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Abstract: Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD).
BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of
offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex,
another brain region highly implicated in ASD, and through what mechanisms have not been investi-
gated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome–interactome
profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was
significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in
the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several
differentially expressed genes in the offspring’s prefrontal cortex were the targets of ASD-related
transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis
revealed that BPA may regulate the expression of such genes through these transcription factors in
a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription
factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings
indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring’s prefrontal cortex
and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be
investigated further.

Keywords: endocrine-disrupting chemical; bisphenol A; prenatal exposure; autism spectrum disor-
der; sex differences; transcription factor; transcriptome; interactome; prefrontal cortex; molecular
docking

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can be di-
agnosed in early childhood and is characterized by two behavioral domains, i.e., social
communication/interaction deficits and restricted interests or repetitive patterns of behav-
ior according to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition
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(DSM-5) [1]. In the United States, the Centers for Disease Control and Prevention (CDC) es-
timated the prevalence of ASD in children by the age of eight to be 1 in 54, with at least four
times higher in males than in females [2]. Although the exact causes and the sex bias of ASD
are still unclear, there is accumulating evidence that genetic, epigenetic, and environmental
factors are involved in ASD etiology and susceptibility [3–8]. Environmental factors that
are associated with ASD include endocrine-disrupting chemicals (EDCs) [5,9,10], heavy
metals [11,12], smoke from cigarettes [13], and traffic-related air pollutants [14]. EDCs are
chemical substances that potentially affect the hormonal system and disrupt homeostasis,
reproduction, and developmental processes [5]. Examples of EDCs that have been linked to
ASD are bisphenol A (BPA) [15,16], polychlorinated biphenyls (PCBs) [17], phthalates [18],
and polybrominated diphenyl ethers (PBDEs) [19]. BPA ((CH3)2C(C6H4OH)2) is an organic
synthetic compound frequently found in polycarbonate plastic and epoxy resin products,
the linings inside beverages and food cans, thermal paper, and dental sealants. In addition
to such products, BPA is also found in polycarbonate micro/nanoplastics, which have
become one of the major environmental problems worldwide [20,21]. When these prod-
ucts or micro/nanoplastics are exposed to high temperature or basic/acidic conditions,
BPA can leach out and contaminate food or pollute the environment [20,22–24]. When
ingested, the majority of BPA is converted to a conjugated form called BPA glucuronide
in the liver and is then excreted through the urinary system [25,26]. The unconjugated
BPA molecules remain circulating in the bloodstream and other tissues in the body [27–29].
Recent studies have shown that BPA can cross the placenta [30,31] and the blood–brain bar-
riers [32,33] to reach the brains of offspring [34]. Recent findings have shown that humans
are widely exposed to BPA [35,36]. The National Health and Nutrition Examination Survey
(NHANES III) conducted by the CDC in 2003–2004 found detectable levels of BPA in as
many as 93% of 2517 urine samples from participants who were at the age of six years and
older [37]. Similar to a previous study conducted by the CDC, Hansen et al. found that
BPA was detected in as many as 85.3% of maternal urine samples [38]. In addition to urine,
other studies reported that BPA is also detectable in maternal and fetal sera [39], amniotic
fluid [40], placenta [41], umbilical cords [42], colostrum [43], and breast milk [44]. In ASD
populations, elevated levels of BPA have been observed in both the blood and urine of
ASD cases [45–47]. Kardas et al. measured BPA concentrations in the serum of ASD and
typically developing children using high-performance liquid chromatography (HPLC) and
found that children with ASD have significantly higher serum BPA concentrations than
typically developing children [46]. Similarly, Kondolot et al. found elevated levels of BPA
in the plasma of children with pervasive developmental disorder not otherwise specified
(PDD-NOS), which is a subtype of ASD [45]. Hansen et al. assessed the association between
in utero exposure to BPA and ASD symptoms in Danish children and observed elevated
odds ratios among 5-year-old children within the 3rd tertile of BPA exposure with an ASD
score above the 75th percentile [38]. Their finding supports the hypothesis that prenatal
BPA exposure may increase the risk of ASD symptoms. However, the effects of prenatal
BPA exposure and the underlying molecular mechanisms in the context of ASD remain
unclear.

The U.S. Food and Drug Administration (FDA) has determined the no-observed-
adverse-effect level (NOAEL) of BPA to be 5000 µg/kg maternal body weight/day [48,49].
However, there is accumulating evidence that exposure to BPA, even at the NOAEL dose
or lower, can cause negative health effects [50–53]. Several studies have reported that BPA
exposure has negative impacts on the central nervous system [54,55], the reproductive
system [56], the immune system [57], the digestive system [58], the thyroid [59], the
liver [60], the heart [61], kidneys [62], and adipose tissues [63]. In the central nervous
system, BPA alters neuronal viability [16], neuronal morphology [64], synaptogenesis [65],
synaptic densities [65], and neocortical development [66,67]. It also causes behavioral
alterations, including reduced social interaction [68], repetitive behaviors [69], impaired
learning/memory [16], increased anxiety [70], hyperactivity [71], and inattention [72], all of
which are associated with ASD [73–76]. However, the molecular mechanisms underlying
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the effects of BPA, particularly the neurological functions and behaviors associated with
ASD, are still unclear.

Recent studies have shown that BPA exposure disrupts the expression of genes in
several brain regions, including the prefrontal cortex [77], the hippocampus [15,78], the
hypothalamus [78], the cerebellum [79], and the amygdala [80]. The prefrontal cortex is
a brain region responsible for executive functions, including decision making, planning,
prediction of outcomes, and social behavior, all of which are known to be impaired in
people with ASD [81–83]. Moreover, several studies have shown that children with ASD
exhibit an excess number of neurons [84] and decreased functional connectivity in the
prefrontal cortex [85]. Using adult rats as a model, Castro et al. examined the effects of
adult exposure to BPA on the expression of genes and proteins in the prefrontal cortex
by real-time (RT)-PCR and Western blot analyses [77]. They found that BPA exposure
increases the expression of cytochrome P450 aromatase and tryptophan hydroxylase 2
in male and female rats and decreases the expression of 5α-reductase in females [77]. In
addition to these genes, they also found that a total of 17 genes associated with prefrontal
cortex functions are responsive to adult BPA exposure, indicating that BPA can alter the
expression profiles of multiple genes in the prefrontal cortex region. It is noteworthy
that cytochrome P450 aromatase—an enzyme responsible for estrogen biosynthesis from
androgens—is associated with ASD and thought to be involved in the male bias of the
disorder [86–88]. However, this study was focused on adult exposure and on genes known
to be involved in drug- and chemical-induced neurotoxic responses. The effects of BPA on
the transcriptome profiles of the prefrontal cortex and its association with ASD are unclear.

Our recent study demonstrated that prenatal BPA exposure alters the transcriptome–
interactome profiles of genes in the hippocampus of rat offspring [15]. Among those
BPA-responsive genes are genes known to be associated with ASD and related neurological
functions [15]. In addition, we also found that prenatal BPA exposure disrupts ASD-
related genes involved in neuronal viability, neuritogenesis, and learning/memory in a
sex-dependent manner [16], suggesting that prenatal BPA exposure may play an important
role in the risk and sex difference of ASD. However, the effects and mechanisms of prenatal
BPA exposure on the transcriptome–interactome profiles of ASD-related genes in the
prefrontal cortex have not been investigated.

In this study, we therefore sought to interrogate the effects and mechanisms of prenatal
BPA exposure on the transcriptome–interactome profiles of genes in the prefrontal cortex
of offspring, as well as determining the association of BPA-responsive genes and ASD.
First, the RNA sequencing (RNA-seq) analysis of prefrontal cortex tissues isolated from
neonatal rats prenatally exposed to BPA or vehicle control was performed. Then, the
lists of differentially expressed genes (DEGs) from the RNA-seq analysis were analyzed
by Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc., Hilden, Germany, https:
//www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/, accessed on
14 June 2019) [89] to predict biological functions and interactome networks associated with
BPA-responsive genes and to determine whether BPA-responsive genes are associated
with ASD. The link between the DEGs in the prefrontal cortex and ASD was also assessed
by hypergeometric distribution analyses with the lists of ASD candidate genes from the
ASD database SFARI. To further investigate whether these BPA-responsive genes were
also found to be disrupted in the brains of ASD patients, we conducted a meta-analysis
using transcriptome profiles of postmortem brain tissues from ASD patients and typically
developing people from multiple independent studies that were published in the NCBI
GEO Dataset database. The lists of BPA-responsive genes were then compared to DEGs in
brain tissues of ASD cases using hypergeometric distribution analyses. BPA-responsive
genes associated with ASD were selected for qRT-PCR analysis. To predict transcription
factors involved in the effects of BPA on the transcriptome profiles in the prefrontal cortex,
a list of transcription factors and the targets of each transcription factor were obtained and
used for prediction. The molecular docking analysis of BPA and ASD-related transcription
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factors of which the targets were significantly enriched in the lists of BPA-responsive genes
was further conducted to predict the binding affinity.

2. Results
2.1. Prenatal BPA Exposure Disrupts the Transcriptome Profiles of the Offspring’s Prefrontal
Cortex in a Sex-Dependent Manner

To investigate whether prenatal BPA exposure alters the transcriptome profiles of the
offspring’s prefrontal cortex, rat dams were treated with 5000 µg/kg maternal body weight
or vehicle control daily using oral gavage from gestational day (GD) 1 until parturition.
The dose of BPA used to treat rat dams in this study was equal to the NOAEL in humans
as determined by the FDA. RNA-seq analysis was then performed using prefrontal cortex
tissues isolated from neonatal male and female pups. To identify significantly differentially
expressed transcripts in response to BPA, the RNA-seq data of male and female pups were
then analyzed by combining both sexes into one group for each treatment (Table S1). The
data of each sex of pups were also analyzed separately to gain insight into the sex difference
in the effects of prenatal BPA exposure (Tables S2 and S3).

When the RNA-seq data of male and female pups in each treatment group were
combined, a total of 16,182 transcripts corresponding to 14,144 genes were detectable in
the prefrontal cortex of the pups. Among these, 7810 transcripts encoding 6284 genes
were more significantly differentially expressed in the prefrontal cortex of rats prenatally
exposed to BPA compared with in that of the controls (p-value < 0.05 and false discovery
rate (FDR) < 0.05). When each sex was analyzed separately, a total of 16,782 transcripts
encoding 14,672 genes and 16,819 transcripts encoding 14,660 genes were detectable in the
prefrontal cortex of male and female pups, respectively. We found that 3728 transcripts
(corresponding to 2565 genes) were significantly differentially expressed in males, whereas
3830 transcripts (corresponding to 2706 genes) were differentially expressed in females
in response to BPA (p-value < 0.05 and FDR < 0.05). The lists of DEGs are shown in
Tables S1–S3. This finding indicates that prenatal BPA exposure alters the transcriptome
profiles of offspring’s prefrontal cortex in a sex-dependent manner.

2.2. BPA-Responsive Genes in the Prefrontal Cortex Are Associated with ASD and Related
Neurological Functions and Pathways

To determine whether genes differentially expressed in the offspring’s prefrontal
cortex in response to prenatal BPA exposure are associated with ASD or related biological
functions and pathways, gene ontology analysis was performed using IPA software (Table 1,
Tables S4 and S5).

Interestingly, we found that genes associated with “autism or intellectual disabil-
ity” were significantly enriched in the lists of DEGs in the combined group (233 genes;
p-value = 4.11 × 10−11), male-only group (128 genes; p-value = 1.89 × 10−13), and female-
only group (105 genes; p-value = 2.31 × 10−5) (Table 1). In addition, DEGs were also
associated with other neurological disorders known to be comorbid disorders of ASD,
including pervasive developmental disorder, schizophrenia spectrum disorder, movement
disorders, and syndromic encephalopathy (p-value < 0.05). The biological function and
canonical pathway analysis by IPA revealed that DEGs were related to neurological func-
tions and pathways known to be disrupted in ASD, including axonal guidance signaling,
PTEN signaling, synaptic long-term depression and potentiation, and Wnt/calcium signal-
ing (p-value < 0.05; Tables S4 and S5). “Proliferation of neuronal cells”, “neuritogenesis”,
and “neurotransmission” were also highlighted. Notably, BPA-responsive genes in the
prefrontal cortex of male pups, but not female pups, were also significantly associated
with androgen signaling (63 genes; p-value = 2.95 × 10−4) and estrogen receptor signaling
(50 genes; p-value = 0.02) (Table S5), both of which have been implicated in the male bias
of ASD.
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Table 1. Neurological disorders associated with differentially expressed genes (DEGs) in the offspring’s prefrontal cortex in
response to prenatal bisphenol A (BPA) exposure. The lists show the DEGs in the prefrontal cortex of rat pups prenatally
exposed to BPA when both male and female pups were combined into one group for each treatment and each sex of pups
was analyzed. p-value < 0.05 was considered as significant. NS, not significant. NA, not available.

Diseases or Disorders
p-Value (Number of Genes)

Both Sexes Male Female

Autism or intellectual disability 4.11 × 10−11 (233) 1.89 × 10−13 (128) 2.31 × 10−5 (105)

Schizophrenia spectrum disorder NS 3.64 × 10−8 (128) 1.75 × 10−9 (139)

Mood disorders 4.82 × 10−10 (227) 3.40 × 10−8 (111) 1.27 × 10−6 (110)

Pervasive developmental disorder 2.05 × 10−7 (107) 4.92 × 10−5 (50) NA

Disorder of basal ganglia 1.15 × 10−23 (516) 1.60 × 10−12 (186) 1.42 × 10−11 (191)

Movement disorders 4.36 × 10−37 (760) 5.32 × 10−16 (234) 1.96 × 10−14 (239)

Amyotrophic lateral sclerosis NA 1.84 × 10−6 (59) 3.57 × 10−9 (69)

Alzheimer disease 6.74 × 10−19 (347) 3.35 × 10−11 (163) 1.28 × 10−11 (172)

Huntington’s disease 6.54 × 10−19 (388) 6.67 × 10−9 (126) 2.30 × 10−10 (137)

Syndromic encephalopathy 3.77 × 10−21 (358) 1.49 × 10−7 (75) 5.82 × 10−6 (73)

To visualize the interactions among DEGs in the prefrontal cortex as well as the associ-
ation between DEGs and diseases/functions associated with ASD, an interactome network
analysis was performed using IPA software (Figure S1). The interactome network of DEGs
from the both-sex group showed the interaction of DEGs and ASD-related pathological
conditions, including “intellectual disability” and “sensory and motor neuropathy”. No-
tably, Lnpk—a gene associated with autistic features—was shown to be the hub gene of the
interactome network (Figure S1A). The interactome networks of DEGs in male and female
pups prenatally exposed to BPA also showed associations with neurological disorders
and functions linked to the development of the prefrontal cortex and ASD, including
“autism spectrum disorder”, “neurodevelopmental disorder”, “developmental delay”,
“learning”, “formation of the forebrain”, “development of cortical plate”, and “neurito-
genesis” (Figure S1B,C). These findings suggest that prenatal exposure to BPA alters the
expression profiles of genes associated with ASD or related neurological functions in the
prefrontal cortex in a sex-specific pattern.

2.3. Known ASD Candidate Genes Are Significantly Enriched in the Lists of BPA-Responsive
Genes in the Prefrontal Cortex

To further examine whether BPA-responsive genes are significantly associated with
genes previously reported in the literature to be ASD candidate genes, the lists of DEGs in
the offspring’s prefrontal cortex were compared to the lists of known ASD candidate genes
obtained from the ASD database SFARI. Hypergeometric distribution analysis was then
performed to determine the statistical significance of the association between DEGs and
known ASD candidate genes with different confidence levels determined by the SFARI
database (Table 2).
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Table 2. Associations between the BPA-responsive genes and the known ASD candidate genes from the SFARI database.
Hypergeometric distribution analysis was performed to determine the associations between the lists of BPA-responsive
genes in the offspring’s prefrontal cortex and the known ASD candidate genes from the SFARI database. The scores
determined by the SFARI database indicate confidence levels for each group of ASD candidate genes. Statistically significant
associations were determined by hypergeometric distribution analysis (p-value < 0.05).

Both Sexes Male Female

Gene List Category
(No. of Genes)

No. of Target
Genes Detected

in the Rat Frontal
Cortex

No. of Overlapping
Genes (p-Value)

No. of Target
Genes Detected in

the Rat Frontal
Cortex

No. of Overlapping
Genes (p-Value)

No. of Target
Genes Detected

in the Rat Frontal
Cortex

No. of Overlapping
Genes (p-Value)

All genes (986) 835 408 (4.44 × 10−3) 847 243 (6.64 × 10−17) 843 228 (1.70 × 10−10)

Syndromic (143) 130 66 (0.085) 133 49 (7.32 × 10−8) 129 38 (1.54 × 10−3)

Score 1
High confidence (25) 23 10 (0.615) 23 10 (3.27 × 10−3) 23 11 (1.25 × 10−3)

Score 2
Strong candidate (59) 54 24 (0.552) 55 18 (4.45 × 10−3) 55 17 (1.77 × 10−2)

Score 3
Suggestive evidence

(176)
159 70 (0.572) 163 53 (2.11 × 10−6) 159 52 (1.10 × 10−5)

Score 4
Minimal evidence (406) 321 162 (1.62 × 10−2) 322 90 (1.70 × 10−6) 324 84 (4.84 × 10−4)

Score 5
Hypothesized (157) 133 68 (0.071) 135 28 (0.186) 136 30 (0.164)

Consistent with the gene ontology analysis using IPA, known ASD candidate genes
with high confidence levels identified by the SFARI database as “syndromic”, “high confi-
dence”, and “strong candidate” genes were significantly enriched in the lists of DEGs in
the prefrontal cortex of male and female pups prenatally exposed to BPA. When both sexes
of pups were combined into one group for each treatment, as many as 408 known ASD
candidate genes were significantly enriched in the list of DEGs (p-value = 4.44 × 10−3).
The highly significant associations between the lists of DEGs and the known ASD candi-
date genes were also observed, when male and female rat pups were analyzed separately
(243 genes, p-value = 6.64 × 10−17 in males; 228 genes, p-value = 1.70 × 10−10 in females).
The lists of DEGs that are the known ASD candidate genes as well as the confidence
categories identified by the SFARI database are shown in Tables S6–S8.

To further confirm that prenatal BPA exposure dysregulates the expression of ASD-
related genes in the offspring’s prefrontal cortex, five ASD candidate genes, which were
Ntng1 (netrin G1), Auts2 (autism susceptibility gene 2 or activator of transcription and
developmental regulator AUTS2), Ankrd11 (ankyrin repeat domain 11), Dock4 (dedicator
of cytokinesis 4), and Syne1 (spectrin repeat containing nuclear envelope protein 1), were
selected for qRT-PCR analysis (Figure 1). These ASD candidate genes were selected,
because they are known to be abundantly expressed in the cortex during embryogenesis
and involved in neuronal development during the prenatal period [90–95]. We found that
Ntng1 was significantly reduced whereas Auts2 and Ankrd11 were upregulated in response
to prenatal BPA exposure (Figure 1). Interestingly, the significant downregulation of Ntng1
and the upregulation of Ankrd11 were observed in female pups only.
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Figure 1. Box plot of autism spectrum disorder (ASD)-related gene expression in the prefrontal cortex
tissues. The expression levels of Ntng1, Auts2, Ankrd11, Dock4, and Syne1 were determined in both
sexes (n = 6 pups/group; male pups = 3 and female pups = 3) and separately in males and females
(n = 3 pups/sex/treatment group). * p-value < 0.05.
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2.4. BPA-Responsive Genes Are Significantly Associated with DEGs in Postmortem Brain Tissues
from ASD Cases

Next, we sought to further investigate whether DEGs in response to prenatal BPA
exposure in the offspring’s prefrontal cortex were also found to be dysregulated in the
brains of ASD patients. The transcriptome profiling data of postmortem brain tissues from
people with ASD and typically developing people were obtained from the NCBI GEO
database and reanalyzed using MeV software to identify genes that were significantly
differentially expressed in ASD brain tissues. The details of transcriptome datasets and
human brain samples are provided in Table S9. The lists of BPA-responsive genes in the
rat offspring prefrontal cortex were then compared with DEGs in ASD brain tissues, and
hypergeometric distribution analyses were performed to assess the statistical significance
of the association. Interestingly, we found that BPA-responsive genes were significantly
associated with DEGs in ASD brain samples from multiple independent transcriptomic
profiling datasets, particularly with DEGs in ASD frontal and temporal cortex tissues
(Table 3). The lists of BPA-responsive genes in the rat offspring prefrontal cortex that were
also found to be dysregulated in ASD brain tissues from each transcriptomic dataset are
shown in Tables S10–S12.

Table 3. Associations between BPA-responsive genes and DEGs from postmortem brain tissues of people with ASD.
Hypergeometric distribution analysis was performed to determine the associations between the lists of BPA-responsive
genes in the offspring’s prefrontal cortex and genes differentially expressed in the brain of ASD cases. Statistically significant
associations were determined by hypergeometric distribution analysis (p-value < 0.05).

Both Sexes (6284 Genes) Male (2565 Genes) Female (2706 Genes)

Studies
(Year)

Brain
Region

No. of
DEGs

Detected
in the Rat

Frontal
Cortex

No. of
Overlap-

ping
Genes

p-Value

No. of
DEGs

Detected
in the Rat

Frontal
Cortex

No. of
Overlap-

ping
Genes

p-Value

No. of
DEGs

Detected
in the Rat

Frontal
Cortex

No. of
Overlap-

ping
Genes

p-Value

Parikshak
et al. (2015)

Frontal and
temporal

cortex
954 462 5.61 ×

10−3 956 221 2.71 ×
10−6 958 219 2.28 ×

10−4

Voineagu
et al. (2011)

Frontal
cortex
(BA9,

BA44/45)

384 177 0.269 383 89 2.22 ×
10−3 385 86 0.029

Chow et al.
(2012)

Prefrontal
cortex 71 36 0.172 76 24 1.94 ×

10−3 73 16 0.264

Garbett et.
al. (2008)

Temporal
cortex 101 58 5.72 ×

10−3 102 21 0.238 101 29 7.72 ×
10−3

Voineagu
et al. (2011)

Temporal
cortex

(BA41/42,
22)

545 248 0.318 546 117 8.98 ×
10−3 539 120 0.013

Ginsberg
et al. (2012)

Occipital
lobe

(BA19)
269 116 0.690 270 60 0.026 277 56 0.245

Ginsberg
et al. (2012) Cerebellum 749 307 0.977 744 150 0.029 746 151 0.108

Voineagu
et al. (2011)

Cerebellum;
vermis 57 24 0.685 58 12 0.309 58 11 0.514

2.5. Identification of Upstream Regulators of DEGs in Response to Prenatal BPA Exposure

Recent studies have shown that BPA can interact with several transcription factors,
including AR [96], ESR1 [97], ERRG [97], PPARG [97], and THRA [98]. However, it is
still unclear what transcription factors are responsible for the neurotoxicity mediated by
prenatal BPA exposure. To identify potential transcription factors through which BPA
exerts its negative effects on transcriptome profiles of the offspring’s prefrontal cortex, the
list of all known transcription factors was obtained from the Human Transcription Factors
database [99]. Out of 1639 transcription factors available in the Human Transcription
Factors database, a total of 96 transcription factors are associated with ASD and found in
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the SFARI database [100]. Then, the targets of each transcription factor were obtained from
the TRANSFAC Curated, TRANSFAC Predicted, CHEA, ENCODE, JASPAR Predicted, and
MotifMap Predicted databases through the Harmonizome database (Table S13). Among 96
ASD-related transcription factors, the targets of 34 transcription factors are available in the
Harmonizome database, with 14 transcription factors of which the target genes are manu-
ally curated by the TRANSFAC Curated Transcription Factor Targets database [101,102].
We then performed the hypergeometric distribution analysis between the lists of BPA-
responsive genes and the targets of each transcription factor available in the Harmonizome
database to examine whether the targets of ASD-related transcription factors were signif-
icantly enriched in the lists of BPA-responsive genes. The hypergeometric distribution
analysis revealed the significant associations between BPA-responsive genes and the targets
of 25 transcription factors (Table S13). Out of 25 significant transcription factors, the targets
of 10 transcription factors, including AR, ESR1, RORA, SOX5, TCF4, and YY1, are manually
curated and available in the TRANSFAC Curated database (Table 4).

Table 4. ASD-related transcription factors of which the target genes are over-represented among BPA-responsive genes
in the offspring prefrontal cortex. Hypergeometric distribution analyses were performed to determine the associations
between the BPA-responsive genes in the offspring prefrontal cortex and the lists of target genes of each autism-related
transcription factor that are manually curated and available in the TRANSFAC Curated database. A p-value of <0.05 is
considered as significant.

Both Sexes (6284 Genes) Male (2565 Genes) Female (2706 Genes)

Transcription
Factors

No. of Target
Genes Detected in

the Rat Frontal
Cortex

No. of Overlapping
Genes

(p-Value)

No. of Target
Genes Detected in

the Rat Frontal
Cortex

No. of Overlapping
Genes

(p-Value)

No. of Target
Genes Detected in

the Rat Frontal
Cortex

No. of Overlapping
Genes

(p-Value)

AR 609 274 (0.403) 614 140 (3.56 × 10−4) 618 145 (8.48 × 10−4)

CUX1 360 161 (0.475) 371 77 (0.056) 366 82 (3.07 × 10−2)

EGR2 173 80 (0.342) 170 37 (0.087) 171 42 (2.74 × 10−2)

ESR1 372 178 (0.098) 380 81 (2.93 × 10−2) 378 82 (0.060)

MTF1 211 103 (0.111) 220 54 (4.78 × 10−3) 213 50 (3.79 × 10−2)

PAX5 137 67 (0.165) 137 26 (0.355) 138 32 (0.094)

PAX6 85 42 (0.206) 85 15 (0.529) 84 16 (0.489)

POU3F2 435 189 (0.679) 437 96 (8.54 × 10−3) 441 90 (0.156)

RORA 264 109 (0.864) 266 63 (5.84 × 10−3) 266 69 (1.45 × 10−3)

SMAD4 196 86 (0.589) 195 39 (0.200) 194 31 (0.839)

SOX5 219 104 (0.198) 214 56 (8.80 × 10−4) 221 55 (1.01 × 10−2)

STAT1 304 130 (0.741) 305 64 (0.063) 306 64 (0.148)

TCF4 375 187 (1.83 × 10−2) 379 96 (6.38 × 10−5) 377 94 (9.40 × 10−4)

YY1 633 259 (0.969) 645 145 (5.38 × 10−4) 634 114 (0.641)

To further examine whether the targets of RORA in neuronal cells were enriched
in BPA-responsive genes, we obtained the list of RORA transcriptional targets from our
previous study. Using chromatin immunoprecipitation (ChIP) followed by whole-genome
promoter array (chip) analysis, we found that RORA1—a major isoform of RORA protein
in the human brain—was recruited to as many as 2764 genomic locations corresponding
to promoter regions of 2544 genes across the human genome [103]. The hypergeometric
distribution analysis unveiled the strong associations between the BPA-responsive genes
and the RORA1 transcription targets (Table S14), suggesting that RORA is involved in the
effects of prenatal BPA exposure on gene expression in the prefrontal cortex. Notably, the
BPA-responsive genes in male and female pups exhibited sex-specific associations with the
targets of ASD-related transcription factors. This finding suggests that the BPA-mediated
dysregulation of transcriptome profiles in the prefrontal cortex of male and female offspring
may involve different sets of transcription factors.
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2.6. Molecular Docking Analysis of BPA and ASD-Related Transcription Factors of Which the
Targets Are Over-Represented among BPA-Responsive Genes

To predict whether BPA can directly interact with ASD-related transcription fac-
tors, we selected 10 transcription factors of which the targets are associated with BPA-
responsive genes and manually curated them by the TRANSFAC Curated database. We
performed molecular docking analysis with BPA molecules using Discovery Studio 2019
and AutoDock 4.2 software (Figure S2). The binding free energies of the complexes between
BPA and each transcription factor were calculated. When available, the known ligands of
each transcription factor were also used in molecular docking analysis for comparison. The
molecular docking analysis revealed that BPA exhibited good binding affinity with AR,
ESR1, RORA, SOX5, TCF4, and YY1 (Table 5). We also investigated the expression of genes
encoding these transcription factor proteins (Figure S3A,B). The qRT-PCR analysis of Ar
and Yy1 showed that the RNA levels of these transcription factors were not significantly
changed in response to BPA, suggesting that BPA may interact with these transcription
factor proteins and alter the activities of these transcription factors at the protein level
without changing the RNA expression.

Table 5. Molecular docking of ASD-related transcription factors of which the targets were over-represented in BPA-
responsive genes and BPA. The molecular docking between ASD-related transcription factors of which the targets were
enriched among BPA-responsive genes in the offspring frontal cortex was performed using Discovery Studio 2019 and
Autodock 4.2 software. The mean value and standard deviation of binding free energy for each pair of transcription factor
and BPA or known ligand were calculated from triplicates. NA, not available.

Mean Binding Free Energy ± SD (kcal/mol)
Protein ID TFs Name Known Ligand Known Ligand BPA Ligand

PDB:2AM9 AR Androgen receptor Testosterone −11.17 ± 0.00 −8.98 ± 0.01
5β-dihydrotestosterone −11.07 ± 0.00

PDB: 1A52 ESR1 Estrogen receptor alpha 17β-estradiol −9.96 ± 0.00 −7.49 ± 0.00

PDB:1S0X RORA
Retinoic acid-related

orphan receptor-alpha
Cholesterol sulfate [104] −12.64 ± 0.18 −7.47 ± 0.04
7β-hydroxycholesterol

[104] −11.05 ± 0.16

PDB:1I11 SOX5 SRY-box 5
(DNA-binding domain) NA NA −5.85 ± 0.01

PDB:2KWF TCF4 Transcription factor 4 NA NA −5.75 ± 0.04

PDB:1UBD YY1

Yin Yang 1
transcriptional

repressor protein
(Zinc-finger domain)

NA NA −5.68 ± 0.02

Alphafold ID: Q14872 MTF1 Metal regulatory
transcription factor 1 NA NA −4.33 ± 0.05

Alphafold ID: P20265 POU3F2
POU domain, class 3,

and transcription factor
2

NA NA −4.33 ± 0.38

Alphafold ID: P39880 CUX1 Homeobox protein
cut-like 1 NA NA −4.15 ± 0.37

Alphafold ID: P11161 EGR2 E3 SUMO-protein ligase
EGR2 NA NA −3.66 ± 0.14

Moreover, we found that BPA can bind to the ligand-binding domains of AR, ESR1,
and RORA at sites close to the known ligands of these transcription factors (Figure 2). These
results suggest that BPA may alter the transcription of their target genes in the prefrontal
cortex of offspring by interacting with these transcription factors.
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Figure 2. Molecular docking of BPA and AR/ESR1/RORA, of which the targets were over-
represented among BPA-responsive genes in the offspring prefrontal cortex. The molecular docking
between BPA (red) and androgen receptor (AR) (A), estrogen receptor alpha (ESR1) (B), and retinoic
acid-related orphan receptor-alpha (RORA) (C) was performed using Discovery Studio 2019 and
Autodock 4.2 software. The known ligands (green) of these transcription factors were also used for
comparison.

3. Discussion

Although ASD has a high degree of heritability and genetic factors are known to play
an important role in the etiology and susceptibility of the disorder [105–107], recent evi-
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dence has shown that up to 40–50% of variance in the genetic liability of ASD is determined
by environmental factors [108–112]. Recent human studies have reported that in utero BPA
exposure is associated with altered behaviors and neurological functions frequently found
in ASD [113–122], prompting the theory that exposure to BPA may cause or increase the
risk of the disorder. Several animal studies have investigated the effects of adult or prenatal
BPA exposure on the brain and found that BPA dysregulates gene expression in multiple re-
gions, including the prefrontal cortex [77], the hippocampus [15,78], the hypothalamus [78],
the amygdala [80], and the cerebellum [79]. Although these brain regions are known to be
impacted in people with ASD [123,124], it is still unclear how prenatal BPA exposure can
cause pathological conditions in the brain and lead to behavioral impairments that are the
hallmarks of ASD. Moreover, the effects of in utero BPA exposure on the transcriptome pro-
files of the offspring’s prefrontal cortex—a brain region responsible for executive functions
and social behaviors known to be negatively impacted in ASD—have not been investigated.
This is the first study to demonstrate that prenatal BPA exposure, even at the (NOAEL),
alters the transcriptome–interactome profiles of genes in the offspring’s prefrontal cortex
in a sex-dependent manner, possibly through ASD-related transcription factors (Figure 3).
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Figure 3. Schematic diagram illustrating a possible mechanism of prenatal BPA exposure on the
offspring prefrontal cortex. We propose that maternal BPA exposure alters the transcriptome–
interactome profiles in the prefrontal cortex of offspring in a sex-dependent manner through ASD-
related transcription factors (e.g., AR, ESR1, RORA, SOX5, TCF4, and YY1), as well as other gene
regulatory mechanisms (e.g., genetic predisposition, non-ASD-related transcription factors, epige-
netic mechanisms, or other environmental factors). Disrupted transcriptome–interactome profiles
lead to neuropathological conditions in the ASD brain and changes in behaviors that are controlled
by the prefrontal cortex and known to be negatively impacted in ASD, such as social interaction and
executive functions. (This figure was created with BioRender.com).

This finding is consistent with our previous studies, which observed the sex-specific
effects of maternal BPA exposure on the transcriptome–interactome profiles of the offspring
hippocampus [15,16,125]. Moreover, Thongkorn et al. found that the expression of several
ASD candidate genes (e.g., Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus is dysreg-
ulated in response to prenatal BPA exposure and shows a sex-specific correlation with
neuronal viability, neuritogenesis, and/or learning/memory [16]. The neuronal viability



Int. J. Mol. Sci. 2021, 22, 13201 13 of 27

and neuronal density in the hippocampus and learning/memory are reduced only in the
male offspring, while those in the females are not affected. In addition to the hippocampus,
sex differences in the effects of prenatal BPA exposure on transcriptome profiles are also
found in the hypothalamus and amygdala by other animal studies [78,80].

The gene ontology analysis by IPA software revealed that the BPA-responsive genes
in the offspring’s prefrontal cortex were significantly associated with ASD and other dis-
orders, including pervasive developmental disorder, schizophrenia spectrum disorder,
movement disorders, and syndromic encephalopathy, all of which are known to be comor-
bid disorders of ASD [126–129]. A significant association of BPA-responsive genes and
ASD was observed, both when male and female pups were combined into one group for
each treatment and when each sex was analyzed separately. In addition to the results from
the IPA analysis, the known ASD candidate genes available in the SFARI database were
also over-represented in the lists of BPA-responsive genes. Moreover, DEGs in response
to prenatal BPA exposure were also significantly associated with dysregulated genes in
postmortem brain tissues from ASD cases. Strong associations were observed between
BPA-responsive genes in the offspring’s prefrontal cortex and DEGs in the frontal and
temporal cortex of ASD cases, while DEGs in the occipital lobe and cerebellum of ASD
cases showed little or no association. The association of BPA-responsive genes and ASD
was also found in the hippocampus of pups prenatally exposed to BPA [15]. Taken together,
these findings suggest that prenatal BPA exposure may increase the risk of ASD by affecting
multiple brain regions of the offspring simultaneously, but changes in the transcriptome
profiles and their association with ASD may be specific to certain areas of the brain.

The biological function and canonical pathway analysis by IPA also showed that
BPA-responsive genes were involved in neurological functions and pathways known to
be disrupted in ASD, including axonal guidance signaling [130], PTEN signaling [131],
synaptic long-term depression and potentiation [132,133], and Wnt/calcium signaling [134].
In addition, DEGs in the prefrontal cortex of pups prenatally exposed to BPA were also as-
sociated with “proliferation of neuronal cells”, “neuritogenesis”, and “neurotransmission”.
Consistent with our findings, a recent study in mice reported that in utero BPA exposure
suppresses the proliferation and differentiation of cortical neural progenitor cells during
brain development. Moreover, synaptic formation and transmission in the cerebral cortex
are also observed in mice prenatally exposed to BPA [135]. Interestingly, neural stem cells,
neural progenitor cells, and neurons derived from ASD cases also exhibit abnormal prolif-
eration, neurogenesis, and synaptogenesis [136,137]. Notably, BPA-responsive genes in the
prefrontal cortex of male pups, but not female pups, are also significantly associated with
androgen signaling and estrogen receptor signaling, both of which have been implicated in
the male bias of ASD [7,138,139].

The interactome network analysis unveiled the interactions among DEGs in response
to BPA. Interestingly, the Lnpk, Kmt2a, and Neo1 genes are found to be the hub genes
of DEGs in the prefrontal cortex of offspring. Lnpk or Lunapark, ER junction formation
factor, is the gene responsible for shaping and stabilizing ER membrane proteins [140]. A
study reported that three children who carried Lnpk gene mutations exhibited ASD-related
neurodevelopmental defects, such as severe psychomotor delay, intellectual disability, hy-
potonia, and epilepsy [141]. Kmt2a, also known as the Mll gene, encodes a transcriptional
coactivator that regulates the transcription of genes related to neurogenesis [142,143]. The
loss of Kmt2a in forebrain neurons results in behavioral changes, such as increased anxiety,
social behavior deficit, and impaired working memory, in an animal model [144,145]. In
addition, de novo Kmt2a loss-of-function variants were found in people with neurodevel-
opmental disorders, including ASD [146]. Neo1, encoding neurogenin 1, is the hub gene
of female DEGs. Neurogenin 1 is a receptor for Netrin-1, which is a protein involved in
axon guidance signaling [147]. Moreover, Neo1 is expressed near the cortical plate dur-
ing embryogenesis and plays an essential role in controlling neuronal migration in the
embryonic brain [147,148]. Moreover, Neo1 controls NSC proliferation, neurogenesis, and
synaptogenesis and is also involved in the expression of depressive-like behavior [149].
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Genetic abnormalities in this gene, such as deletion, missense variants, and duplications,
were observed in ASD cases [150]. The effects of prenatal BPA exposure on these genes in
the offspring prefrontal cortex and their impacts on neurological functions and behaviors
associated with ASD deserve further investigation.

To further investigate the effects of prenatal BPA exposure on genes associated with
ASD in the prefrontal cortex, five ASD candidate genes (i.e., Ntng1, Auts2, Ankrd11, Dock4,
and Syne1) from the SFARI database were selected for qRT-PCR analysis. When male
and female pups were combined into one group for each treatment, the expression of
Ntng1 was significantly reduced, whereas Auts2 was increased in the prefrontal cortex of
pups prenatally exposed to BPA. The changes in the expression of Ankrd11, Dock4, and
Syne1 were not significant. When each sex of pups was analyzed separately, Ntng1 was
downregulated and Ankrd11 was upregulated in female pups in response to prenatal BPA
exposure. Although Auts2 and Ankrd11 expression tended to increase in the male BPA
group, no significant change was observed. Ntng1 or netrin G1 encodes a membrane protein
that functions in axon and dendrite growth during brain development [151–153]. Netrin-G1
knockout mice show anxiety behaviors in the elevated plus-maze test and exhibited deficits
in fear response behavior [154]. Missense mutations of NTNG1 were found in children with
ASD [155]. The disruption of the NTNG1 gene from chromosome 1 abnormal rearrangement
was detected in a female patient with Rett syndrome, a progressive neurodevelopmental
disorder once characterized as a type of ASD [156]. Auts2 (autism susceptibility candidate
2 or activator of transcription and developmental regulator AUTS2) has been implicated
in neurodevelopment due to its abundant expression in the developing brain, including
the frontal cortex and the hippocampus [157,158]. Both copy number variation (CNV)
duplications and deletions of AUTS2 were found in patients with developmental delay
and ASD [159]. Several studies have also identified rare mutations in the Auts2 gene
with ASD susceptibility [160–162]. Auts2 mutations cause abnormal cortical neuronal
migration and neurite formation in the developing mouse brain [91]. The knockout or
loss-of-function mutation of Auts2 causes microcephaly [161], neuron reduction [163],
increased excitatory synapses, and ASD-like behaviors [164]. Ankrd11 is an ankyrin repeat
domain-containing protein 11. Ankrd11 is expressed in precursor cells and neurons of the
developing cortex [93]. Ankrd11 is associated with chromatin or transcription regulators
that control the acetylation of histones and gene expression during the development of
neurons. Several studies have shown associations of deletion or mutations of the Ankrd11
gene with ASD [165,166]. Duplication involving ANKRD11 was found in patients with KBG
syndrome, which exhibits severe developmental delay and intellectual disability [167,168].
The downregulation of Ankrd11 in developing murine or human cortical neural precursor
cells causes decreased neural proliferation, reduced neurogenesis, and abnormal neuronal
positioning [93]. Moreover, an animal model with downregulated Ankrd11 in the brain
displays abnormal locomotion activity, social interaction deficits, and repetitive behavior,
all of which are ASD-related behaviors [93]. The role of these genes, specifically the
downregulation of Ntng1 and the upregulation of Auts2 and Ankrd11, in the context of ASD
and the underlying molecular mechanisms through which BPA regulates the expression of
these genes should be further studied.

BPA can bind to several nuclear receptor proteins, including AR, ESR1, THRA,
ERRG, and PPARG, which may affect downstream signaling and dysregulate cellular
functions [96–98,169]. Several nuclear receptors and other types of transcription factors are
associated with ASD [88,103,170–172]. In this study, we found that as many as 96 human
transcription factors have been associated with ASD and listed in the SFARI database as
ASD candidate genes. Among those, the targets of 34 transcription factors were avail-
able in the Harmonizome database. Interestingly, the targets of as many as 25 out of 34
transcription factors were significantly over-represented in the lists of BPA-responsive
genes, suggesting that these transcription factors may be responsible for altered tran-
scriptome profiles in the prefrontal cortex of pups prenatally exposed to BPA. AR, ESR1,
and THRA, which are known to be BPA targets, and were also identified as significant
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transcription factors in this study. The association between BPA-responsive genes and
the targets of RORA was further confirmed using the list of RORA1 targets in the hu-
man neuronal cell line SH-SY5Y identified by our previous study [103]. RORA1 targets
were significantly enriched in the lists of BPA-responsive genes in the prefrontal cor-
tex of male pups and female pups when compared to age/sex-matched control pups,
suggesting that RORA1 is involved in the effects of BPA on dysregulation of genes in
the offspring prefrontal cortex. ERRG and PPARG were not listed as ASD candidate
genes in the SFARI database and thus were not used for hypergeometric analysis and
molecular docking in this study. In addition to these transcription factors, we identified
transcription factors, RORA, SOX5, TCF4, and YY1, as novel targets of BPA by molec-
ular docking analysis. Although these transcription factors were obtained from human
databases, all transcription factors are also conserved in rats according to the NCBI Homolo-
Gene database (https://www.ncbi.nlm.nih.gov/homologene, accessed on 25 May 2020).
It is noteworthy that Ntng1 is known to be a transcriptional target of RORA [103], TCF4 [173],
and YY1 [174]. Auts2 is a transcriptional target of AR [175], SOX5 [101,102], TCF4 [173],
and YY1 [174]. Ankrd11 is a transcriptional target of TCF4 [173] and YY1 [174]. Both Dock4
and Syne1 are transcriptional targets of ESR1 [101,102] and YY1 [174]. Moreover, AR, ESR1,
and RORA have been implicated in the sex bias of ASD [86,87,139]. Our previous study
showed that male and female hormones differentially regulated the expression of RORA
in the human neuronal cell line SH-SY5Y through AR and ESR1, respectively. Moreover,
we found that RORA transcriptionally regulated aromatase and that the protein levels
of RORA and aromatase were significantly reduced in the frontal cortex of people with
ASD [86,176]. The direct interaction between BPA and these transcription factors, protein,
and RNA expression of all ASD-related transcription factors, as well as its effects on the
signaling mediated by these transcription factors, deserve further investigation.

4. Materials and Methods
4.1. Animal Husbandry and Treatment

Eight-week-old male and female Wistar Furth rats were obtained from the National
Laboratory Animal Center (NLAC), Thailand. All animals were housed at the Chula-
longkorn University Laboratory Animal Center (CULAC) under standard temperature
(21 ± 1 ◦C) and humidity (30–70%) conditions in a 12-h light/dark cycle with food and
RO-UV water available ad libitum. After mating, female rats (GD1; n = 6) were divided
into two groups, i.e., the BPA treatment group and the control group. The weight of each
rat was measured daily and used to calculate the amount of BPA or vehicle control needed
to treat each rat. Animal treatment was performed as previously described [15]. For BPA
treatment, BPA (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in absolute ethanol
(Merck Millipore, Burlington, MA, USA) to a final concentration of 250 mg/mL to make a
stock BPA solution. Then, the stock solution was further diluted with corn oil to a final
concentration of 5000 µg/kg·maternal BW of BPA to treat each rat. The vehicle control
treatment was prepared by mixing absolute ethanol with corn oil in amounts equivalent to
those used for preparing BPA. After mating, female rats were intragastrically administered
by either BPA or vehicle control from GD1 until parturition. To prevent cross-contamination
of the treatment conditions, the rats in the BPA and control groups were raised separately
in individually ventilated cages in a biohazard containment housing system. Separate
sets of stainless-steel needles and all consumable products were used for oral gavage. All
reusable materials were cleaned with ethanol and rinsed with copious amounts of Milli-Q
deionized water before use. All experimental procedures were approved by the Chula-
longkorn University Animal Care and Use Committee (animal use protocols numbers:
1673007, 1773011, and 2073011), Chulalongkorn University.

4.2. Tissue Dissection

Male and female neonatal rat pups from independent litters (n = 3 pups/sex/treatment)
were used for transcriptome profiling and qRT-PCR analysis. Prefrontal cortex tissues were
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identified and dissected under a Nikon SMZ18 Stereo Microscope (Nikon, Tokyo, Japan) as
previously described with slight modifications [177]. According to the protocol by Guo
et al. [178], rat pups (postnatal days (PNDs) 1–2) were deeply anesthetized by intraperi-
toneal injection of 100 mg/kg·BW sodium pentobarbital and euthanized by decapitation.
The brain was quickly and carefully removed from the skull and placed in a prechilled
cell culture dish containing ice-cold, freshly prepared 1× HBSS (Invitrogen, Waltham, MA,
USA) containing 30 mM glucose (Sigma-Aldrich, Saint Louis, MO, USA), 2 mM HEPES
(GE Healthcare Bio-Sciences, Piscataway, NJ, USA), and 26 mM NaHCO3 (Sigma-Aldrich,
Saint Louis, MO, USA). The meninges were completely removed. The prefrontal cortex
was dissected and immediately placed in a tube with RNA stabilization reagent (RNAlater)
(Ambion, Austin, TX, USA) and stored at −80 ◦C according to the manufacturer’s protocol
until use.

4.3. RNA Isolation

Total RNA was extracted and purified using the mirVana™ miRNA Isolation Kit
(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.
Briefly, prefrontal cortex tissues were lysed in a denaturing lysis buffer, which stabilized
RNA and inactivated RNases. Prefrontal cortex tissue lysates were then subjected to
acid-phenol:chloroform extraction to purify RNA and remove DNA. Ethanol was then
added to the samples and passed through a filter cartridge containing a glass-fiber filter
that immobilized the RNA. The filter was then washed three times, and finally, total RNA
was eluted with a low ionic-strength solution. The purity of total RNA was assessed
using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
quantified by using Invitrogen Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). An Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA)
was used to determine RNA integrity. The results from the bioanalyzer were presented as
the 28S:18S rRNA ratio and the RNA integrity number (RIN). The 28S:18S rRNA ratio was
greater than 1.0, and the RIN was greater than 7.0 for all RNA samples.

4.4. Transcriptome Profiling Analysis

To identify DEGs in response to maternal BPA exposure, a transcriptome profiling
analysis of total RNA isolated from the prefrontal cortex of neonatal rats from six indepen-
dent litters prenatally exposed to BPA or vehicle control was performed by BGI Genomics
Co., Ltd., China, using the Illumina HiSeq 4000 next-generation sequencing platform with
4 G reads (Illumina, San Diego, CA, USA) as previously described [15]. For RNA-seq
analysis, RNA quality requirements were total RNA of ≥200 ng, RNA concentrations of
≥20 ng/µL, RINs of ≥7.0, and 28S/18S rRNA ratios of ≥1.0. Briefly, total RNA was treated
with DNase I to remove DNA, and oligo(dT) treatment was used for mRNA isolation. Next,
mRNA samples were fragmented by adding a fragmentation buffer, and reverse transcrip-
tion was performed using mRNA fragments as templates. Short fragments were purified
and resolved with an EB buffer for end repair and single nucleotide adenine addition.
After that, the short fragments were connected with adapters, and suitable fragments were
selected for PCR amplification. For quality control, an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) and an ABI StepOnePlus Real-Time PCR System
(Applied Biosystems, Waltham, MA, USA) were used in the quantification and qualification
of the sample library. The library was sequenced using Illumina HiSeq 4000 (Illumina, San
Diego, CA, USA). Subsequently, sequencing reads were filtered and subjected to quality
control. Clean reads in a FASTQ file were mapped to the rat reference genome Rnor_6.0
(RefSeq ID: 1174938) using Bowtie 2 [15,179], and gene expression levels were then cal-
culated using RSEM [180]. The transcriptome profiles between the BPA and the control
groups were compared using a Poisson distribution. Comparisons were performed with
all male and female pups with the same treatment condition combined into one group
and separately for each sex. p-values were calculated using a Poisson distribution method.
DEGs with a p-value of <0.05 and an FDR of <0.05 were considered statistically significant.



Int. J. Mol. Sci. 2021, 22, 13201 17 of 27

4.5. qRT-PCR Analysis

qRT-PCR analysis was performed to confirm the expression of five selected ASD
candidate genes that were differentially expressed in response to prenatal BPA exposure.
Reverse transcription was performed using a RevertAid First Strand cDNA Synthesis Kit
(Thermo Scientific, Waltham, MA, USA) following the manufacturer’s protocol. Briefly, a
total of 0.5 µg total RNA were mixed with 0.2 µg random hexamer primer and incubated
at 65 ◦C for 5 min. After that, cDNA synthesis reagents consisting of 4 µL of a 5X Reaction
Buffer, 1 µL of a RiboLock RNase Inhibitor (20 U/µL), 2 µL of 10 mM dNTP Mix, and 1 µL
of RevertAid M-MuLV Reverse Transcriptase (200 U/µL) were added to the mixture and
brought the total volume to 20 µL. Reverse transcription was performed by incubation at
25 ◦C for 5 min, followed by 42 ◦C for 60 min. The reaction was terminated by heating the
solution to 70 ◦C for 5 min.

qPCR analysis was performed using AccuPower® 2X GreenStar™ qPCR MasterMix
(Bioneer, Daejeon, South Korea) according to the manufacturer’s instructions. Briefly, 1 µL
of cDNA was mixed with 2X Greenstar Master Mix, a forward primer, a reverse primer, and
nuclease-free water. Each sample was prepared in triplicate reactions. The reaction was
then incubated in a Bio-Rad CFX Connect Real-Time PCR Detection System (Bio-Rad, Her-
cules, CA, USA). The PCR conditions were set as follows: an initial denaturing step at 95 ◦C
for 15 min, 40 cycles of 95 ◦C for 10 s per cycle, and 30 s at 55 ◦C for annealing/extension.
Melting curve analysis was set at 65 to 95 ◦C for product confirmation. The expression
levels were calculated by the 2−∆∆Ct method using the 18S ribosomal RNA (Rn18s) gene
as an endogenous control. The primers used in this study were designed using the UCSC
Genome Browser (https://genome.ucsc.edu/, accessed on 17 May 2019) [181], Ensembl
(https://asia.ensembl.org/index.html, accessed on 17 May 2019) [182], and Primer3 soft-
ware (http://bioinfo.ut.ee/primer3-0.4.0/, accessed on 17 May 2019) [183–185]. Forward
and reverse primers were designed for rat Auts2, Ankrd11, Ntng1, Dock4, Syne1, and Rn18s.
The sequences of the qPCR primers are shown in Table S15.

4.6. Prediction of Biological Functions, Disorders, Canonical Pathways, and Interactome Networks
Associated with DEGs

Biological functions, disorders, canonical pathways, and interactome networks associ-
ated with DEGs were predicted using IPA (QIAGEN Inc., https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis/, accessed on 25 May 2020) [89]. The list of
DEGs overlapped with the list of genes experimentally validated to be associated with each
function/disorder/canonical pathway in Ingenuity’s Knowledge Base database. Fisher’s
exact test was then performed to calculate p-values, and a p-value of <0.05 was considered
statistically significant.

4.7. Transcriptome Profiling Analysis of Postmortem Brain Tissues from ASD and Unaffected
Individuals

To identify significantly DEGs in the brains of ASD cases, the transcriptome profiling
data of postmortem brain tissues from ASD cases and typically developing people were
obtained from the NCBI Gene Expression Omnibus (GEO) repository (http://www.ncbi.
nlm.nih.gov/gds, accessed on 2 May 2020) [186] in a search performed on 2 May 2020,
using “postmortem brain and autism” as a keyword. The details of the transcriptome
profiling datasets used in this study are shown in Table S9. Transcriptome profiling
data from each study were then analyzed separately according to the brain region by
using Multiple Experiment Viewer (MeV) software (http://mev.tm4.org/86, accessed on
9 May 2020) [187]. To identify DEGs in ASD brain tissues, two-tailed t-tests with adjusted
Bonferroni correction were performed. Then, the lists of DEGs from postmortem brain
tissues overlapped with the list of BPA-responsive DEGs in our study. The significant
associations between DEGs in the brains of ASD cases and BPA-responsive genes were
determined by using the hypergeometric distribution calculator program in the Keisan
Online Calculator package (http://keisan.casio.com/exec/system/1180573201, accessed
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on 18 May 2020). Four parameters in the hypergeometric distribution calculator were the
number of overlapping genes, the number of BPA-responsive genes, the number of DEGs
from the postmortem brain tissues that were detected in the rat prefrontal cortex, and the
number of genes detectable in the prefrontal cortex by RNA-seq analysis. A hypergeometric
p-value of <0.05 was considered statistically significant.

4.8. Molecular Docking

To determine whether BPA can directly interact with transcription factors of which
the target genes are associated with BPA-responsive genes. BPA structure was obtained
from PubChem Open Chemistry Database (NIH, USA, https://pubchem.ncbi.nlm.nih.gov,
accessed on 25 May 2020), and protein structures were obtained from RCSB Protein Data
Bank (PDB) (https://www.rcsb.org/, accessed on 25 May 2020). The criteria for choosing
transcription factor structures from the PDB database for docking were as follows: (i) the
resolution was less than 3 Angstrom; and (ii) the structure was discovered by X-ray
diffraction. For transcription factors of which the structures are not available in the PDB
database, the structures were obtained from the Alphafold Protein Structure Database
(https://alphafold.ebi.ac.uk/, accessed on 25 May 2020) [188]. The Discovery Studio
Visualizer program (BIOVIA, San Diego, CA, USA, http://www.3dsbiovia.com/products/
collaborative-science/biovia-discovery-studio/visualization-download.php, accessed on
30 May 2020) was used to remove crystal water molecules and to add partial charges to
each atom. Then, the molecular docking between BPA, known ligands, and transcription
factors was performed using Autodock 4 and AutodockTools 4 [189]. The binding abilities
between BPA or known ligands and each transcription factor were evaluated and were
shown as Gibbs free energy (∆G). For each pair of BPA/ligands and a transcription factor,
the binding free energy was averaged from three independent runs.

5. Conclusions

Our transcriptomic profiling analysis revealed that in utero BPA exposure caused the
sex-dependent dysregulation of transcriptome-interactome profiles in the prefrontal cortex
of neonatal rat pups. BPA-responsive genes were associated with ASD and related neurolog-
ical functions and pathways. Moreover, known ASD candidate genes and genes disrupted
in the brains of ASD cases were significantly enriched in the lists of BPA-responsive genes.
In addition, BPA-responsive genes are known targets of several transcription factors, in-
cluding AR, ESR1, and RORA, which have been linked to the pathobiology or sex bias of
ASD. Molecular docking predicted that BPA may directly interact with these transcription
factors, many of which are novel targets for BPA, including RORA, SOX5, TCF4, and YY1.
Taken together, these findings suggest that in utero BPA exposure may increase the risk of
ASD by impacting ASD-related genes in the offspring’s prefrontal cortex, possibly through
sex-specific transcription factors associated with the disorder. A better understanding
of prenatal BPA exposure effects and the underlying molecular mechanisms may lead to
increased awareness and development of molecular targets for treatment in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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