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Background. Esophagus cancer (ESCA) is the sixth most frequent cancer in males, with 5-year overall survival of 15%–25%. RNA
modifications function critically in cancer progression, andm6A regulators are associated with ESCA prognosis.,is study further
revealed correlations between m6A and ESCA development. Methods. Univariate Cox regression analysis and consensus
clustering were applied to determine molecular subtypes. Functional pathways and gene ontology terms were enriched by gene set
enrichment analysis. Protein-protein interaction (PPI) analysis on differentially expressed genes (DEGs) was conducted for hub
gene screening. Public drug databases were employed to study the interactions between hub genes and small molecules. Results.
,ree molecular subtypes related to ESCA prognosis were determined. Based onmultiple analyses amongmolecular subtypes, 146
DEGs were screened, and a PPTnetwork of 15 hub genes was visualized. Finally, 8 potential small-molecule drugs (BMS-754807,
gefitinib, neratinib, zuclopenthixol, puromycin, sulfasalazine, and imatinib) were identified for treating ESCA. Conclusions. ,is
study applied a new approach to analyzing the relation between m6A and ESCA prognosis, providing a reference for exploring
potential targets and drugs for ESCA treatment.

1. Introduction

Esophagus cancer (ESCA) is the sixth leading cancer with
3.1% incidence and 5.5% mortality worldwide [1]. Males
tend to have a higher incidence (4.2%) and mortality (6.8%)
than females, mainly due to differences in the smoking and
drinking habits between two genders. ,e major risk factors
of ESCA include race, gender, alcohol, tobacco, obesity,
gastroesophageal reflux disease (GRED), diet of low fruits
and vegetables, and so on [2]. ,e 5-year overall survival
(OS) of the cancer is about 15% to 25%, and poor treatment
outcomes are closely associated with late diagnosis and
metastasis [3].

In the recent decades, the development of molecular and
sequencing technology has deepened the understanding of
the genetic causes of ESCA. For example, CCND1, CDK4/

CDK6, and MDM2 genes involved in cell cycle are over-
expressed in ESCA patients [4]. High expression of epi-
dermal growth factor receptor (EGFR) is associated with
worse prognosis and late clinical stage; therefore EGFR
expression could serve as a prognostic biomarker [5, 6].
More importantly, epigenetic factors such as DNA or RNA
methylation, histone modifications, and loss of genome
imprinting show strong correlation with tumor progression
[7–9]. ,ese epigenetic alternations can regulate down-
stream or upstream gene expression through silencing or
activating regulatory factors, resulting in aberrant gene
expressions associated with tumor development.

RNA modifications in transcripts are the most com-
monly detected epigenetic alternation. N6-methyladenosine
(m6A) accounts for a majority of RNA modifications under
the control of methyltransferases (writers), binding proteins
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(readers), and demethylases (erasers) [10]. Evidence dem-
onstrated that m6A modification is involved in tumori-
genesis, tumor proliferation, and migration of various types
of cancers such as acute myeloid leukemia [11–14], glio-
blastoma [15, 16], lung cancer [17, 18], hepatocellular car-
cinoma [19–21], breast cancer [22], and colorectal cancer
[23].

Previous studies also discovered a correlation between
m6A and ESCA. Nagaki et al. proved that knockdown of
ALKBH5 can increase m6A modification and delay cell cycle
progression of esophageal squamous cell carcinoma (ESCC)
cells [24]. ALKBH5 has been identified as m6A demethylase
that facilitates tumor cell proliferation, and a correlation
between ALKBH5 and poor prognosis of ESCC patients has
been illustrated [24]. Guo et al. observed that high ex-
pression of m6A reader HNRNPA2B1 was positively asso-
ciated with ESCA tumor size and lymphatic metastasis [25].
Knockdown of HNRNPA2B1 inhibits tumor cell progres-
sion of ESCA cells, indicating HNRNPA2B1 as an oncogenic
protein in ESCA development [25]. In addition, HNRNPC
and ALKBH5 have been screened and combined as a
prognostic signature for predicting ESCA outcomes [26].
,ese findings provide potential application of m6A regu-
lators in clinical treatment.

As m6A modification is strongly correlated with tumor
proliferation, invasion, and migration, the present study
aimed to exploit novel molecular subtypes of ESCA based on
m6A regulators (writers, readers, and erasers). Furthermore,
hub genes associated with ESCA prognosis and potential
small-molecule drugs were screened according to molecular
subtypes. ,is study introduced a new strategy of bio-
informatics analysis to explore potential drugs for ESCA
treatment.

2. Materials and Methods

2.1.Data Information. TCGA-ESCA dataset with the data of
gene expression, copy number variation (CNV), single
nucleotide variant, methylation, and clinical information
was downloaded from ,e Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) database. ,e workflow of
defining molecular subtypes of ESCA was shown in Figure 1.

2.2. Genes of m6AWriters, Erasers, and Readers. ,ree types
of enzymes (writers, erasers, and readers) related to m6A
were included. Specifically, m6A writers were METTL3,
METTL14, WTAP, and KIAA1429. m6A erasers were FTO
and ALKBH5. m6A readers were YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, IGF2BP1,
IGF2BP2, and IGF2BP3.

2.3. Data Preprocessing. RNA-seq and methylation data
were further processed. For RNA-seq data, samples without
clinical follow-up information, overall survival (OS), and
survival status were excluded. Genes with transcripts per
million (TPM)< 1 in over half of the samples were excluded.
Primary solid tumor samples were included. For methyla-
tion data, NA value was completed by the KNN function in

impute R package, and beta value was converted toM value.
According to cross-reactive probes and polymorphic CpGs
in the Illumina Infinium HumanMethylation450 micro-
array, CpGs present in the normal samples were excluded.
Unstable methylation sites including CpGs in X and Y
chromosomes as well as CpGs in single nucleotide were
excluded. Finally, 161 ESCA samples were included (Sup-
plementary Table S1).

2.4. Consensus Clustering. R package of Consensu-
sClusterPlus (v1.48.0) was used to cluster methylation sites
related to ESCA prognosis [27] under the parameters of
reps� 100, pItem� 0.8, pFeature� 1, distance� “spearman”.
D2 algorithm and Euclidean distance were employed for
consensus clustering. Cluster numbers k from 2 to 10 were
chosen, and the optimal clusters were screened by cumu-
lative distribution function (CDF) curve and consensus
CDF.

2.5. Gene Enrichment Analysis and Function Analysis.
Single sample gene set enrichment analysis (ssGSEA) in
GSVA R package was conducted to calculate the enrichment
score of each sample to different functional pathways [28].
WebGestalt (v0.4.3) R package was performed to analyze
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and gene ontology (GO) enrichment for differ-
entially expressed genes (DEGs).

2.6. Immune Correlation Analysis. We obtained immune
checkpoint genes (BTLA, CD200, CD244, LAG3, IDO1,
IDO2, PDCD1, CTLA4, PDCD1LG2, TNFRSF8, CD40,
TNFSF18, CD86, and CD44) from previous studies to an-
alyze the expression differences of these genes in various
molecular subtypes. In addition, we evaluated 28 immune
infiltrating cell components by ssGSEA method [29]. To
analyze the differences of immune infiltrating cell compo-
nents in different subtypes, we further evaluated the immune
infiltrating score in the sample by using R software package
estimate [30], analyzed the differences of immune infil-
trating in different subtypes, and evaluated the potential
benefits of immunotherapy of different subtypes in imvi-
gor210 [31] by using R software package submap [32].

2.7. Protein-Protein Interaction (PPI) Analysis. STRING
(https://string-db.org/) is a database to explore the inter-
action among known and unknown proteins, including
abundant data from current researches, other databases, and
data by predicted bioinformatics [33, 34]. ,e protein in-
teractions of DEGs were analyzed by STRING. PPI result
was visualized by Cytoscape (v3.7.2) and further analyzed by
cytoHubba to screen hub genes [35–37].

2.8. Databases of Small-Molecule Drugs. Databases of L1000
fireworks display (L1000FWD, https://maayanlab.cloud/
L1000FWD/) [38], Drug-Gene Interaction database
(DGIdb, https://dgidb.org/) [39, 40], and ,e Connectivity
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Map (CMap, https://clue.io/) [41, 42] were included for
screening small molecules interacting with hub genes.
L1000FWD includes over 16000 small molecules and gene
expression data from tumor cell lines of 1000 drugs. DGIdb
stores over 10000 drugs and 15000 interactions between
drugs and genes. CMap contains over 19000 small molecules
corresponding to 25200 biological entities. ,e function of
small molecules associated with hub genes came from the
National Library of Medicine (PubChem, https://pubchem.
ncbi.nlm.nih.gov/#query�).

3. Results

3.1. Consensus Clustering of Methylation Sites on 15 m6A-
Related Genes. To develop a molecular subtyping system
based on m6A methylation sites, association between m6A
methylation sites and ESCA prognosis was analyzed. Coxph
function in R package survival was used to perform uni-
variate Cox regression analysis between 221 methylation
sites and OS, survival status. 9 methylation sites associated
with prognosis were screened (p< 0.05, Supplementary
Table S2). ,en 161 ESCA samples were clustered based on
the 9 methylation sites with consensus clustering in Con-
sensusClusterPlus R package. As shown in Figure 2, when
cluster number k� 3, CDF did not show great change;
meanwhile, the relative change in area under CDF curve was
the maximum, suggesting that k� 3 was the optimal.
,erefore, under k� 3, 161 ESCA samples were clustered
into three subtypes of C1, C2, and C3.

Survival analysis manifested significant OS difference in
the three subtypes, with the most favorable prognosis de-
tected in C3 subtype (p � 0.018, Figure 3). However, no
difference of OS was observed between C1 and C2 subtypes.
Gene mutation analysis showed that the top mutated gene
was TP53 and that C3 subtype had the least mutations of the
top 20 mutated genes among three subtypes (Supplementary
Figure S1). Such results suggested a relation between gene
mutations and prognosis.

3.2. �e Relation between the �ree Subtypes and Clinical
Features. We next assessed the relation between subtypes
and clinical features, including T stage, N stage, M stage,
stages I to IV, grade, and risk factors of gender and smoking
history. Although only the distribution of G stage (G1, G2,
and G3) showed a close relation with the three subtypes
(p< 0.05), there was a modest tendency indicating that C3
subtype had the lower proportion of stages with more in-
vasive features than C1 and C2 subtypes (Figures 4(a)–4(e)).
For risk factors, males accounted for a significantly higher
proportion than female due to a higher smoking in males,
and the female proportion was the highest in C3 subtype
(Figure 4(f)). In addition, the number of nonsmokers was
more in C3 subtype (tobacco� 1) than C1 and C2 subtypes;
however, no significant difference was detected among to-
bacco groups (Figure 4(g)). We compared the three mo-
lecular subtypes with the previously reported three
molecular subtypes (CIN, GS, and MSI) [43]. We observed

TCGA-ESCA methy datas m6A genes

Univariate survival analysis

C1, C2, C3

Limma analysis

Common differential gene

STRING

Consistent consensus clustering

Hub genes

m6A methylation sites

KM analysis Comparison of clinical features

L1000FWD, DGIdb, CMap

Figure 1: ,e workflow of developing m6A-related molecular subtypes and screening potential small-molecular drugs for treating ESCA.
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that MSI subtypes are mainly related to C2 (Figure 4(h)). For
example, the distribution of C1, C2, and C3 in CIN and GS
subtypes is similar, suggesting that the new three molecular
subtypes can be used as a supplement to the previously
reported molecular subtypes.

3.3. �e Enrichment of Metabolism Pathways in the �ree
Subtypes. Compared with normal cells, tumor cells are
more active in acquiring energy through metabolism
pathways to promote cell proliferation and migration.

,erefore, we speculated that the activity of tumor cells in
metabolism pathways could indicate the condition of
cancer patients’ prognosis. To examine whether there was
an association between subtypes and metabolism path-
ways, ssGSEA was conducted to calculate the enrichment
score of each sample. Eight major metabolism pathways,
including nitrogen metabolism, nicotinate and nicotin-
amide metabolism, histidine metabolism, glyoxylate and
dicarboxylate metabolism, glycerophospholipid meta-
bolism, glycerolipid metabolism, drug metabolism cyto-
chrome p450, and glutathione metabolism, were analyzed.
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Figure 2: Consensus clustering of 161 ESCA samples based on m6Amethylation sites. (a) A consensus matrix when k� 3 where k represents
cluster number. (b) Consensus CDF when k� 2 to 10. (c),e relative change in area under CDF curve when k� 2 to 10. (d) Tracking plot of
samples when k� 2 to 10.
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,e result exhibited that C3 subtype had the lowest en-
richment score in these pathways, suggesting that C3
subtype with favorable prognosis was relatively inactive in
metabolism pathways (Figure 5).

3.4. Immune Correlation of Different Molecular Subtypes.
Immunotherapy is a promising clinical treatment method.
In order to characterize the potential benefits of immuno-
therapy of different molecular subtypes, we first compared
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Figure 3: Kaplan-Meier survival curve of C1, C2, and C3 subtypes. (a) Survival analysis among three subtypes (p � 0.018). (b) Survival
analysis between C1 and C2 subtypes (p � 0.72). (c) Survival analysis between C1 and C3 subtypes (p � 0.027). (d) Survival analysis between
C1 and C3 subtypes (p � 0.0057). Log-rank test was performed.
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the differences of immune infiltration in the immune mi-
croenvironment of the three molecular subtypes. It can be
observed that C1 subtype has higher matrix components
and higher tumor purity (Figure 6(a)). We also observed
the differences of multiple immune cell infiltration in
patients with three molecular subtypes (Figure 6(b)). For
example, C3 subtype has higher effector memory CD8
T cell and activated B cell, and C1 subtype has the highest
regulatory T cell. ,ese results show that the three mo-
lecular subtypes have different immune microenviron-
ment characteristics. Further, we analyzed the expression
differences of immune checkpoint genes in the three
molecular subtypes and observed that 10 (71%) immune
checkpoint genes had significant expression differences
(Figure 6(c)), of which CD40 had the most significant
expression difference. In addition, we also observed that
C1 subtype was significantly correlated with CR/PR
(Figure 6(d)). ,is suggests that C1 subtype may benefit
from immunotherapy of PD-L1.

Identification of differentially expressed genes among
the three subtypes and functional analysis were done.

As no difference of OS was found between C1 and C2
subtypes, and C3 subtype had the optimal prognosis, we also
analyzed the DEGs between C1 and C3 and between C2 and
C3 subtypes. Between C1 and C3 subtypes, 193 DEGs (132
upregulated genes and 61 downregulated genes) were
identified under conditions of p< 0.05 and |fold change
(FC)|> 1.5 using Limma R package (Figure 7(a)). ,en 193
DEGs were further assessed with GO function analysis and
KEGG pathways using WebGestalt R package. GO analysis
showed that 432 terms of biological process, 27 terms of
cellular component, and 41 terms of molecular function
were annotated with significant differences between C1 and
C3 subtypes (p< 0.05). ,e top 10 enriched terms of bio-
logical process, cellular component, and molecular function
were displayed (Figures 7(b)–7(d)). However, no KEGG
pathways with significant difference between C1 and C3
subtypes were found. Moreover, between C2 and C3 sub-
types, we identified 1673 DEGs incorporating 685 upregu-
lated and 988 downregulated genes (Supplementary
Figure S2) and annotated 35 KEGG pathways, 1181 terms of
biological process, 132 terms of cellular component, and 153
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Figure 4:,e relation between three subtypes and clinical features, including Tstage (a), N stage (b), M stage (c), stages I to IV (d), grade (e),
gender (f ), tobacco (g), and TCGA molecular subtypes (h). ANOVA was performed. ∗p< 0.05.
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terms of molecular function.,e top 10 enriched terms were
shown in Supplementary Figure S3. Among these terms,
epidermal cell differentiation, striated muscle cell differen-
tiation, skin development, epidermis development, and
epithelial cell differentiation were all annotated in the top 10
biological processes between C1 and C3 and between C2 and
C3 (Figure 7 and Supplementary Figure S3).

3.5. Construction of PPI Networks and Hub Gene
Identification. Next, mutually upregulated and down-
regulated DEGs between C1 and C3 and between C2 and C3
subtypes were examined. 146 mutual DEGs including 97
upregulated and 49 downregulated ones were identified for
constructing PPI networks (Figure 8(a)). ,e bioinformatics
tools in STRING database were applied to assess the in-
teractions among 146 proteins of DEGs. Subsequently,
Cytoscape was applied to visualize the PPI network and
cytoHubba was performed to screen hub genes from the
network (Figure 8(b)). Finally, the following top 15 hub
genes were identified: OCLN, TFF1, BMP4, KRT18, CLDN3,
CLDN4, KRT8, TFAP2A, PPARG, AGR2, GATA4, EPCAM,
SNAI2, EGFR, and TMPRSS2. We further evaluated the
expression differences of these 15 genes in cancer and

adjacent tumors. We observed that GATA4, AGR2, and
PPARG were significantly underexpressed in tumor samples
(Supplementary Figure S4A). We further evaluated the
methylation level of CpG sites in the promoter region of
these 15 genes in each sample. It can be observed that there is
a higher methylation level in cancer samples as a whole, in
particular, GATA4 and TFAP2A (Supplementary
Figure S4B). We used ssGSEA to evaluate the enrichment
scores of six important immune pathways and further an-
alyzed the correlation between these 15 genes and these
immune pathways. It was observed that there was a higher
correlation between these genes and weak correlation with
immune pathways, among which EPCAM was the most
correlated with immune pathways (Supplementary
Figure S4(c)).

3.6. Screening of Small Molecules Related to Hub Genes.
,e 15 hub genes were screened from DEGs between C1 and
C3, C2 and C3 were considered to be closely related to ESCA
prognosis, and this also suggested that these genes could be
the targets for ESCA treatment. ,erefore, we introduced
three databases of L1000FWD, DGIdb, and CMap with
abundant data of the interactions between small-molecule
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Figure 6: Immune correlation of three molecular subtypes. (a) Different distribution of immune infiltration of different molecular subtypes.
(b),e distribution of immune cell infiltration in different molecular subtypes was different. (c),e expression and distribution of immune
checkpoint genes of different molecular subtypes were different. (d) Correlation of immunotherapeutic response of PD-L1 with different
molecular subtypes. Analysis of variance was used to test the difference between multiple groups of samples.
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Figure 7: ,e volcano plot of DEGs between C1 and C3 subtypes. Blue represents downregulated genes and red represents upregulated
genes. FC, fold change (a).,e top 10 annotated terms of biological process (b), cellular component (c), and molecular function (d) between
C1 and C3 subtypes. Dot size represents the gene numbers. ,e annotated terms were displayed in vertical axis and the enrichment ratio of
each term was displayed in horizontal axis.
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drugs and genes. If one drug is negatively associated with
expression of one gene related to ESCA, the drug could be
considered as a potential drug for ESCA treatment. Within
three databases, we screened a total of 598 small molecules
having interactions with hub genes, including 96 from
L1000FWD, 439 from DGIdb, and 63 from CMap. By
overlapping these small molecules in three databases, we
observed 3 small molecules (BMS-754807, gefitinib, and
neratinib) were overlapped between L1000FWD andDGIdb,
3 small molecules (zuclopenthixol, puromycin, and nar-
ingenin) were overlapped between L1000FWD and CMap, 2
small molecules (sulfasalazine and imatinib) were over-
lapped between DGIdb and CMap (Figure 9). Among these 8
small molecules, BMS-754807, gefitinib, neratinib, and
imatinib have antitumor activity. Zuclopenthixol, as a
Dopamine receptor antagonist, is a drug for treating
schizophrenia. Puromycin is an aminoglycoside antibiotic,
and sulfasalazine is a nonsteroid anti-inflammatory drug.
,ese drugs may specifically target hub genes and take
function in suppressing tumor cell proliferation and inva-
sion, although further experiment and analysis are needed
for illustrating their function and mechanism in antitumor
activity.

4. Discussion

A number of epigenetic studies on ESCA have revealed the
significance of epigenetic regulation on ESCA development;
however, the role of m6A modification on ESCA has not
been systematically studied. Only several studies have found
that some m6A regulators, such as ALKBH5, HNRNPA2B1,
and HNRNPC, have strong relation with ESCA prognosis
[24–26]. Inspired from the previous researches, we focused
on analyzing a total of 15m6A regulators and identified three
new molecular subtypes associated with clinical features and
ESCA prognosis. Furthermore, we constructed a PPI net-
work based on DEGs screened from the three subtypes and

determined 15 prognosis-related hub genes from the PPI
network.

Some of the 15 hub genes have been reported to be
associated with tumor progression of ESCA. For example,
TFF1 encodes a mucosa protector factor, and it is silenced in
the early stage of ESCA development resulting from high
methylation of TFF1 promoter [44]. BMP4 and EPCAM are
involved in inducing epithelial-mesenchymal transition
(EMT) and promoting tumor cell migration of ESCA
[45–47]. Low expression of CLDN4 is indicative of a poor
prognosis of ESCC [48]. High expression of TFAP2A is
correlated with favorable OS of ESCC patients [49]. EGFR is
highly expressed in ESCA and some other cancer types;
moreover, it is seen as a promising target for inhibiting
tumor aggression [50]. Although some hub genes have not
been found to be correlated with ESCA development, their
relations with other cancer types have been previously
demonstrated.
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Figure 8: PPI analysis of 146 upregulated and downregulated genes. (a) A PPI network of 146 DEGs constructed by STRING. (b) A PPI
network of 15 hub genes screened by Cytoscape and cytoHubba. Black line represents the interactions between proteins.
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Figure 9: Screening of small molecules related to hub genes from
L1000FWD, DGIdb, and CMap databases.
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Using small-molecule databases, 8 potential drugs
closely interacting with the 15 hub genes were identified.
,ese drugs negatively associated with expression of the
hub genes can be considered as potential drugs for
treating ESCA. Among the 8 drugs, gefitinib, neratinib,
and imatinib have been commercialized for clinical
treatment of specific cancers. Gefitinib is an EGFR ty-
rosine kinase inhibitor that can hinder tumor cell pro-
liferation and angiogenesis and has been commercially
applied in treating non-small-cell lung cancer [51].
Clinical trials of gefitinib in advanced ESCA patients
demonstrated a partial response and stable disease rate of
between 24% and 39%, showing a relatively positive
effect [52–54]. Neratinib is a tyrosine kinase inhibitor
targeting HER1, HER2, and HER4 and can effectively
improve disease-free survival of HER2-positive breast
cancer patients given with chemotherapy and trastuzu-
mab [55, 56]. Imatinib, a tyrosine kinase inhibitor tar-
geting Bcr-Abl tyrosine kinase, could suppress disease
progression and extend overall survival of chronic my-
eloid leukemia and gastrointestinal stromal tumors
[57, 58].

BMS-754807 has not been used to treat cancers;
however, evidence suggested a promising application of it
in clinical practice. BMS-754807 is an inhibitor of tar-
geting insulin-like growth factor-1 receptor/insulin re-
ceptor (IGF-1R/IR) signaling pathway, which has been
proven to be effective in suppressing tumor cell prolif-
eration of xenograft tumor models of several cancer types
[59–61]. Study found that sulfasalazine could enhance
cisplatin-induced cytotoxic effects on advanced gastric
cancer and bladder cancer [62, 63]. ,e remaining two
drugs zuclopenthixol and puromycin have not been re-
ported to be related to cancer therapy, but they still may
have the potential to target hub genes related to ESCA
prognosis, according to our analysis.

,is study did not differentiate two molecular types of
esophagus cancer (squamous cell carcinoma and adeno-
carcinoma), which may affect the results of molecular
subtypes to some extent. In addition, further study on
these hub genes and small molecules are needed to
demonstrate their functions in clinical practice. Impor-
tantly, this study applied a new approach to analyzing the
relation between m6A and ESCA prognosis and provided a
valuable reference to explore potential targets and drugs
for ESCA treatment.

5. Conclusions

In conclusion, this study determined three molecular sub-
types of ESCA based on m6A regulators and identified 8
potential small-molecule drugs closely interacting with hub
genes through integrative analysis. ,e new molecular
subtypes were effective in classifying ESCA patients into
low-risk and high-risk groups. ,e 15 hub genes screened
from DEGs among three subtypes can be potential targets
for treating ESCA. ,e 8 small-molecule drugs closely
interacting with the hub genes may be promising drugs for
ESCA patients.
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