipidome: findings
from the GOLDN study. Lipids Health Dis. 20, 30 (2021).

26. Tabassum, R. et al. Genetic architecture of human plasma lipidome and its
link to cardiovascular disease. Nat. Commun. 10, 4329 (2019).

27. Frahnow, T. et al. Heritability and responses to high fat diet of plasma
lipidomics in a twin study. Sci. Rep. 7, 3750 (2017).

28. Bellis, C. et al. Human plasma lipidome is pleiotropically associated with
cardiovascular risk factors and death. Circ. Cardiovasc. Genet. 7, 854–863
(2014).

29. Joshi, P. K. et al. Directional dominance on stature and cognition in diverse
human populations. Nature 523, 459–462 (2015).

30. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic
participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523
(2018).

31. Schwarz, J. M. et al. MutationTaster2: mutation prediction for the deep-
sequencing age. Nat. Methods 11, 361–362 (2014).

32. Liu, C. et al. Meta-analysis identifies common and rare variants influencing
blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48,
1162–1170 (2016).

33. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common
variants associated with blood pressure and hypertension. Nat. Genet. 48,
1151–1161 (2016).

34. Fenger, M., Linneberg, A. & Jeppesen, J. Network-based analysis of the
sphingolipid metabolism in hypertension. Front. Genet. 6, 84 (2015).

35. Spijkers, L. J. et al. Hypertension is associated with marked alterations in
sphingolipid biology: A potential role for ceramide. PLoS One 6, e21817
(2011).

36. Shahin, M. H. et al. Sphingolipid metabolic pathway impacts thiazide diuretics
blood pressure response: Insights from genomics, metabolomics, and
lipidomics. J. Am. Heart Assoc. 7 (2017).

37. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000
individuals. Nat. Genet. 49, 1758–1766 (2017).

38. Kichaev, G. et al. Integrating functional data to prioritize causal variants in
statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

39. Snyder, M. P. et al. Perspectives on ENCODE. Nature 583, 693–698 (2020).
40. Ionita-Laza, I. et al. A spectral approach integrating functional genomic

annotations for coding and noncoding variants. Nat. Genet. 48, 214–220
(2016).

41. Boyle, A. P. et al. Annotation of functional variation in personal genomes
using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

42. Varshney, A. et al. Genetic regulatory signatures underlying islet gene
expression and type 2 diabetes. Proc. Natl. Acad. Sci. USA. 114, 2301–2306
(2017).

43. Peloso, G. M. et al. Association of low-frequency and rare coding-sequence
variants with blood lipids and coronary heart disease in 56,000 whites and
blacks. Am. J. Hum. Genet. 94, 223–232 (2014).

44. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites.
Nat. Genet. 46, 543–550 (2014).

45. The Human Metabolome Database, http://www.hmdb.ca/metabolites.
46. Hicks, A. A. et al. Genetic determinants of circulating sphingolipid

concentrations in European populations. PLoS Genet. 5, e1000672 (2009).
47. Shishido, T. et al. Synphilin-1 has neuroprotective effects on MPP. Neurosci.

Lett. 690, 145–150 (2019).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03291-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:334 | https://doi.org/10.1038/s42003-022-03291-2 | www.nature.com/commsbio 11

https://www.ebi.ac.uk/gwas/home
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://www.hmdb.ca/metabolites
www.nature.com/commsbio
www.nature.com/commsbio


48. Chung, K. K. et al. Parkin ubiquitinates the alpha-synuclein-interacting
protein, synphilin-1: Implications for Lewy-body formation in Parkinson
disease. Nat. Med. 7, 1144–50 (2001).

49. Jana, A., Hogan, E. L. & Pahan, K. Ceramide and neurodegeneration:
Susceptibility of neurons and oligodendrocytes to cell damage and death. J.
Neurol. Sci. 278, 5–15 (2009).

50. Malinina, L. et al. Sphingolipid transfer proteins defined by the GLTP-fold. Q
Rev. Biophys. 48, 281–322 (2015).

51. Kjellberg, M. A. et al. Alternation in the glycolipid transfer protein expression
causes changes in the cellular lipidome. PLoS One 9, e97263 (2014).

52. Yang, L. et al. Serum lipids profiling perturbances in patients with ischemic
heart disease and ischemic cardiomyopathy. Lipids Health Dis. 19, 89 (2020).

53. Lemaitre, R. N. et al. Plasma ceramides and sphingomyelins in relation to
heart failure risk. Circ. Heart Fail 12, e005708 (2019).

54. Moliterno, A. R. & Resar, L. M. AKNA: another AT-hook transcription factor
“hooking-up” with inflammation. Cell Res. 21, 1528–30 (2011).

55. Ma, W. et al. Coordinate activation of inflammatory gene networks, alveolar
destruction and neonatal death in AKNA deficient mice. Cell Res. 21, 1564–77
(2011).

56. Richardson, T. G. et al. Evaluating the relationship between circulating
lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A
multivariable Mendelian randomisation analysis. PLoS Med. 17, e1003062
(2020).

57. Ruth, K. S. et al. Using human genetics to understand the disease impacts of
testosterone in men and women. Nat. Med. 26, 252–258 (2020).

58. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese
population links cell types to complex human diseases. Nat. Genet. 50,
390–400 (2018).

59. Tachmazidou, I. et al. A rare functional cardioprotective APOC3 variant has
risen in frequency in distinct population isolates. Nat. Commun. 4, 2872
(2013).

60. Tg et al. Loss-of-function mutations in APOC3, triglycerides, and coronary
disease. N. Engl. J. Med. 371, 22–31 (2014).

61. Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with
a high rate of consanguinity. Nature 544, 235–239 (2017).

62. Wulff, A. B., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of-Function
Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and
Cardiovascular Risk: Mediation- and Meta-Analyses of 137 895 Individuals.
Arterioscler Thromb. Vasc. Biol. 38, 660–668 (2018).

63. Taskinen, M. R., Packard, C. J. & Borén, J. Emerging Evidence that ApoC-III
Inhibitors Provide Novel Options to Reduce the Residual CVD. Curr.
Atheroscler. Rep. 21, 27 (2019).

64. Alexander, V. J. et al. N-acetyl galactosamine-conjugated antisense drug to
APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur. Heart J.
40, 2785–2796 (2019).

65. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI
TOPMed Program. Nature 590, 290–299 (2021).

66. Oda, E. A decrease in total bilirubin predicted hyper-LDL cholesterolemia in a
health screening population. Atherosclerosis 235, 334–338 (2014).

67. Novotný, L. & Vítek, L. Inverse relationship between serum bilirubin and
atherosclerosis in men: a meta-analysis of published studies. Exp. Biol. Med
(Maywood) 228, 568–571 (2003).

68. Franchini, M., Targher, G. & Lippi, G. Serum bilirubin levels and
cardiovascular disease risk: A Janus Bifrons? Adv. Clin. Chem. 50, 47–63
(2010).

69. Broeder, C. E. et al. The Andro Project: physiological and hormonal influences
of androstenedione supplementation in men 35 to 65 years old participating in
a high-intensity resistance training program. Arch. Intern. Med. 160,
3093–104 (2000).

70. Jones M. W., W.C., Ghassemzadeh S., Gallstones (Cholelithiasis). 2020: In:
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.

71. Ferkingstad, E. et al. Genome-wide association meta-analysis yields 20 loci
associated with gallstone disease. Nat. Commun. 9, 5101 (2018).

72. Amish Research Program http://www.medschool.umaryland.edu/
endocrinology/Amish-Research-Program/.

73. Mitchell, B. D. et al. The genetic response to short-term interventions affecting
cardiovascular function: Rationale and design of the Heredity and Phenotype
Intervention (HAPI) Heart Study. Am. Heart J. 155, 823–828 (2008).

74. Irvin, M. R. et al. Apolipoprotein E polymorphisms and postprandial
triglyceridemia before and after fenofibrate treatment in the Genetics of Lipid
Lowering and Diet Network (GOLDN) Study. Circulation. Cardiovascular
Genet. 3, 462–467 (2010).

75. Cajka, T. & Fiehn, O. LC–MS-Based Lipidomics and Automated Identification
of Lipids Using the LipidBlast In-Silico MS/MS Library, in Lipidomics:
Methods and Protocols, S. K. Bhattacharya, Editor. 2017, Springer New York:
New York, NY. 149–170.

76. Showalter, M. R. et al. Obesogenic diets alter metabolism in mice. PloS One 13,
e0190632–e0190632 (2018).

77. Cajka, T., Smilowitz, J. T. & Fiehn, O. Validating quantitative untargeted
lipidomics across nine liquid chromatography-high-resolution mass
spectrometry platforms. Anal. Chem. 89, 12360–12368 (2017).

78. Fan, S. et al. Systematic error removal using random forest for normalizing
large-scale untargeted lipidomics data. Anal. Chem. 91, 3590–3596 (2019).

79. Das, S. et al. Next-generation genotype imputation service and methods. Nat.
Genet. 48, 1284–1287 (2016).

80. Loh, P. R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing
in a UK Biobank cohort. Nat. Genet. 48, 811–816 (2016).

81. Abecasis, G. R., GotCloud https://genome.sph.umich.edu/wiki/GotCloud.
82. Li, H. Toward better understanding of artifacts in variant calling from high-

coverage samples. Bioinforma. (Oxf., Engl.) 30, 2843–2851 (2014).
83. Global Lipids Genetics, C. et al. Discovery and refinement of loci associated

with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
84. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels.

Nat. Genet. 47, 589–597 (2015).
85. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci

for blood lipids. Nature 466, 707–713 (2010).
86. Natarajan, P. et al. Deep-coverage whole genome sequences and blood lipids

among 16,324 individuals. Nat. Commun. 9, 3391 (2018).
87. Pirinen, M. et al. biMM: efficient estimation of genetic variances and

covariances for cohorts with high-dimensional phenotype measurements.
Bioinformatics 33, 2405–2407 (2017).

88. R Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing,nVienna, Austria. https://www.R-
project.org/.

89. O’Connell, J. R. Mixed Model Analysis for Pedigree and population (MMAP)
https://github.com/MMAP https://doi.org/10.5281/zenodo.5033491.

90. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and
genomic data. Nature 562, 203–209 (2018).

91. UKBiobank ICD PheWeb. 2019-06-30 https://pheweb.org/UKB-SAIGE/.
92. UK Biobank GWAS round 2 2019-03-30 http://www.nealelab.is/uk-biobank.
93. Pan-UK Biobank. 2020-11-30 https://pan.ukbb.broadinstitute.org/.
94. FinnGen Documentation of R4 release. 2020 2020-11-30 https://finngen.

gitbook.io/.
95. Japanese Encyclopedida of Genetic associations by Riken http://jenger.riken.jp/

en/result.
96. Perry, J. A. OASIS Resources, Video Library and Contact Information. https://

edn.som.umaryland.edu/OASIS/.
97. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic

Acids Res. 29, 308–311 (2001).
98. Genome Aggregation Database (gnomAD), https://gnomad.broadinstitute.org/
99. Carithers, L. J. & Moore H. M. The genotype-tissue expression (GTEx) project.

2015, Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle,
NY 10801 USA.

100. Carvalho-Silva, D. et al. Open Targets Platform: new developments and
updates two years on. Nucleic Acids Res. 2018: gky1133-gky1133.

101. Zerbino, D. R. et al. The ensembl regulatory build. Genome Biol. 16, 56 (2015).
102. Casper, J. et al. The UCSC genome browser database: 2018 update. Nucleic

Acids Res. 46, D762–D769 (2017).

Acknowledgements
We gratefully thank the Amish community, the Amish Research Clinic staff and liaisons,
and the participants of the GOLDN study. We also thank Simeon I. Taylor for insightful
suggestions, comments and discussions. The HAPI Heart study was supported by
U01HL072515. The analysis methods and software were supported by U01HL084756
and U01HL137181. The GOLDN study was supported by the NHLBI grant
U01HL072524–04 and R01HL091357.

Author contributions
Conceived, designed and supervised the work: M.E.M., J.R.O., M.R.I., D.K.A., H.K.T.
Results interpretation: M.E.M., J.R.O., A.L.B., M.R.I., D.K.A., S.A. Manuscript prepara-
tion: M.E.M., J.R.O. Provided samples, genotype and phenotype data: A.R.S. Data ana-
lyses; M.E.M., J.R.O., S.A., V.S., J.P., K.A.R., M.B., A.P. Performed lipidomic profiling and
processed the raw data; T.K., D.K.B., S.F. All authors read, revised and approved
the paper.

Competing interests
MEM reports funding from Regeneron Pharmaceutical unrelated to this work. SA
reports employment and equity in 23andMe, Inc. ARS is a current employee of
Regeneron Pharmaceuticals Inc. and also a part-time faculty member at the University of
Maryland School of Medicine. No competing interests for all other authors.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03291-2

12 COMMUNICATIONS BIOLOGY |           (2022) 5:334 | https://doi.org/10.1038/s42003-022-03291-2 | www.nature.com/commsbio

http://www.medschool.umaryland.edu/endocrinology/Amish-Research-Program/
http://www.medschool.umaryland.edu/endocrinology/Amish-Research-Program/
https://genome.sph.umich.edu/wiki/GotCloud
https://www.R-project.org/
https://www.R-project.org/
https://github.com/MMAP
https://doi.org/10.5281/zenodo.5033491
https://pheweb.org/UKB-SAIGE/
http://www.nealelab.is/uk-biobank
https://pan.ukbb.broadinstitute.org/
https://finngen.gitbook.io/
https://finngen.gitbook.io/
http://jenger.riken.jp/en/result
http://jenger.riken.jp/en/result
https://edn.som.umaryland.edu/OASIS/
https://edn.som.umaryland.edu/OASIS/
https://gnomad.broadinstitute.org/
www.nature.com/commsbio


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03291-2.

Correspondence and requests for materials should be addressed to May E. Montasser.

Peer review information Communications Biology thanks Rubina Tabassum and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Primary Handling Editors: Hélène Choquet and George Inglis. Peer reviewer reports are
available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03291-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:334 | https://doi.org/10.1038/s42003-022-03291-2 | www.nature.com/commsbio 13

https://doi.org/10.1038/s42003-022-03291-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	An Amish founder population reveals rare-�population genetic determinants of�the�human�lipidome
	Results
	Additive and dominant heritability
	Genetic contribution of traditional lipids to lipidome
	Genetic and phenotype correlation
	Lipidome contribution to traditional lipids
	GWAS results
	Rare-general population but Amish-enriched loci
	Common known loci
	Replication/fine mapping in GOLDN
	Suggestive associations
	Lookup of previously identified loci in our results
	Association testing using lipidome compared to traditional lipids

	Discussion
	Methods
	Study populations
	Lipidomic profiling
	HAPI chip genotyping and imputation
	Whole-genome sequencing for GOLDN
	Phenotype preparation
	Variance decomposition
	Additive and dominant heritability
	Data-derived covariance matrices
	Lipidome variance explained by known lipid variants
	Genetic and phenotypic correlation
	Traditional lipid variance explained by lipidome classes
	Association analyses
	Annotation and biobank lookups

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




