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Abstract

INDUCER OF CBF EXPRESSION 1 (ICE1) encodes a MYC-like basic helix-loop-helix

(bHLH) transcription factor playing a critical role in plant responses to chilling and freezing

stresses and leaf stomata development. However, no information connecting ICE1 and

reproductive development has been reported. In this study, we show that ICE1 controls

plant male fertility via impacting anther dehydration. The loss-of-function mutation in ICE1

gene in Arabidopsis caused anther indehiscence and decreased pollen viability as well as

germination rate. Further analysis revealed that the anthers in the mutant of ICE1 (ice1-2)

had the structure of stomium, though the epidermis did not shrink to dehisce. The anther

indehiscence and influenced pollen viability as well as germination in ice1-2 were due to

abnormal anther dehydration, for most of anthers dehisced with drought treatment and pol-

len grains from those dehydrated anthers had similar viability and germination rates com-

pared with wild type. Accordingly, the sterility of ice1-2 could be rescued by ambient

dehydration treatments. Likewise, the stomatal differentiation of ice1-2 anther epidermis

was disrupted in a different manner compared with that in leaves. ICE1 specifically bound to

MYC-recognition elements in the promoter of FAMA, a key regulator of guard cell differentia-

tion, to activate FAMA expression. Transcriptome profiling in the anther tissues further

exhibited ICE1-modulated genes associated with water transport and ion exchange in the

anther. Together, this work reveals the key role of ICE1 in male fertility control and estab-

lishes a regulatory network mediated by ICE1 for stomata development and water move-

ment in the anther.

Author summary

INDUCER OF CBF EXPRESSION 1 (ICE1) is a basic helix-loop-helix transcription factor

playing multiple roles in Arabidopsis. It was initially identified as the activator of C-Repeat

Binding Factor 3 (CBF3), a core modulator triggering cold acclimation. ICE1 also acti-

vates Flowering Locus C (FLC), a major repressor of floral transition, to delay flowering
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under fluctuating environmental stimuli. In normal conditions, ICE1 participates in con-

trol of stomatal development in leaves and endosperm breakdown in seeds. Here we

describe a role of ICE1 in male fertility development of Arabidopsis. We provide evidence

that ICE1 controls stomatal differentiation in the anther epidermis and thereby anther

dehiscence and pollen viability as well as germination. Consequently, fertility of ice1
mutant can be rescued by ambient dehydration. ICE1 regulates FAMA, one key regulator

of guard cell differentiation, through direct binding to MYC-recognition elements in

FAMA promoter. Moreover, we perform transcriptomic analysis using anther tissues and

identify ICE1-regulated genes involved in water transport. These findings reveal a novel

role of ICE1 in male fertility regulation through affecting water movement in the anther,

which deepens our understanding of coordination between plant development and stress

response, and potentially contributes to the pollination controls in crop breeding.

Introduction

The stamen is the male reproductive organ of flowering plants and at a gross level comprises

the filament and the anther [1, 2]. The late phase of stamen development including filament

elongation, anther dehiscence, and pollen maturation, is an essential process in which mature

pollen grains are released from locules in the dehiscent anthers, thus enabling pollination and

fertilization [3]. Successful fertilization relies on the production and effective release of viable

pollen [4]. Failure of anther opening (dehiscence) results in male sterility, although the pollen

itself can be fully functional [5]. Anther dehiscence is a complex process involving multiple

aspects, such as cellular differentiation and degradation, combined with tissue structure alter-

ation as well as dehydration in anthers, which are also regulated by phytohormones [5–6]. A

variety of mutants with disturbed anther development in the late stages have been identified in

Arabidopsis and the corresponding genes are characterized. The genes characterized so far are

categorized into two major functional groups. One is a set of regulators controlling anther

structure dynamics including the anther cell layers formation (e.g., middle layer [6], tapetum

[5], septum [7] and stomium [8–11]), secondary thickening in the endothecium [12–20], pro-

grammed cell death in sporophyte tissues of anthers (e.g., tapetum, septum and stomium) [4,

21], and cell wall degradation (e.g., degradation of cell wall components, such as cellulose,

hemicellulose and pectin, in anther dehiscence zones catalyzed by cell wall-degrading

enzymes) [22]. The other group includes genes affecting the anther physiological changes,

such as water influx [23], ion homeostasis [24, 25] and carbohydrate metabolism [26–28].

Notably, most of the genes belonging to this functional group are closely related to anther

dehydration. Young anthers take up water for growth during early developmental stages, while

at later stages anthers and pollen undergo dehydration before dehiscence [29, 30]. The dehy-

dration caused by evaporation through stomata and water transport in the vascular bundle

promotes pollen grains maturation, anther dehiscence and filament elongation [31–33]. In

addition, these two groups of genes are regulated by phytohormones. Studies on jasmonic acid

(JA) biosynthetic genes [32–36], JA signaling components including COI1 [37], MYC and

MYB genes [38–43], and a JA transporter GTR1 [44] have demonstrated that JA plays essential

roles in the control of timing of anther dehiscence and pollen maturation. JA positively affects

stomium opening [45] and anther dehydration by regulating water transport from anther to

filament [32, 46]. Auxin, generally known as a negative regulator of endothecium lignification,

also functions essentially at late anther developmental stages [47–54]. Mutants with disrupted

auxin biosynthetic genes or auxin responsive transcription factors are deficient in anther
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dehiscence, pollen maturation or filament elongation [55–58]. During the modulation of sto-

mium opening in anther dehiscence and pollen maturation, auxin negatively controls the bio-

synthesis of JA [52, 56–59]. Deficiency of genes participating in any of these processes can

cause anther indehiscence, which is mediated and coordinated by cell layers development and

anther dehydration. In comparison, the studies with respect to genes involved in anther dehy-

dration remain relatively limited.

INDUCER OF CBF EXPRESSION 1 (ICE1), also known as SCREAM (SCRM1), is a MYC-

like basic helix-loop-helix (bHLH) transcription factor regulating plant responses to chilling

and freezing stress and leaf stomata development in normal conditions. Under cold stress,

ICE1 is subjected to cold-activated modification [60–63] and subsequently binds to promoters

of C-REPEAT BINDING FACTOR (CBF3) [64] to enhance cold tolerance. The identified modi-

fication of ICE1 protein includes sumoylation and phosphorylation. In cold exposure, a small

ubiquitin-related modifier (SUMO) E3 ligase, SAP and Miz 1 (SIZ1), facilitates SUMO conju-

gation to ICE1 [60] and a protein kinase, OPEN STOMATA 1 (OST1), phosphorylates ICE1

to enhance its stability and transcriptional activity [61]. Meanwhile, mitogen-activated protein

kinase 3 and 6 (MPK3/6) also phosphorylates but destabilizes ICE1 in response to cold [62,

63]. ICE1 can be degraded through E3 ubiquitin ligases, high expression of osmotically respon-

sive genes 1 (HOS1) [65] and constitutive photomorphogenic 1 (COP1) [66]. These estab-

lished a well-characterized regulatory network of ICE1 in low temperature. In ambient

temperature, ICE1 directly interacts with three bHLH transcription factors, SPCH, MUTE,

and FAMA, to regulate stomatal differentiation in the leaf epidermis [67]. Previous studies

also demonstrated that the loss-of-function mutation of ICE1 caused early-flowering with ele-

vated Flower Locus C (FLC) gene expression [68] and seed endosperm persistence phenotype

that was also observed in the mutant of an endosperm breakdown regulator, ZHOUPI (ZOU)

[69]. Thus, ICE1 functions in multiple organs at different developmental stages of plants in

responses to environmental variations.

Here, we illuminate a novel role for ICE1 as a male fertility modulator in Arabidopsis. In the

ice1 mutant, the anther wall could not shrink to complete a sufficient anther dehiscence and

anthers failed to conduct pollen release. Pollen grains from those indehiscent anthers also

showed less viability and lower germination rate. Phenotypic and transcriptomic evidences

indicate that the deficient anther dehiscence and pollen germination are associated with water

movement and dehydration of anther wall due to the impaired stomatal differentiation as well

as altered water transport and ion exchange related genes. Our work brings a new member to

anther dehiscence regulators and implicates a potential link among the regulation of environ-

mental responses, vegetative growth, floral transition and fertility development.

Results and discussion

Loss-of-function mutation of ICE1 impairs fertility in Arabidopsis
In the previously characterized null mutant SALK_003155 in the Columbia (Col-0) back-

ground with a T-DNA insertion in the third exon of the ICE1 gene (Fig 1A) (named as ice1-2)

[67], we observed reduced fertility (Fig 1B), nevertheless no information with respect to the

function of ICE1 in reproductive development has been reported. The extremely low expres-

sion level of ICE1 was verified in inflorescences of the ice1-2 (Fig 1C). To investigate the func-

tion of ICE1 gene involved in plant fertility, we generated ICE1pro::ICE1 ice1-2 lines, named as

c-ice1-2. Complementation of ICE1 expression and phenotype of reproductive development

were confirmed (Fig 1B and 1C). Further characterization revealed that the ice1-2 developed

significantly shorter siliques with fewer seeds in each, while c-ice1-2 plants showed restored

phenotypes (Fig 1D–1F). In addition, ice1-2 pistils artificially pollinated with Col-0 pollen
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Fig 1. Characterization of the sterile phenotype in ice1-2. (A) Structures of the ICE1 gene in ice1-2mutant (SALK_003155). The scaled

linear map depicts four exons as boxes and three introns as bold lines between boxes. The positions of qRT-PCR primers (indicated by

arrows) and T-DNA insertion are shown. (B) Morphology of reproductive growth of Col-0, ice1-2 and c-ice1-2 plants. (C) Relative

expression of ICE1 gene in inflorescences. The ACTIN2 gene (AT3G18780) was an internal control. SE, n = 3, ��� p< 0.001. (D)

Comparison of seed numbers per silique of each genotype. SE, n = 32, ��� p< 0.001. (E) Morphology of siliques from Col-0, ice1-2 and c-
ice1-2 fresh plants. (F) Comparison of silique length of each genotype. SE, n = 14.

https://doi.org/10.1371/journal.pgen.1007695.g001
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grains were able to develop into normal siliques, while pollination using ice1-2 pollen was

failed in either Col-0 or ice1-2 plants (S1A Fig), demonstrating that the mutant is female-fer-

tile. Together, ICE1 is involved in plant male fertility development and controls seed produc-

tivity. Intriguingly, another well characterized mutant ice2-1/scrm2-1 (SAIL_808_B10)

disrupting ICE2/SCRM2, the paralog of ICE1 functioning similarly in cold response and leaf

stomata development [70, 71], did not show any phenotype in fertility (S1B Fig), which could

be due to functional redundancy or the different roles of ICE1-like transcription factors in

developmental regulation.

The ice1 mutant is defective in anther dehiscence

After a closer examination of flower anatomy using scanning electron microscopy (SEM), we

observed very few pollen grains around the style or on the stigma in ice1-2 (S2B Fig) compared

with Col-0 (S2A Fig) and c-ice1-2 (S2C Fig), thus stigmas of ice1-2 typically were unpollinated.

Besides, anthers were only occasionally open while most of them remained indehiscent in ice1-
2. We then compared the floral development in Col-0, ice1-2, and c-ice1-2 plants using light

microscopy across flower development stages [45, 72]. At stage 12, no difference of anther

morphology was observed in Col-0, ice1-2 and c-ice1-2 (Fig 2Aa, 2Ae and 2Ai). In Col-0 and c-
ice1-2, anthers started to dehisce at stage 13, with concomitant pollen release from the locules

after the full expansion of the stigmatic papilla (stage 13) (Fig 2Ab and 2Aj) and shriveling of

the anther epidermis cell wall (stage 14) (Fig 2Ac and 2Ak), followed by initial stages of silique

expansion and floral senescence (stage 15) (Fig 2Ad and 2Al) [1]. In contrast, most of ice1-2
anthers did not dehisce at flower stage 13 and later stages (Fig 2Af–2Ah). Majority of the

mutant anthers did not dehisce and release pollen grains until the initiation of floral senes-

cence (stage 15) (Fig 2Ah). Based on the flower developmental series, we quantitatively ana-

lyzed the process of anther dehiscence in single inflorescences. The youngest flower with

visible petals within a flower cluster was labeled as flower 1 and the next elder flower was

labeled as flower 2, and so on [45] (Fig 2B). In Col-0 and c-ice1-2 plants, more than 95% of

anthers had dehisced in flower 3 (5.72 of 6 in Col-0 and 5.87 of 6 in c-ice1-2) and elder ones,

while the dehisced anther number was significantly lower in ice1-2 in flowers 3–5 (7.7%, 0.46

of 6 for flower 3). Even in the oldest flower 5 only 27% (1.62 of 6) of anthers were dehisced

(Fig 2C). In fact, even for dehisced anthers in ice1-2, most of them were still not fully open like

that in Col-0. Therefore, ICE1 is required for dehiscence of anther and the decrease of fertility

in ice1-2 is related to indehiscent anthers. Further characterization of anther adaxial surface

using SEM provided a closer insight into this phenotype. At stage 12 of anther development in

Col-0 and c-ice1-2 flowers, the anthers had locules filled with liquid and an indentation (sto-

mium region) in epidermis [72] (Fig 2Da and 2Di). From stages 12 to 13, the dehiscence pro-

gram was initiated from the apical toward basal parts. A stomium emerged at the apical of

anther and the epidermis cells started to shrink (Fig 2Db and 2Dj). The slit on the stomium

begins to widen, resulting in release of pollen at stages 14 (Fig 2Dc and 2Dk) and stages 15 (Fig

2Dd and 2Dl). In contrast, in ice1-2 anthers the stomium slit was visible at stage 13 and stage

14 (Fig 2Df and 2Dg). However, the stomium did not rupture sufficiently even at stage 15 and

epidermis cells failed to shrink to release pollen from individual anther locules to the stigma

(Fig 2Dh). Hence, the ice1 mutation disrupts the shrinkage of anther wall and prevent the

release of pollen at the proper stage of pollination. Previous studies have shown that failure of

anther dehiscence can be elicited by abnormal cell organization and differentiation of anther

tissues [4]. The key processes affecting dehiscence include development of cell layers of the

anther [6, 73], endothecium secondary thickening [12, 14], degradation of middle layer and

tapetum [6, 74], septum breakdown [33, 75–77], and stomium opening [78]. To determine if
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Fig 2. Stamen morphology and anther dehiscence in ice1-2. (A) Developmental series of flowers at flower

developmental stage 12–15 within a single inflorescence from Col-0, c-ice1-2 and ice1-2. A, anther; F, filament; Ov,

ovary; Pa, stigmatic papilla; Sg, stigma; Sy, style; Pe, Petal; Pg, Pollen grain. (B) Flower cluster showing the

developmental series used to quantitatively describe anther dehiscence. The number 0 indicates the beginning of flower

stage 12; 2 indicates the end of stage 12; 1 (stage 12); 3 (stage 13); 4 (stage 14); 5 (stage 15); -1 (stage 11); -2 (stage 11); -3

(stage 10); -4 (stage 9). (C) The number of dehiscent anthers in plants (SE, n = 15–28 flowers, one inflorescence per

plant was used, ��� p< 0.001). (D) Scanning electron micrographs of the anther adaxial surface from flower stage 12–

15. St, stomium; En, epidermis; L, locule, StR, stomium region; Pg, Pollen grain.

https://doi.org/10.1371/journal.pgen.1007695.g002
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there was morphological abnormality in the anther tissues, we observed transverse sections of

Col-0 and ice1-2 anthers from the emergence of dehiscence to senescence during stamen

development. In both Col-0 and ice1-2, tapetum was visible and started to break down at

anther developmental stage 10; at stage 11 endothecium started the lignification for secondary

thickening, tapetum was degraded, and septum started to break down; at stage 12 the septum

was degraded through a programmed cell death-like lysis to form a single locule (S3 Fig). In

Col-0, stomium was open and epidermis started to shrink to release pollen grains at stage 13,

and epidermis kept shrinking and releasing pollen at stage 14a. Until stage 14b all pollen grains

were dispersed. In ice1-2, although stomium was ruptured, epidermis did not shrink and pol-

len grains were still covered inside the locules until stage 14b (S3 Fig). The auramine O stain-

ing in both semi-thin sections and fresh anthers at anther stage 13 also showed that no obvious

difference was between Col-0 and ice1-2 for endothecium secondary thickening that was

occurred from stage 11 (S4A and S4B Fig). Whereas at stage 14 very few pollen grains were

still inside anthers of Col-0 (S4Be Fig), while the ice1-2 anthers were full of pollen (S4Bf Fig).

Taken together, ICE1 may not influence formation of anther cell layers but regulates epidermis

shrinkage at the stage of pollen dispersal.

Further, the sizes of stamen and pistil tissues were also investigated using light microscopy.

The filaments were fully elongated to position the anthers at the height of the stigma at flower

developmental stage 14 in Col-0 and c-ice1-2 (S5Aa and S5Ac Fig). In ice1-2, the stamen and

style lengths were slightly shorter and the stamen/style length ratio was smaller (S5B and S5C

Fig). The reduced elongation of stamen tissues is also commonly observed in mutants inter-

rupting anther dehiscence [4]. But in ice1-2, the shorter stamen and pistil may not be the main

reason of sterility, since the filaments were able to elongate and allowed anthers to reach

stigma (S5Ab Fig).

The ice1 mutant shows decreased pollen viability and germination rate

During the dehiscence of the anther, one of the key forces that open the anther comes from the

swelling of pollen grains [79]. In mutants such as apy6/7 [80], yuc6 [81] and ams [82], delay or

lack of anther dehiscence is due to abnormal pollen exine formation or absence of pollen.

Here, the pollen development in Col-0 and ice1-2 was examined. Similar with Col-0, ice1-2
anthers enveloped fully differentiated pollen grains (Fig 3A). The microspores developed into

tricellular pollen and the exine structure was normally formed, suggesting an intact meiotic

division process and completed trinucleate stage. However, viability of ice1-2 pollen grains was

obviously lower than Col-0 and c-ice1-2 shown by fluorescein diacetate (FDA) staining (living

cell emits blue-green light [40]) at anther stage 13 (Fig 3B and 3C), indicating that the pollen

maturation was influenced at the final phase. Moreover, ice1-2 pollen grains showed a signifi-

cantly lower in vitro germination rate compared with Col-0 at stage 13, and the germination

remained poor until stage 15 (Fig 3D). Consistently, the in vivo germination capacity deter-

mined through pollination on Col-0 pistils also demonstrated that ice1-2 pollen was deficient

in germination (Fig 3E). Most of ice1-2 anthers were manually opened or enlarged for collec-

tion of pollen grains. Interestingly, we noticed that when we selected the small proportion of

ice1-2 anthers with obviously open stomium and pick pollen grains exposed at the stomium

area to do the pollination, the germination was rescued at both stage 13 and stage 15 (Fig 3E).

Notably, even for those ice1-2 anthers with open stomium, most of them were still half-dehis-

cent (Fig 3F). In the in vitro germination assay, hundreds of pollen grains including ones

exposed at the stomium area and those enveloped inside epidermis were pooled on media.

Thus, it was not surprising to see that pollen grains from ice1-2 anthers possessing open sto-

mium still showed low in vitro germination rate, which was higher than typical ice1-2 anthers

ICE1 regulates anther dehydration
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though (Fig 3D). Given the fact that pollen structure was intact and pollen grains exposed at

the stomium area could germinate in pollination, the impaired pollen viability and germina-

tion in ice1-2 might be related to abnormal anther dehiscence and dehydration.

The impaired anther dehiscence, pollen viability and pollen germination in

ice1 mutant are due to deficiency in anther dehydration

Water status is critical for development of pollen grains and anthers. Pollen maturation and

anther dehiscence are coordinated processes involving water absorbance and dehydration

Fig 3. Pollen phenotypes, viability and germination analysis in ice1-2. (A) Alexander staining of the anther, DAPI

staining of pollen at tricellular stage, scanning electron microscopy (SEM) of pollen grains from Col-0 and ice1-2. Vn,

vegetative nuclei; Sc, sperm cells. (B) FDA (fluorescein diacetate) staining of pollen from Col-0, ice1-2 and c-ice1-2 at

flower stage 13. (C) Comparison of viability of pollen from Col-0, ice1-2 and c-ice1-2. SE, n = 5, �� p< 0.01. (D) The in
vitro germination of pollen from Col-0, c-ice1-2, ice1-2 and selected ice1-2 anthers with obviously open and enlarged

stomium (ice1-2-o) at flower stages indicated. The germination rates are listed below photographs. SE, n = 3. (E)

Aniline blue-stained pistils of Col-0 flowers at 2 h after pollination with pollen from Col-0, c-ice1-2, ice1-2 and ice1-2-o
at flower stages indicated. (F) Scanning electron micrographs of the anther adaxial surface from Col-0, c-ice1-2, ice1-2
and ice1-2-o at flower stages indicated. Arrows indicate the stomium in the ice1-2 anther. St, stomium.

https://doi.org/10.1371/journal.pgen.1007695.g003
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of anther tissues including endothecium and epidermal cells [4, 83]. Desiccation of the

anther leading to shrinkage of the outer wall provides the final force for anther opening [31].

During pollen development, pollen water content will decrease to a minimum at maturity

before dispersal, and rehydrate after pollination [83]. To confirm whether the defects of

anther dehiscence and pollen maturation in ice1-2 were due to the issue of dehydration, we

examined the anther dehiscence rate in different relative humidity (RH) conditions. The

80% RH environment was the normal growth condition of Arabidopsis plants and 40% RH

was used as the dehydration treatment. The anther dehiscence rates and phenotypes were

recorded at flower stage 13 that is the key stage for anther dehiscence and pollination [1].

Under 80% RH Col-0 showed higher anther dehiscence rate than ice1-2, while under 40%

RH the ice1-2 anther dehiscence rate was significantly increased (Fig 4A and 4B). Moreover,

the deficiency of ice1-2 in the pollen viability (Fig 4C and 4E), pollen germination (Fig 4D

and 4F), and pollen function indicated by pollination on Col-0 pistils (Fig 4G and 4H)

were all rescued by 40% RH treatment. Especially for pollen, ice1-2 reached wild type

levels in all three indices. As a consequence, the sterility phenotypes of ice1-2 could be res-

cued by drought treatment as well (Fig 5A–5C). These further demonstrated that in ice1-2
the anther indehiscence and impaired pollen function are due to deficiency in dehydration

of anther tissues such as anther wall, which can be derived from abnormal water allocation

within the stamen. These are also consistent with the previous studies showing that pollen

maturation and anther dehiscence are co-regulated during water movement associated pro-

cesses [83].

ICE1 is expressed in anther stomata and multiple flower vascular bundles

It has been suggested that water moves out of the anther via the transport in the vascular bun-

dle and evaporation of epidermis stomata [28, 31]. The dehydration of endothecium, connec-

tive, and locules can be partially attributable to the evaporation of water through the stomata

on the abaxial surface of anthers [31]. Previous studies indicated that ICE1 was expressed in

leaf guard cells [67]. We investigated the promoter activity of ICE1 at the stages of floral devel-

opment involving anther dehiscence program events using β-glucuronidase (GUS) report sys-

tem. Three independent ICE1pro::GUS transgenic lines were assayed and exhibited consistent

patterns. The ICE1 promoter showed a strong activity in the inflorescence and floral organs

(S6A Fig). At approximately flower stage 10 (the petals reach the lateral stamens) [1], the style,

sepals, and filaments showed strong staining, whereas no obvious GUS staining was observed

in the anther tissues (S6B Fig). As the flowers developed to stage 12–15, the GUS staining

remained in sepals (S6C–S6E Fig), especially vascular tissues of sepals (S6F Fig), as well as the

style (S6G Fig), and turned to be much stronger in connective of anthers (S6H Fig), filaments

(S6I Fig), pedicels (S6J Fig), and vascular tissues of petals (S6K Fig). In immature siliques, GUS

staining was restricted to the septum, the silique tip, and the base (S6L Fig). Remarkably,

although the GUS signal in the adaxial side of anthers was weak in flowers at stage 12–15, a

strong staining was observed in guard cells of stomata in the abaxial side of anthers (Fig 6A),

where the ICE1 protein was accordingly accumulated (Fig 6B). The water transport from

anther locules to filaments and petals is essential for pollen maturation and anther dehiscence

[32]. Multiple genes involved in anther dehiscence were found to be specific expressed in

anther guard cells [25, 45, 84, 85], filaments [6, 32, 49], anthers and filaments junction tissues

[27, 50], anther wall and vascular bundle [23]. DAD1 strictly expressed in filaments controlling

JA biosynthesis and likely water transport also regulates anther dehiscence and pollen matura-

tion [32]. Consistent with the fact that sterile phenotype of ice1-2 can be rescued by dehydra-

tion, the high activity of ICE1 promoter in anther stomata and flower vascular bundles suggest

ICE1 regulates anther dehydration
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Fig 4. The pollen inviability, low pollen germination rate and anther indehiscence in ice1-2 can be rescued when grown in low

humidity. (A) Flowers and anthers from Col-0 and ice1-2 plants grown under 40% or 80% relative humidity (RH), respectively. The

insets (top left corner) exhibit magnification of anther phenotypes. (B) Comparison of dehisced anther numbers between Col-0 and

ice1-2 per flower at flower stage 13 under 40% and 80% RH, respectively. (SE, n = 25–292 flowers, ��� p< 0.001). (C) FDA

(fluorescein diacetate) staining of pollen from Col-0 and ice1-2 at stage 13 under 40% RH. (D) The in vitro germination of pollen from

Col-0 and ice1-2 at stage 13 under 40% RH (upper row). The aniline blue-stained pistils of Col-0 flowers at 2 h after pollination with

pollen from Col-0 and ice1-2 at stage 13 under 40% RH are also shown (lower row). (E-G) Comparison of pollen viability (E) (SE,

n = 5), pollen germination rates (F) (SE, n = 3), and seed numbers per silique (G) (SE, n = 20) between Col-0 and ice1-2 grown under
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a connection of ICE1 function in particular with appropriate dehydration of pollen and/or

anthers.

ICE1 regulates the stomatal differentiation in the anther

At anthesis, endothecium and epidermal cells in anther wall lose most of water via evaporation

of stomata on the abaxial side of anthers [86] and osmotic retraction of water through

40% RH. (H) Manual pollination on the Col-0 plants grown in the normal condition with pollen from Col-0 and ice1-2 under 40%

RH, respectively. Arrows indicate the normal siliques generated using ice1-2 pollen under 40% RH.

https://doi.org/10.1371/journal.pgen.1007695.g004

Fig 5. The Fertility of ice1-2 can be rescued when grown in low humidity. (A) Comparison of pollination in Col-0 and ice1-2
plants grown under 40% and 80% relative humidity (RH), respectively. SE, n = 62–292 flowers, ��� p< 0.001. (B) Comparison of

silique length in Col-0 and ice1-2 plants grown under 40% (SE, n = 73) and 80% RH (SE, n = 140), respectively. �� p< 0.01,
��� p< 0.001. (C) The shoots of the Col-0 and ice1-2 plants grown under 40% RH. Arrows indicate the rescued siliques in ice1-2.

https://doi.org/10.1371/journal.pgen.1007695.g005
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Fig 6. Stomata development of the anther is controlled by ICE1. (A) GUS activity driven by ICE1 promoter is

determined in the anther of flower stage 8 and 12. Strong GUS staining is shown in guard cells of stomata in the anther

of flower stage 12 (indicated by red arrows). (B) Confocal images showing GFP-ICE1 accumulation (indicated by blue

arrows) in the anther of flower stage 12. (C) Stomata numbers of anthers in flower stage 9–12. SE, n = 7–42 anthers. (D)

Mode pattern of stomatal development in anthers. Diagram shows cell-state transitional steps within stomatal cell

lineages. A subset of protodermal cells (white) assumes meristemoid mother cell (MMC) identity and executes an

asymmetric entry division that creates meristemoids (M) (blue) and a sister cell, called stomatal-lineage ground cell

(SLGC) (white). The meristemoids reiterate asymmetric amplifying division, but eventually differentiate into the guard
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filaments and connective tissue surrounding the vasculature [27]. Actually, in Arabidopsis not

much information focused on stomatal development in anthers has been reported, and little

attention has been paid to the role of anther stomata in anther dehiscence. Not all plant species

possess stomatal pores in anther epidermis and developmental process of anther stomata

depends on species [87]. In order to systematically describe the stomata development in the

anther of Arabidopsis, we counted the number of anther stomata in flowers at stages from 9 to

12 in Col-0. The anther stomata increased from 1.57 to 5.89 at stage 9 to 11, while at stage 12

much more stomata (22.38) were identified in the anther (Fig 6C). According to the stomatal

lineage model in Arabidopsis leaves [88], stomata differentiate via a series of cell transitions. A

group of protodermal cells called meristemoid mother cells can produce meristemoids (Ms)

through asymmetric divisions. Meristemoids reiterate asymmetric divisions to generate sur-

rounding stomatal lineage ground cells (SLGCs) and eventually differentiate into guard

mother cells (GMCs). One guard mother cell undergoes one time of symmetric division to

produce a pair of guard cells (GCs) (Fig 6D). We used scanning electron microscopy (SEM) to

perform more detailed characterization for stomata lineage in Col-0 anthers of flowers from

stage 8 (before generation of stomatal lineage cells) to stage 14 (after anther dehiscence). No

stomata were observed in the adaxial side of anther epidermis. In the abaxial side, cell number

started to increase but no stomatal lineage cells or mature GCs appeared yet at flower stage 8

(Fig 6Ea). At stage 9, cell types were destined and stomatal lineage cells as well as few mature

guard cells within top area were identified (Fig 6Eb). After that, the epidermal cells gradually

expanded and more stomata turned to mature. At stage 10 and 11, mature GCs kept increasing

(Fig 6Ec and 6Ed). At stage 12 with a longer duration, the number of mature GCs significantly

increased, and most of stomata matured completely at the end of stage 12 (Fig 6Ee). At this

moment, the anther shape was changed from oval to round and stomata gradually matured

from the top to the bottom. Mature GCs were concentrated in the middle lengthways of the

abaxial side in the anther epidermis (Fig 6Ee). From stage 13 to 14, the enhancing shrinkage of

anther wall prompted the rupture in the adaxial side and the pollen dispersed (Fig 6Ef and

6Eg). Stomata were not present in filaments. The accumulation of matured stomata in stage 12

from the top toward the bottom in epidermis coincided the stage at which the anther wall

started to shrink and then opened from the top, suggesting the role of stomata in anther dehy-

dration and dehiscence in Arabidopsis.
ICE1 has been reported as a regulator of stomatal differentiation at the surface of leaves

[67], but it is unclear whether ICE1 is involved in stomatal differentiation in anthers. Since in

mature stomata of anthers ICE1 promoter was strongly active and ICE1 protein was highly

accumulated (Fig 6A and 6B), we therefore examined how ice1-2 mutation affected stomatal

development in anthers. At flower stage 12, Col-0 and c-ice1-2 possessed abundant matured

guard cells and some stomatal lineage cells, while ice1-2 showed many meristemoids and

guard mother cells but not a single mature stoma (Fig 6F and 6G). No stomata clusters or

GMC-like tumors were identified either (Fig 6F). In addition, the total number of stomatal

lineage cells in ice1-2 were obviously lower than Col-0 in anthers (Fig 6G). These differed from

mother cell (GMC) (green), which divides symmetrically once to form a stoma with differentiated guard cells (GCs)

(red). (E) Scanning electron micrographs of the abaxial side of anthers at flower stage 8–14 in Col-0 (a-g). Anthers

increase cell numbers from stage 8 to 9 (a-b). The stomatal lineage cells make their first appearance at about stage 9 (b).

The number of stomatal lineage cells increases gradually during flower stage 9–12 (b-e). The majority of mature stomata

are formed at about stage 12 (e). Inserts of anthers outline diagram show stomatal lineage cells with blue dots and

mature stomata with red triangles. (F) Scanning electron micrographs of the abaxial side of anthers at flower stage 12

from Col-0, ice1-2 and c-ice1-2 plants. Cells colored in pink show distribution of mature stomata. Blue arrows indicate M

and SLGC; green arrows indicate GMC; red arrows indicate GC. (G) Comparison of stomata numbers in Col-0, ice1-2
and c-ice1-2 plants at flower stage 12. SE, n = 30–42 anthers, ��� p< 0.001).

https://doi.org/10.1371/journal.pgen.1007695.g006
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the stomata development in ice1-2 leaves, in which stomata clusters, GMC-like tumors aligned

in parallel, and some differentiated GCs expressing mature guard cell marker E994 were pres-

ent [67]. Consistently, we observed that in ice1-2 leaves more than one third of stomata showed

differentiated GCs and nearly half were immature stomata including GMC-like tumors. Sto-

mata clusters were also recorded (S7A and S7B Fig). In comparison, ice1-2 leaves resemble

fama leaves in stomata development phenotype showing excessive GMC symmetric divisions

and defective terminal differentiation of GCs [67], but the phenotype in ice1-2 leaves is weaker

for they can still form some differentiated GCs [67, 89] (S7A Fig). Whereas ice1-2 anthers do

not exhibit structures indicating unrestricted GMC symmetric divisions and hardly possess

differentiated GCs. Thus, ICE1 prompts stomatal differentiation in the anther in a different

manner compared with that in leaves, and therefore can regulate anther dehydration to allow

the dehiscence.

The stamen-expressed and the guard cell-expressed genes were highly

overlapped within ICE1-regulated gene sets

Besides evaporation through stomata, many factors, such as signal of phytohormones, nutrient

metabolism and transporters, also influence anther dehydration [23, 27, 32]. At present the

direct data with respect to water content in the anther remain limited. To further investigate

the effect of ICE1 underlying the phenotypes observed, we collected anthers at flower stage

9–13 covering critical time points for dehiscence and performed RNA-Seq to analyze ICE1-

regulated genes in anthers. There were 1165 genes differentially expressed in the anther of

ice1-2 compared to Col-0, with 732 up-regulated genes (UGs) (LogFC > 1, FDR< 0.05) and

433 down-regulated genes (DGs) (LogFC < -1, FDR < 0.05) (Fig 7A and S1 Table). For cor-

roboration of the transcriptome data, three up-regulated genes and three down-regulated

genes were subjected to qRT-PCR and these expression changes showed a good agreement

between RNA-seq and qRT-PCR data (S8 Fig).

Among these differentially expressed genes (DEGs), 574 UGs and 205 DGs were identified

as guard cell-expressed genes according to the gene expression database (http://www.

arabidopsis.org/servlets/TairObject?type=keyword&id=19990 [90] and previously published

transcriptome data of the leaf stomatal lineage [91]. Meanwhile, 452 UGs and 146 DGs were

detected as stamen-expressed genes through stamen gene expression database (http://www.

arabidopsis.org/servlets/TairObject?type=keyword&id=20328 [92] (Fig 7A and S1 Table).

There were 429 UGs and 114 DGs expressed in both the guard cell and the stamen, indicating

the significantly strong overlap between genes expressed in these two tissues for ICE1-regu-

lated DEGs (p< 8.405e-44 for UGs and p< 1.560e-20 for DGs by hypergeometric test). The

overrepresentation of guard cell-expressed genes within ICE-regulated genes in the anther

reflects the key role of ICE1 in the regulatory network of stomata development of the stamen,

which is in line with the phenotyping results.

ICE1 specifically binds to FAMA promoter to activate its transcription

Eight of these 543 guard cell & stamen DEGs play key roles in leaf stomatal development,

including four UGs (TMM, SPCH, MUTE, bHLH93) and four DGs (FAMA, EPF1, MPK12,

and MPK14) [93]. The results of qRT-PCR also confirmed that the expression of these genes

was differentially regulated at flower developmental stage 10–13 of ice1-2 compared with Col-0

[83] (Fig 7B). FAMA and EPF1 controlling guard cell differentiation [67, 94] were significantly

down-regulated, which was in line with the impaired terminal differentiation of anther guard

cells in ice1-2. In leaves the ice1-2 phenotype was close to fama, but for anthers we could not

gain fama materials due to its severe developmental defects [89]. The up-regulation of TMM,
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Fig 7. Guard cell expressed genes are overrepresented within ICE1-regulated genes in the anther. (A) Number of

down- and up-regulated genes (DG and UG) in anthers at flower stage 9–13 from ice1-2 compared with that in Col-0.

The guard cell-expressed genes and the stamen-expressed genes are shown in circles of light green and dark green,

respectively. (B) Heat map showing expression patterns of eight leaf stomatal development genes at the flower stage

10–13 in anthers from Col-0 and ice1-2measured by qRT-PCR. The gene expression profiles were normalized with

ACTIN2 gene (AT3G18780) and were plotted using Heatmapper (http://www2.heatmapper.ca/). (C) Regulatory

network of stomatal development in the anther. Red shows up-regulated genes and blue shows down-regulated genes

in the anther of ice1-2. When ICE1 is knocked-out, the differentiation from guard mother cells (GMCs) to guard cells

(GCs) is blocked.

https://doi.org/10.1371/journal.pgen.1007695.g007
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SPCH, MUTE and bHLH93 in ice1-2 can also be due to feedback effects (Fig 7C). Using FAMA-
pro::FAMA-GFP plants, we observed specific accumulation of FAMA in anther guard cells (Fig

8A). Moreover, while EPF1 promoter does not contain E-box motif (CANNTG) that is a typi-

cal binding motif of bHLH transcription factors [63], there are nine E-box elements in the

FAMA promoter (2.5 kb from the transcription start site) (Fig 8B and S9A Fig). The in vivo
dual-LUC assay with transient expression of ICE1 driven by 35S promoter (used as the effec-

tor) and LUC driven by truncated FAMA promoter fragments (used as reporters) demon-

strated that in addition to protein interaction, ICE1 activated the FAMA transcription (Fig 8C

and 8D). Further investigation using electrophoretic mobility shift assay (EMSA) showed two

E-box elements located at -582 to -613 bp (labeled as P3) and -629 to -664 bp (labeled as P4)

upstream from transcription start site specifically interacted with ICE1 (S9A and S9B Fig, Fig

8E and 8F). P4 exhibited an obviously higher in vitro binding affinity than P3 (Fig 8G).

Another E-box element located at -1569 to -1600 bp (labeled as P7) also showed a weak bind-

ing with ICE1 but no competitive binding of cold probe was observed (S9B and S9C Fig), sug-

gesting that the shift was due to a non-specific binding or the binding affinity was extremely

low. P7 contains the same core sequences with P3 (S9A Fig), thus the flanking sequences may

also play an important role in the ICE1 binding affinity.

The direct interaction between ICE1 and FAMA promoter is a novel interplay in the regula-

tory network of guard cell differentiation. It has been reported that FAMA also plays a positive

role for ICE1 expression in young seedlings but does not bind to ICE1 promoter [95]. When

FAMA is associated with its promoter, it is not necessary for its own expression [89]. Given

the weaker developmental defects in ice1 than fama, ICE1 is unlikely necessary for FAMA
expression. Rather, ICE1 may enhance the transcription of FAMA with other activators in a

redundant manner, which can be a part of the regulatory network in the stomatal lineage

development. However, the identification of a novel direct target of ICE1 can be potentially

beneficial for breeding application.

ICE1 regulates genes involved in water movement in the anther

Gene ontology (GO) analysis using singular enrichment provided by agriGO [96] showed that

a number of ion transporters, hydrolases and dehydration associated genes were positively reg-

ulated by ICE1 in anthers (Fig 9A and S2 Table). Ion gradients or currents are critical for active

water movement in the anther and they regulate the anther dehiscence and pollen germination

[6, 24, 85, 97, 98]. Some mutants affecting cation homeostasis, such as mia deficient in a P-

type ATPase cation pump [99] and nhx1 nhx2 null in two Na+/H+ antiporters [24, 25], also

failed in sufficient release of pollen from mature anthers. Twelve transporter genes, in particu-

lar genes of sugar transporters, metal transporters as well as ATPases, were down-regulated in

ice1-2 anthers (Fig 9A). Among them, STP1 [100], STP4 [101], CAX3 [102] and ACA12 [103]

were expressed in leaf stomatal guard cells. The number of seeds per silique of aca12 mutant

was significantly less than that in the wild type, indicating that ACA12 impacts plant fertility

[103]. Accordingly, we observed wilted flower buds in old ice1-2 plants, which resembled the

phenotype of nhx1 nhx2 under osmotic stress [25] (Fig 9C), suggesting that ICE1 modulates

the ion exchange affecting water movement in flowers. Three glucosinolates hydrolysis related

genes, TGG1, TGG2, and TGG3, as well as several glucosinolates biosynthesis genes, were also

positively regulated by ICE1 (S2 Table). The glucosinolates are a group of secondary metabo-

lites involved in ABA-regulated stomatal opening [104] and floral development in drought

conditions [105]. The tgg1 tgg2 mutant showed stomata with closed aperture in leaves resem-

bling plants in the face of drought stress [106]. Thus, carbohydrate hydrolysis can also be

involved in ICE1-regulated anther dehydration.
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Fig 8. ICE1 directly binds to the promoter of FAMA to activate its expression. (A) Confocal images of FAMA protein

accumulation (indicated by arrows) in the anther at flower stage 12 in FAMApro::FAMA-GFP plants. (B) The upstream

region of 2.5 kb from transcription start site and ORF sequences of FAMA are shown with a black line and a blackish

green box, respectively. The vertical lines indicate the E-box positions. Eight probes (P1 to P8) containing E-boxes are

also exhibited. P6 contains two E-boxes. (C) Dual-LUC Assays in tobacco leaves. ICE1 driven by 35S promoter was

served as the effector and LUC under control of FAMA promoter (2.5 kb upstream from transcription start site) was the

reporter. (D) The relative activity (LUC/REN) is shown. The reporter co-transformed with pC1302 vector was used as the
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Besides, genes responding to water deprivation and auxin-mediated signaling pathways

were enriched (Fig 9B, S3 Table). Two ABA-induced dehydrin genes affecting water use effi-

ciency, RAB18 and LTI30 [107, 108], were remarkably repressed in ice1-2 mutant. RAB18 is

highly expressed in guard cells, suggesting a role in stomatal function [109]. The downregu-

lated auxin-mediated signaling genes included SAUR41, GH3.5, GH3.6, BT2, BT5, IAA 32, and

MPK12. BT family proteins are essential during later stages of male gametophyte development

[110, 111]. MPK12 is a MAP kinase that is preferentially expressed not only in leaves but also

in anther guard cells [112], and positively regulates ABA [112], JA [113] and SA signaling

[114] in leaf guard cells of Arabidopsis. It has been shown that auxin represses JA biosynthesis

to control the timing of stomium opening and prevent early anther dehiscence [52]. The genes

negatively regulated by ICE1 were categorized into two biological processes including JA bio-

synthesis and response, and flavonoids associated pathway. In the stamens and petals, JA is

mainly accumulated in the filaments to regulate water transport, which sequentially triggers

flower opening and anther dehiscence [32]. The JA biosynthesis or signaling deficiency can

cause profoundly male sterile [4, 45]. The null mutant of COI1, a JA receptor, exhibited

delayed anther dehiscence and produced sterile pollen [37, 45]. JA-synthesis related genes,

such as LOX2, AOS and OPR3, affect water movement in flowers as well [45, 84] (Fig 9B and

S3 Table). The interrupted transport of flavonoids leads to abnormal dehydration and dehis-

cence of anthers [84]. High amounts of flavonoids are also considered as endogenous auxin

transport regulators that affect plant growth [115]. Here, the down-regulation of auxin signal-

ing genes and up-regulation of JA and flavonoid related genes in ice1-2 can be due to either

active balance in regulation of water allocation or compensatory feedback consequences of

failed stomium enlargement caused by abnormal water movement in the anthers and/or other

floral tissues.

All the identified enriched pathways in GO analysis of ICE1-regulated genes are related to

water transport (Fig 10). The stomatal differentiation influencing evaporation is also con-

trolled by ICE1. Together with the fact that dehydration rescued sterility in ice1, it can be dem-

onstrated that ICE1 participates in the interaction between ambient environmental stimuli

and water regulation in the anther tissues. At the same time, it has been reported that CBF3, a

main target of ICE1, functions in early response to drought in flowers [105]. These can suggest

a dual role of ICE1 in water-associated stress resistance and dynamic developmental processes

in floral tissues. In summary, ICE1 is identified as a novel male fertility regulator in Arabidop-
sis and can be a promising target for application of molecular engineering in crop breeding.

Materials and methods

Plant materials

All Arabidopsis thaliana plants used were in the Columbia (Col-0) background. The seeds of

ice1-2 (SALK_003155) were obtained from the Arabidopsis Biological Resource Center at

Ohio State University (ABRC, http://abrc.osu.edu), as previously described [67]. The ICE1pro::

GFP-ICE1 (SCRMpro::GFP-SCRM) transgenic line is a generous gift from Pro. Keiko Torii

(Department of Biology, University of Washington). The FAMApro::FAMA-GFP transgenic

line is a generous gift from Ph. D. Xiaolan Chen (School of Life Sciences, Yunnan University).

control. SE, n = 6, �� p< 0.01. (E-F) Electrophoretic mobility shift assay (EMSA) showing the binding activity of ICE1 to

the probes with E-box elements at -582 to -613 bp (labeled as P3 in B) and -629 to -664 bp (labeled as P4 in B) upstream

from transcription start site of FAMA, respectively. The sequences of P3 and P4 as well as mutated probes are listed. (G)

EMSA showing the competition of ICE1-P3 interaction using P4. P4 has higher binding affinity with ICE1 than P3.

https://doi.org/10.1371/journal.pgen.1007695.g008
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Fig 9. Pathway enrichment and functional category of genes regulated by ICE1 in the anther. (A-B) The

enrichment analysis of down-regulated genes (A) and up-regulated genes (B) that are expressed in both of the guard

cell and the stamen. The key clusters in the three categories identified by GO are shown in columns. The ratios of each

cluster to the total gene number are shown with percentage. (C) Phenotype of impaired ion exchange in the ice1-2
mutant. Arrows indicate the wilted flower buds.

https://doi.org/10.1371/journal.pgen.1007695.g009
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To generate ICE1pro::GUS lines, a 2578bp upstream region from the start codon was ampli-

fied by PCR from Arabidopsis Col-0 genomic DNA and cloned into T-vector pMD-19T

(TaKaRa). After the DNA sequences were confirmed, the promoter region was cloned into

pCAMBIA1301 (CAMBIA, Australia) using the method as previously described [63]. Primers

were AtPICEF-PstI (5’-TActgcagGGACCACCGTCAATAACATCG-3’); AtPICER-NcoI (5’-

TTccatggGCCAAAGTTGACACCTTTACC-3’). The ICE1pro::GUS plasmid was electropo-

rated into Agrobacterium tumefaciens strain GV3101 (WEIDI), which was used to transform

the Col-0 plants by the floral dipping method [116].

For complementation of ice1-2 mutant, the ICE1 upstream region and open reading frame

were amplified and subcloned into pCAMBIA1302 vector using primers AtPICEF-PstI; AtPI-

CER-NcoI; AtICE1F-SpeI (5’-ATactagtGATCATACCAGCATACCCTGC-3’); AtICE1-BstEII

(5’-TTggtaaccTCAGATCATACCAGCATACCC-3’). The ICE1pro:: ICE1 fusion construct was

then introduced into ice1-2/+ plants by the floral dipping method [116].

Plant growth and drought treatment

Plants were grown in greenhouses under long day conditions (16 h light/8 h dark) at 22˚C.

The dehydration experiments were performed as previously described with some changes

[105]. In brief, two treatments were carried out. One was the standard condition with 80% soil

moisture and 80% air relative humidity. The other was drought condition with 40% soil mois-

ture and 40% air relative humidity. Pots were arranged according to a randomized design and

their positions were changed daily. Seeds were stratified in a cold room for 2 d at 4˚C in the

dark. Plants were grown in standard condition until the moment just after bolting (the main

Fig 10. ICE1 modulates water movement in the anther. Hypothetical signal pathways deduced from GO enrichment analysis are highlighted in the

yellow boxes. ICE1 modulates water transport and stomatal differentiation to control water transport in the stamen and evaporation through stomata in

the anther, which can also be affected by ambient drought. On the other hand, ICE1 activates CBF signaling to protect floral tissues from drought and

cold stresses.

https://doi.org/10.1371/journal.pgen.1007695.g010
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shoot was about 1 cm high). When the drought treatment was started, plants were transferred

into the growth chamber (RXZ-436B-LED, Ningbo Jiangnan instrument factory, China). The

soil moisture was maintained by daily weigh and watering until harvest.

Pollen germination tests

Pollen germination analysis was conducted mainly as previously described [32]. The in vitro
assay was performed on pollen germination media using pollen isolated from flowers at

designed stages. For pistil pollination, pollen grains from flowers at designed stages were

hand-pollinated on Col-0 pistils. The pollinated pistils were subjected to aniline blue staining

or kept growth for characterization of siliques and seeds. For ice1-2 mutant the stomium was

manually enlarged for releasing pollen or picking the pollen grains using dissecting needles.

Semi-thin sectioning and staining

Inflorescences of Col-0 and ice1-2 mutant plants were collected, fixed and dehydrated as previ-

ously described [117]. The Technovit resin-embedded blocks were sectioned to a thickness of

1.0 μm slice using a motorized RM2265 rotary microtome (Leica) with a glass knife, and then

heat-fixed on glass slides. After staining with 0.05% Toluidine Blue for 15–30 min, the sections

were photographed under the Microscope Axio Scope.A1 (Carl Zeiss MicroImaging) with

bright field after rinsing and drying. Lignin in tissue was visualized with 0.01% fluorescent

brightener (Sigma) for 30s, then mounted with 0.001% auramine O (BBI Life Sciences) and

observed by Microscope Axio Scope.A1 (Carl Zeiss MicroImaging) under GFP channel.

Light and fluorescence microscopy

Fluorescence microscopy was performed using a Leica confocal laser-scanning microscope

(Leica TCS SP8, Leica Microsystems, Wetzlar, Germany) equipped with a 10× Leica HC PL

APO objective. The lignified cells and GFP fusion protein were observed with 488 nm excita-

tion/ 510-540nm emission.

Inflorescences and anthers were collected and photographed under a SteREO Discovery V8

dissecting microscope (Carl Zeiss MicroImaging) using a SPOT FLEX digital camera (Diag-

nostic Instruments). Pollen from anthers stage 13–14 [72] were collected and incubated in

Fluorescein Diacetate (FDA) (Solarbio) solution (FDA (5mg/ml) in acetone and diluted by

20% sucrose to 0.1mg/ml) for 5min [118], and photographed under Microscope Axio Scope.

A1 (Carl Zeiss MicroImaging) under DAPI channel with an Axio Cam HRc camera (Carl

Zeiss MicroImaging).

Scanning electron microscopy (SEM)

For SEM analysis, tissues were dissected under anatomical lens (SMZ-161-BLED, Motic,

China) if needed, then immediately mounted on aluminum stubs for SEM. For leaf tissues,

small pieces (d = 8 mm) of leaves from about 5-week-old plants were cut, fixed, dehydrated

and coated as previously described [106]. These images were taken with scanning electron

microscope TM3000 (TM3000 Tabletop Microscope, HITACHI, Japan).

GUS assay

For histochemical GUS activity analysis, tissues were immersed in GUS staining buffers with

vacuum infiltration and destained with 75% ethanol as previously described [119]. The GUS

activity was observed with Microscope Axio Scope.A1 (Carl Zeiss MicroImaging).
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Transient transcription dual-luciferase assays

Coding regions of ICE1 were cloned into the pCAMBIA1302. The promoter sequences of

FAMA were PCR amplified and inserted into the pGreenII 0800-LUC vector, using primer

pFAMAF-PstI 5‘-TGCACTGCAGTTTGGAAATTGATTTTGGGA-3’ and pFAMAR-SacII 5’-

TCCCCGCGGGAGTAAGCATCACCAA-3’. After sequencing, all the constructs were trans-

formed into GV3101 Agrobacteria, while the pGreenII-0800 constructs were co-transformed

with pSoup-P19. The mixture of cells containing constructs with protein and promoter was

infiltrated according to the published method [120]. The luciferase activity of Nicotiana
benthamiana extracts was determined using the dual-luciferase assay kit (Promega) and then

detected by a Synergy 2 multimode microplate (BioTek) as described previously [120]. All tests

were performed with three biological replicates and five technical replicates per assay.

Electrophoretic mobility shift assay

The electrophoretic mobility shift assay (EMSA) was performed as previously described [61].

In brief, the His-ICE1 recombination protein was expressed in E. coli induced by 1 mM IPTG

at 37˚C for 3 h and purified through sonication and His sepharose beads (Amersham Biosci-

ences). EMSA was conducted using the Lightshift Chemiluminescent EMSA Kit (Pierce) with

biotin-labeled and cold probes. Probe sequences were listed in S9A Fig.

Quantitative RT-PCR

Total RNA was extracted by RNApure Plant Kit (CWBIO) according to the manufacturer’s

protocol. cDNA was reverse-transcribed using PrimeScript RT reagent Kit with gDNA Eraser

(Perfect Real Time) (TaKaRa). SYBR Premix Ex Taq II (TaKaRa) was used for qPCR on a ABI

StepOne Plus real-time system (Life Technologies). qRT-PCR was performed in triplicate and

data were collected and analyzed with ABI STEPONETM software version 2.1 [121]. Various

gene specific signal was normalized relative to ACTIN2 gene (At3G18780) expression. The

primer sequences were listed as follows:

ACTIN2-Forward, 5’-CTTGCACCAAGCAGCATGAA-3’

ACTIN2-Reverse, 5’-CCGATCCAGACACTGTACTTCCTT-3’

ICE1_q3-Forward, 5’-CAACTTCATCAAGCTTCCATCCGTT-3’

ICE1_q3 Reverse, 5’-GCTGTATCGAAAAGCACTGCTTTGA-3’

TGG1-1-Forward, 5’-TCCTCAGTAAAGTCATCAAGGAGA-3’

TGG1-1-Reverse, 5’-AGACGCTTGAGCGGAGTAGA-3’

TGG2-1-Forward, 5’-TCCGCAAGGCCATCAAGGA-3’

TGG2-1-Reverse, 5’-AACGACTGGTACCATAAGCCA-3’

CYP83B1-Forward, 5’-GAGACGCAAGCACTTTTGGG-3’

CYP83B1-Reverse, 5’-TAGGGCGGTTAGGGTCAAGA-3’

GSTF9-1-Forward, 5’-GTTCCTGCTGTTGTTGACGG-3’

GSTF9-1-Reverse, 5’-AGTGGTCGCTTCCACATCAA-3’

SOT17-1-Forward, 5’-TTCTTCGTCTGCAGCTACCC-3’

SOT17-1-Reverse, 5’-AACGCTTGGGAAAAACGGGA-3’
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ABI2_1-Forward, 5’-TGCAACGGTGAATCTAGGGT-3’

ABI2_1-Reverse, 5’-CCGTTGATTTCATCTCCGGC-3’

MUTE-1-Forward, 5’-CCAGACAATCGAGCCATCCA-3’

MUTE-1-Reverse, 5’-CCCACGATTCGCCTAGAGAC-3’

TMM-1-Forward, 5’-CAGTCTTCGGGTCCTTCACC-3’

TMM-1-Reverse, 5’-TCTCGAACGGTACTGGTCCT-3’

SPCH-1-Forward, 5’-CTCCGACAGCTGCATCTACA-3’

SPCH-1-Reverse, 5’-TTCTCCGGTTACGTTCCACG-3’

FAMA-1-Forward, 5’-TTTCAAGAAGAAGGCCGGGAC-3’

FAMA-1-Reverse, 5’-CCAGGTTAGAGCTTCCAGATATGTT-3’

EPF1-1-Forward, 5’-CCAACATCCTCCCATCCAAGT-3’

EPF1-1-Reverse, 5’-CGTGTGAGCAATCTGGCAAC-3’

MPK12-1-Forward, 5’-TCTGTTGGCTGCATACTCGG-3’

MPK12-1-Reverse, 5’-CGATAGCCGTAGTGGGCATT-3’

MPK14-1-Forward, 5’-GGCATGTGAGACACGAAAACG-3’

MPK14-1-Reverse, 5’-TCGCGATGAAGGATGTTTGC-3’

bHLH93-1-Forward, 5’-TCCGATCCATCGTCCCAAAA-3’

bHLH93-1- Reverse, 5’-TCCTCGTCTCTACGATCTATTTCA-3’

RNA sequencing and data analysis

Anthers at flower stages 9–13 from Col-0 and ice1-2 plants were collected and immediately fro-

zen in liquid nitrogen. Total RNA was extracted using RNAeasy Plant Mini Kit (Qiagen,

Valencia, CA) according to the manufacturer’s protocol. Around 2 μg of total RNA with an

A260/280 value of 1.8–2.0 was used to prepare the libraries, which were subjected to paired-

end (2 x 100 bp) sequencing in the Illumina Hi-seq 2000 system (Illumina Inc.). The RNA-seq

analysis was performed as previously described with modifications [121]. In brief, raw reads

were cleaned up with Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/) and mapped to the Arabidopsis genome (TAIR10) by TopHat2 [122], then fur-

ther assembled using StringTie and Cufflinks-CuffMerge [123]. The read counts for each gene

was calculated by HTSEQ v.0.6.0 [124] and the expression level was normalized as Fragments

Per Kilobase of transcript per Million mapped reads (FPKM). The differential expression anal-

ysis was performed using DEGseq2 [125]. Differentially expressed genes (DEGs) were selected

when Log2 Fold-Change (Log2FC) > 1 or < -1, and False Discovery Rate (FDR, Benjamini-

Hochberg adjusted P-value) < 0.05. The RNA-Seq data have been uploaded to the National

Center for Biotechnology Information Sequence Read Archive under accession numbers

GSE107260.

GO analysis

Gene ontology annotation and enrichment analysis was performed on agriGO, a publicly

accessible analysis tool and database (http://bioinfo.cau.edu.cn/agriGO). Genes that express in
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guard cell or stamen were obtained by matching the annotated accessions to the annotation

list under key word ID PO: 000293 (express in guard cell, http://www.arabidopsis.org/servlets/

Search?type=annotation&action=search&kw_id=19990&kw=guard%20cell&scope=term) and

PO:0006472; PO:0006441 (express in stamen, http://www.arabidopsis.org/servlets/Search?

type=annotation&action=search&kw_id=20328&kw=stamen&scope=term).

Supporting information

S1 Fig. The female fertility of ice1-2 and phenotype of ice 2–1. (A) Manual pollination on

Col-0 or ice1-2 pistils using Col-0 or ice1-2 pollen. Arrows indicate the normal siliques gener-

ated by pollination on ice1-2 pistils with Col-0 pollen. (B) Structures of the ICE2 gene in the

ice2-1 mutant (SAIL_808_B10). Normal fertility was observed in ice2-1 plants under normal

growth conditions.

(TIF)

S2 Fig. Characterization of the stamen in ice1-2. Scanning Electron Microscope (SEM) of

flowers from Col-0 (A), ice1-2 (B) and c-ice1-2 (C) at flower stage 14. The pollen grains were

released from the dehisced anther locules in Col-0 and c-ice1-2. The ice1-2 pollen grains failed

to be released to receptive papillae on the stigma. A, Anther; F, filament; Ov, ovary; Pg, pollen

grain; S, sepal; Sg, stigma; Sy, style.

(TIF)

S3 Fig. Anther developmental process in ice1-2. Semi-thin cross sections of anthers from

Col-0 and ice1-2 at anther stage 10-14b were stained with toluidine blue. Ep, Epidermis; En,

Endothecium; T, Tapetum; StR, stomium region; St, stomium; Sm, septum; Fb, fibrous bands;

C, Connective; V, Vascular bundle; Pg, pollen grains.

(TIF)

S4 Fig. The endothecium lignification of anthers in ice1-2. (A) Transverse sectioning of

anthers at anther stage 10–13 with auramine O staining. Arrows indicate the positions of

endothecium lignification. (B) Fresh anthers at stage 14 with auramine O staining. Secondary

thickening is visible in the endothecium (arrows indicated). (a) The anther from Col-0; (b) the

anther from ice1-2; (c) Close-up of (a); (d) Close-up of (b); (e) Photographed by bright-field

microscopy of (a); (f) Photographed by bright-field microscopy of (b). Ep, Epidermis; En,

endothecium; Pg, pollen grains.

(TIF)

S5 Fig. Characterization of length of the stamen and the style in ice1-2. (A) Phenotypes of

the stamen and style in Col-0 (a), ice1-2 (b) and c-ice1-2 (c) at flower developmental stage 14.

(B) Stamen and style lengths were measured from microscopy pictures (SE, n = 30–39 styles

and 119–146 stamens, ��� p< 0.001). (C) Ratio of filament/pistil according to length data

shown in (B) (SE, n = 119–146, ��� p< 0.001).

(TIF)

S6 Fig. ICE1 promoter-driven GUS expression pattern in flower tissues. (A) Inflorescence.

(B) Flower at flower stage 10. (C) Flower at stage 12. (D) Flower at stage 14. (E) Flower at stage

15. (F) Sepal at stage 14. (G) Pistil at stage 14. (H) Adaxial side of the anther at flower stage 12.

(I) Filament at stage 14. (J) Pedicel at stage 14. (K) Petal at stage 14. (L) Silique.

(TIF)

S7 Fig. Stomatal development of ice1-2 in leaves. (A) Scanning electron micrographs of sto-

mata from abaxial leaf surface. (a) Mature stomata in Col-0. Yellow brackets show stomatal

ICE1 regulates anther dehydration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007695 October 4, 2018 24 / 32

http://www.arabidopsis.org/servlets/Search?type=annotation&action=search&kw_id=19990&kw=guard%20cell&scope=term
http://www.arabidopsis.org/servlets/Search?type=annotation&action=search&kw_id=19990&kw=guard%20cell&scope=term
http://www.arabidopsis.org/servlets/Search?type=annotation&action=search&kw_id=20328&kw=stamen&scope=term
http://www.arabidopsis.org/servlets/Search?type=annotation&action=search&kw_id=20328&kw=stamen&scope=term
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007695.s007
https://doi.org/10.1371/journal.pgen.1007695


cluster (b), paired differentiated guard cells (c), and immature stomata (d) in ice1-2. The differ-

entiated guard cells in Col-0 (e) and ice1-2 (f) are also shown. (B) Comparison of proportions

of different stomatal types in leaves between Col-0 and ice1-2.

(TIF)

S8 Fig. The qRT-PCR verification of RNA-seq data. Six genes were selected for comparison

of RNA-seq and qRT-PCR results. For RNA-seq data, �� FDR < 0.01, ��� FDR < 0.001. For

data of qRT-PCR, SE, n = 3, � p< 0.05, �� p< 0.01, ��� p< 0.001. Three independent experi-

ments were carried out with similar results.

(TIF)

S9 Fig. Electrophoretic mobility shift assay (EMSA) showing interaction of ICE1 with nine

E-box elements in 2.5 kb upstream from transcription start site of FAMA. (A) Probe

sequences containing nine E-box elements are listed. P6 contains two E-boxes. (B) Binding

results of ICE1 to eight probes. P3, P4 and P7 showed binding activity. P3 and P4 exhibited

competition by cold probes while P7 did not show competition. (C) P7 did not show competi-

tion by cold probes with high concentration.

(TIF)

S1 Table. Full list of genes that were differentially expressed with statistical significance

(FDR < 0.05) by at least 2-fold in comparison of ice1-2 vs Col-0 in the anther at flower

stage 9–13. Genes expressed in the guard cell and the stamen are labeled.

(XLSX)

S2 Table. Down-regulated genes that are enriched in GO annotations.

(DOCX)

S3 Table. Up-regulated genes that are enriched in GO annotations.

(DOCX)
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