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SUMMARY

Axonal repair is critical for functional recovery after injury of the CNS. We previ-
ously reported that neuronal PTEN deletion exhibits an age-dependent decline in
promoting axon regeneration from the corticospinal tract (CST). How sprouting
of uninjured axons, a naturally occurring form of axonal repair, is impacted by
age is unknown. We assessed CST sprouting after unilateral pyramidotomy in
PTEN and/or SOCS3-deleted mice at different ages. While PTEN deletion en-
hances sprouting independently of age, SOCS3 deletion loses its sprouting-pro-
moting effect with age. The synergistic effect of PTEN/SOCS3 co-deletion on
CST sprouting is rapidly lost with increased age. Overall, promoting sprouting ap-
pears more robust across age than regeneration, yet distinct molecular pathways
are differentially impacted by age. Importantly, six-week delayed PTEN deletion
promotes CST sprouting across age groups, supporting a clinically relevant time
frame for this neural repair strategy independently of age.

INTRODUCTION

Enhancing axonal repair is a central theme in developing restorative therapies for spinal cord injury as func-

tional deficits and paralysis are primarily caused by axonal damage. Substantial advances have been made

in the past decade to understand the molecular regulation of axonal growth after CNS injury (He and Jin,

2016; Sofroniew, 2018). However, a dichotomy exists in age between animal studies and the human pop-

ulations who suffer from spinal cord injury. While experimental studies predominantly rely on the use of

young adult animals, people who live with a paralyzing spinal cord injury are trending significantly older

in recent decades. In the United States, the average age at the time of a spinal cord injury has increased

from 29 years in the 1970s to 43 in recent years (NSCISC, 2019). The average age of Americans who live

with a paralyzing spinal cord injury is now 48, with the predominant age group at 40–59 (representing

55% of the total) corresponding to middle age (CDRF, 2009). Hence, on the one hand, age is widely recog-

nized as an important biological variable by researchers and funding agencies that impacts experimental

outcomes in animal models of human conditions. On the other hand, our understanding of the age impact

on many biological processes and axonal repair, in particular, is rather limited due to the substantial time

and effort required to study older animals, and even more so when complex genetically modified mice are

involved.

Using an enhanced regeneration background with neuronal PTEN deletion, we previously documented an

age-dependent decline in axon regeneration after spinal cord injury (Geoffroy et al., 2016). Neuronal PTEN

deletion is known to promote corticospinal tract (CST) axon regeneration after spinal cord injury via acti-

vating the mTOR pathway (Liu et al., 2010). We found that PTEN deletion remains effective in elevating

mTOR activity, neuronal soma size, and axonal growth rostral to the injury site in middle-aged mice; how-

ever, axon regeneration beyond the injury site was greatly diminished in middle-agedmice (Geoffroy et al.,

2016). Corroborating evidence was obtained for both the CST and the rubrospinal tract, with each assessed

in a different laboratory, suggesting that this age-dependent decline in regeneration is generally

applicable.

Whereas regeneration is axonal growth from injured neurons, sprouting is axonal growth from uninjured

neurons often as a compensatory mechanism (Figure S1A) (Geoffroy and Zheng, 2014; Tuszynski and Stew-

ard, 2012). Both may contribute to functional recovery. Compared with regeneration, sprouting occurs

naturally after CNS injury and can be modulated more readily by molecular intervention (Bradbury and
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McMahon, 2006; Cafferty et al., 2008; Geoffroy et al., 2015; Geoffroy and Zheng, 2014; Hutson and Di Gio-

vanni, 2019). As such, we hypothesized that the sprouting-enhancing effect of molecular interventions

would be more likely to resist an age-dependent decline. We tested this hypothesis by examining CST

axon sprouting in PTEN and/or SOCS3-deleted mice at different ages before, or following a unilateral pyr-

amidotomy injury. Results indicate that PTEN but not SOCS3 deletion resists an age-dependent decline in

promoting CST axon sprouting, revealing a pathway-dependent effect of age on sprouting. Furthermore,

the sprouting-enhancing effect of PTEN deletion can sustain a six-week delay post-injury regardless of age,

highlighting the clinical relevance of this strategy for neural repair.

RESULTS

The experimental setup

The central question we set out to address is how age impacts the sprouting-enhancing effect of molecular

interventions such as PTEN deletion. We applied the unilateral pyramidotomy injury to examine CST axon

sprouting (Figure S1B). This is a well-established injury model where one side of the CST is severed at the

level of medullary pyramids above pyramidal decussation, and sprouting from the spared (uninjured) side

across the midline into the gray matter of the denervated side at the cervical level is then examined with

axon tracing (Geoffroy et al., 2015; Lee et al., 2010; Liu et al., 2010). We note that in the literature sprouting

may also refer to collaterals branching off an injured axon proximal to the injury site (i.e., regenerative

sprouting). However, the current study focuses exclusively on axonal sprouting from uninjured neurons.

Neuronal PTEN deletion is known to promote CST sprouting (Liu et al., 2010). Neuronal SOCS3 deletion

synergizes with PTEN deletion in promoting CST sprouting when initiated at the neonatal stage, which rep-

resents one of the most potent molecular manipulations in enhancing CST sprouting reported to date (Jin

et al., 2015).

To capture the effect of gene deletion on CST sprouting more accurately, we used an inducible tdTomato

reporter line to trace CST axons instead of the traditional chemical tracer biotinylated dextran amine (BDA)

so that gene deletion and axon tracing would coincide in the same set of neurons. Specifically, we bred

PTENf/f and/or SOCS3f/f mice to the tdTf/f mouse line that carries a Cre-inducible tdTomato reporter at

the ROSA26 locus: ROSA26-CAG-loxP-STOP-loxP-tdTomato-WPRE (shortened as tdTf below) (Madisen

et al., 2010). The resulting mice of PTENf/f;tdTf/f, SOCS3f/f;tdTf/fand PTENf/f;SOCS3f/f;tdTf/f genotypes

along with non-mutant tdTf/f controls were injected with AAV-Cre at different ages in the sensorimotor cor-

tex to induce PTEN and/or SOCS3 deletion with concomitant induction of tdTomato expression for axon

tracing (Du et al., 2015; Lee et al., 2014). This allowed us to trace axons only from CST neurons that had un-

dergone the intended genetic manipulations, which represented an advantage over BDA-based axon

tracing (in addition to saving one brain surgery otherwise required for BDA tracing). To boost signals for

the optimal detection of axons and especially fine collaterals, we immunostained tdTomato instead of

relying on the native tdTomato signals directly.

For simplicity, we used the following genotype designations for Cre injected mice where appropriate: WT

(wild-type, with tdTf/f), PTEN KO (PTENf/f;tdTf/f), SOCS3 KO (SOCS3f/f;tdTf/f) and PTEN;SOCS3 KO

(PTENf/f;SOCS3f/f;tdTf/f). To quantify CST sprouting, sprouting axon number indices were calculated by

counting the numbers of axons crossing pre-defined vertical lines from the midline on C7 transverse sec-

tions up to the lateral edge of the denervated gray matter, which were then normalized against the total

number of CST axons labeled in the medulla as previously described (Figure S1B) (Geoffroy et al., 2015).

In all experiments, we observed a similar number of axons labeled at the medulla level for the young

and middle-aged mice, suggesting that the viral transduction efficiency was not altered by the age factor.

In addition, anymodest differences in labeling efficiency are accounted for in quantifying axon sprouting by

the normalization procedure described above.

Neuronal PTEN remains effective in middle-aged mice to enhance corticospinal tract axon

sprouting

We previously reported an age-dependent decline in the regeneration of injured CST axons beyond a spi-

nal cord injury site in PTEN-deleted mice even though PTEN deletion in middle-aged mice still increases

the expression of phospho-S6 (pS6) and neuronal soma size, both hallmarks of elevated mTOR activity

(Geoffroy et al., 2016). To ascertain how age impacts the sprouting of uninjured CST axons, we compared

the effect of PTEN deletion in new-born mice (with sprouting assessed at a young adult stage) and middle-

aged (12 months old) mice on CST sprouting after unilateral pyramidotomy. For the new-born group, we
2 iScience 25, 105383, November 18, 2022
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injected AAV-Cre into the right sensorimotor cortex mice at postnatal day 1 (P1) pups, performed injury

6 weeks later at a young adult stage, and assessed CST sprouting 4 weeks post-injury with the tdTomato

axon tracer, when the mice were at �10 weeks old (Figure 1A). As expected, CST sprouting into the dener-

vated cervical cord, as quantified with sprouting axon number indices, was substantially higher in PTEN-

deleted mice than WT controls from 50 mm to 450 mm away from the midline on the denervated side

(Figures 1B, 1C and 1E). The slightly over 2-fold increase in CST axon sprouting is consistent with previous

reports at the same postnatal stage (Geoffroy et al., 2015; Liu et al., 2010), validating the methodology

including the use of tdTomato as the axonal tracer. It is important to note that although gene deletion

was initiated at the neonatal stage, sprouting was likely induced only after pyramidotomy at 6 weeks of

age; thus, enhanced sprouting in PTEN-deleted mice for this age group reflected enhanced sprouting in

young adult mice, and not neonatal mice.

For the middle-aged group, we induced PTEN deletion in 12-month-old mice six weeks before pyramidot-

omy and assessed CST sprouting four weeks after injury. We and others have previously shown that initi-

ating neuronal PTEN deletion pre-injury in young adult mice (4–6 weeks old) promotes CST axon sprouting

(Geoffroy et al., 2015; Lee et al., 2014), but to our knowledge, the current study is the first time that the effect

of PTEN deletion on sprouting is assessed in middle-aged mice. Neuronal PTEN deletion in 12-month-old

mice increased sprouting by about 2-folds compared with controls. Similar to the new-born group, the

sprouting axon number indices were significantly higher in the middle-aged PTEN-deleted mice, from

50 mm to 450 mm away from the midline, compared to age-matched WT controls (Figures 1G, 1H, and

1J). Thus, pre-injury PTEN deletion in middle-aged mice increased CST axon sprouting at a level similar

to what we observed with neonatal PTEN deletion (Figures 1E and 1J). These data indicate that, in contrast

to regeneration, the sprouting-enhancing effect of PTEN deletion on CST axons resists an age-dependent

decline.

Neuronal SOCS3 deletion does not enhance corticospinal tract sprouting in middle-agedmice

The data above indicate that PTEN deletion resists an age-dependent decline in enhancing CST sprouting.

To determine whether this observation can be extended to other signaling pathways, we assessed whether

neuronal SOCS3 deletion in middle-aged mice also remains effective in enhancing CST sprouting.

Whereas the PTEN/mTOR pathway regulates protein synthesis, the SOCS3/STAT3 pathway regulates

retrograde injury signaling and transcription (Lu et al., 2014); hence, the two pathways regulate different

aspects of axonal repair. While PTEN negatively regulates mTOR signaling, SOCS3 negatively regulates

STAT3 signaling. Just as for the PTEN study, we compared the sprouting-enhancing effect of SOCS3 dele-

tion in very young mice and middle-aged mice with the same experimental paradigm (Figures 1A and 1F).

As expected, initiating SOCS3 deletion at P1 induced robust CST axon sprouting after unilateral pyrami-

dotomy in young adult mice, consistent with previous studies (Smith et al., 2009); in addition, the level

of enhancement in CST sprouting with neonatal SOCS3 deletion was comparable to that with neonatal

PTEN deletion (Figures 1D and 1E). Just as for PTEN deletion initiated at P1 above, this enhanced sprouting

when SOCS3 deletion was initiated at P1 reflects enhanced sprouting in young adult rather than the

neonatal age. Unlike PTEN deletion, however, SOCS3 deletion in middle-aged mice exhibited a striking

decline in the level of CST axon sprouting compared with neonatal SOCS3 deletion (Figures 1I and 1J).

Compared with middle-aged WT controls, SOCS3 deleted mice exhibited a trend for more CST sprouting

at 50 and 150 mm from the midline, which did not reach statistical significance (Figure 1J). Thus, targeting

neuronal SOCS3 in middle-aged mice loses effectiveness in enhancing CST axon sprouting, as compared

with targeting SOCS3 earlier in life. Together with the data on PTEN deletion, these results indicate a

pathway-dependent effect of age on sprouting-enhancing molecular manipulations.

PTEN and SOCS3 co-deletion loses synergy rapidly with increased age in enhancing

corticospinal tract sprouting

Although either PTEN or SOCS3 deletion induces robust CST axon sprouting in young adult mice when the

deletion is initiated at a neonatal stage, only PTEN deletion enhances CST sprouting in middle-aged mice.

A previous study indicates that neonatal PTEN and SOCS3 deletions synergize to promote a very high level

of CST axon sprouting that was accompanied by improved behavioral recovery (Jin et al., 2015). The pos-

sibility remained that PTEN and SOCS3 co-deletion in middle-aged mice would also synergize to promote

sprouting to levels substantially higher than single PTEN deletion, thereby revealing the effect of the addi-

tional SOCS3 deletion. To test this possibility, we examined the sprouting-enhancing effect of initiating
iScience 25, 105383, November 18, 2022 3



Figure 1. PTEN but not SOCS3 deletion enhances sprouting independently of age

(A and F) Schematic representations of the experimental design; gene deletion was induced at P1 (A) or 12 months (F),

6 weeks before pyramidotomy, with AAV-Cre cortical injections. Sprouting was assessed 4 weeks after pyramidotomy.

(B–D) Representative images of CST sprouting phenotype at C7 after postnatal day 1 (P1) single gene deletion 6 weeks

before pyramidotomy, targeting PTEN (C-C0) or SOCS3 (D-D0); PTEN or SOCS3 deletion significantly enhanced sprouting

compared to WT control (B-B0).
(E) Sprouting axon number indices on the contralateral, denervated side of the spinal cord expressed as a function of the

distance to midline after AAV-Cre injection at P1 and pyramidotomy at 6 weeks of age. There was a significant increase in

sprouting in the PTEN KO group compared to WT from midline to 450 mm, and in the SOCS3 KO group compared to WT

from 150 to 350 mm. Stats: two-way ANOVA: Tukey’s multiple comparisons test was used to determine the differences

between the groups. Data presented as meansG SEM, N = 7 (WT P1), 8 (PTEN KO P1), 4 (SOCS3 KO P1). WT P1 vs. PTEN

KO P1: *p = 0.01–0.05; **p = 0.001–0.01; WT P1 vs. SOCS3 KO P1: @p = 0.01–0.05.

(G–I) Representative images of CST sprouting phenotype at C7 after middle-age (12-months-old) gene deletion 6 weeks

before pyramidotomy, targeting PTEN (H-H0) or SOCS3 (I-I0); PTEN deletion but not SOCS3 deletion, significantly

enhanced sprouting.

(J) Sprouting axon number indices on the contralateral, denervated side of the spinal cord expressed as a function of the

distance to midline after AAV-Cre injection at 12 months and pyramidotomy at 13.5 months of age. There was a significant

increase in sprouting in the PTEN KO group compared to WT from 50 to 450 mm, and compared to SOCS3 KO at 350 and

450 mm. Stats: two-way ANOVA: Tukey’s multiple comparisons test was used to determine the differences between the

groups. Data presented as means G SEM, N = 3 (WT 12m), 4 (PTEN KO 12m), 4 (SOCS3 KO 12m). WT 12m vs. PTEN KO

12m: *p = 0.01–0.05; **p = 0.001–0.01; SOCS3 KO 12m vs. PTEN KO 12m: @p = 0.01–0.05; @@p = 0.001–0.01.See also

Figure S1.
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Figure 2. SOCS3 deletion rapidly loses effectiveness in synergizing with PTEN deletion to enhance CST sprouting

with increased age

(A) Schematic representation of the experimental design; gene deletion was induced with AAV-Cre cortical injections at

postnatal day 1 (P1), 10 weeks or 12 months, 6 weeks before pyramidotomy (at 6 weeks, 16 weeks and 13.5 months of age

respectively). Sprouting was assessed 4 weeks after pyramidotomy.

(B–F) Representative images of CST sprouting phenotype at C7 after PTEN;SOCS3 co-deletion 6 weeks before

pyramidotomy at postnatal day 1 (D-D0), 10 weeks (E-E0) or middle-age (12-months-old, F-F0); PTEN;SOCS3 co-deletion at

P1, but not at 10 weeks or 12 months, synergized with PTEN deletion in enhancing CST sprouting.

(G) Sprouting axon number indices on the contralateral, denervated side of the spinal cord, expressed as a function of the

distance to midline. PTEN;SOCS3 co-deletion at postnatal day 1 (P1) significantly increased sprouting compared to WT

mice from midline to 650 mm; PTEN;SOCS3 co-deletion significantly increased sprouting compared to PTEN;SOCS3 co-

deletion at 10 weeks and 12 months (significance stated in table H).

(H) Table of statistical significance from (G). Stats: two-way ANOVA: Tukey’s multiple comparisons test was used to

determine the differences between the groups. Data presented as means G SEM, N = 7 (WT P1), 3 (WT 12m), 11

(PTEN;SOCS3 KO P1), 7 (PTEN;SOCS3 KO 10w), 8 (PTEN;SOCS3 KO 12m). WT P1 vs. PTEN;SOCS3 KO P1:*p = 0.01–0.05;

**p = 0.001–0.01; ***p = 0.001–0.01, ****p < 0.0001; PTEN;SOCS3 P1 vs. PTEN;SOCS3 10w: @p = 0.01–0.05; @@@p = 0.001–

0.01; @@@p = 0.001–0.01; PTEN;SOCS3 P1 vs. PTEN;SOCS3 12m: #p = 0.01–0.05; ##p = 0.001–0.01; ###p = 0.001–0.01. See

also Figure S1.
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PTEN;SOCS3 co-deletion across three age groups: neonates (P1), 10-week-old and 12-month-old mice

(Figure 2A).

As expected, initiating neonatal co-deletion of PTEN and SOCS3 increased CST sprouting to a very high

level in young adult mice, which was substantially greater than that of either PTEN or SOCS3 single

gene deletion (Figures 2D and 2G; Figure 1E). The synergy was especially prominent at distances beyond

500 mm into the denervated gray matter, suggesting that double gene deletion promoted axon sprouting

further in distance. Indeed, the sprouting axon number indices in the denervated side significantly
iScience 25, 105383, November 18, 2022 5
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increased over 3-folds compared to PTEN or SOC3 single deletion (Figure 2G), consistent with a previous

report (Jin et al., 2015). In contrast, for the middle-aged group, CST sprouting was substantially reduced

compared with the neonatal PTEN;SOCS3 co-deletion (Figures 2F and 2G). Indeed, PTEN;SOCS3 deletion

in 12-month-old mice enhanced sprouting to levels comparable to single PTEN deletion alone (Figures 2G

and 1J), indicating no additional beneficial effect of deleting SOCS3 at this age.

To explore approximately when this synergy between PTEN and SOCS deletion is lost, we assessed the

effect of initiating PTEN;SOCS3 co-deletion at 10 weeks of age on CST sprouting as an intermediate

time point. To our surprise, there was no significant difference in CST sprouting when PTEN;SOCS3 co-

deletion was initiated at 10 weeks versus 12 months of age (Figures 2E–2G). Levels of sprouting in both

age groups of PTEN;SOCS3 doubly deleted mice were comparable to single PTEN deletion at any age

tested (Figures 2E–2G; Figure 1).

Taken together, these data indicate that while PTEN deletion resists an age-dependent decline in

enhancing CST axon sprouting, SOCS3 deletion loses effectiveness rapidly with increased age. Further-

more, the synergy between PTEN deletion and SOCS3 deletion is lost by �4 months of age.

Delayed PTEN deletion at a chronic time point promotes sprouting across age groups

The above experiments only tested molecular manipulations before injury, which was not a clinically rele-

vant time point. To our knowledge, the most delayed test of PTEN deletion on CST sprouting in the liter-

ature was a one-week delay (a subacute time point) and it was in young adult mice (Du et al., 2015). To

determine whether the effect of PTEN deletion on CST sprouting can be extended to clinically relevant

time points across age groups, we assessed the sprouting-enhancing effect of PTEN deletion 6 weeks

post-injury at two different ages. Specifically, we performed unilateral pyramidotomy on mice at either

6 weeks or 6.5 months of age, initiated gene deletion (PTEN, SOCS3 or PTEN-SOCS3) 6 weeks later at 3

and 8 months of age respectively, and assessed CST sprouting 7 additional weeks later (Figure 3A).

Delayed PTEN deletion in 3-month-old mice induced CST axon sprouting to a level similar to what was

observed when PTEN deletion was performed before injury at any of the ages tested (Figures 3B–3F).

The sprouting axon number indices of PTEN-deleted mice were increased by �2-folds compared to

3-month-old WT mice (Figure 3F). In contrast, delayed SOCS3 deletion at 3 months of age did not in-

crease CST sprouting compared to WT. Delayed PTEN-SOCS3 co-deletion in 3-month-old mice

increased CST axon sprouting at a level similar to the corresponding PTEN single deletion at the

same age, with �2-fold increase compared to WT. Thus, delayed PTEN deletion at a relatively young

age remains effective in enhancing CST sprouting, but delayed SOCS3 deletion at the same age loses

effectiveness on its own and does not provide any additional effect (synergistic or additive) when co-

deleted with PTEN.

When gene deletion was initiated at 8 months of age, both delayed single PTEN deletion and delayed

PTEN;SOCS3 co-deletion led to a �2-fold increase in CST sprouting when compared with WT controls

(Figures 3G–3J). Just as the 3-month-old group, PTEN;SOCS3 co-deletion did not lead to more CST

sprouting than single PTEN deletion in the 8-month-old group. Altogether, these data demonstrate that

delayed PTEN deletion, but not SOCS3, can enhance CST axon sprouting in both young and middle-

aged mice; however, additional SOCS3 deletion does not further enhance CST axon sprouting in either

age group, echoing results from the pre-injury gene deletion experiments above. Thus, targeting the

PTEN/mTOR pathway, but not the SOCS3/STAT3 pathway, to enhance axonal sprouting after incomplete

spinal cord injury could be effective at a delayed, clinically relevant time point across age groups including

middle age.

SOCS3 deletion elevates STAT3 signaling independently of age

We previously showed that PTEN deletion in middle-aged mice remains effective in elevating mTOR

signaling (Geoffroy et al., 2016). It remained possible that SOCS3 deletion becomes less effective in

elevating STAT3 signaling with increased age. To test this possibility, we examined pSTAT3-Y705 immuno-

reactivity in PTENf/f;SOCS3f/f;tdTf/f mice following cortical AAV-Cre injection at 4 weeks, 3 months, or

12 months of age. Mice were sacrificed 4 weeks later for immunostaining. Results indicate that SOCS3 dele-

tion remains effective in elevating pSTAT3-Y705 signaling at increased ages (Figure 4). Thus, a failure to

activate the STAT3 pathway through pSTAT3-Y705 is unlikely to underlie the age-dependent decline of
6 iScience 25, 105383, November 18, 2022



Figure 3. Delayed PTEN deletion enhances CST sprouting independently of age

(A) Schematic representation of the experimental design; gene deletion was induced at 3 or 8 months, 6 weeks after

pyramidotomy in adult mice, with AAV-Cre cortical injections. Sprouting was assessed 7 weeks after cortical injections.

(B-E) Representative images of CST sprouting phenotype at C7 after PTEN (C-C’), SOCS3 (E-E0) single deletion or

PTEN;SOCS3 co-deletion (D-D0) in 3-months-old adult, 6 weeks after pyramidotomy; PTEN single deletion and

PTEN;SOCS3 co-deletion enhanced CST sprouting to the same level, while SOCS3 deletion did not appear to have any

overt effect compared to WT (B-B0).
(F) Sprouting axon number indices on the contralateral, denervated side of the spinal cord expressed as a function of the

distance to midline after pyramidotomy at 1.5 months and AAV-Cre injection at 3 months of age. PTEN single deletion

and PTEN;SOCS3 co-deletion significantly increased sprouting compared to WT and SOCS3 deletion from midline to

450 mm. Stats: two-way ANOVA: Tukey’s multiple comparisons test was used to determine the differences between the

groups. Data presented as meansG SEM, N (at 3months) = 14 (WT), 9 (PTEN KO), 6 (PTEN;SOCS3 KO), 4 (SOCS3 KO). WT

and SOCS3 KO vs. PTEN KO: *p = 0.01–0.05; **p = 0.001–0.01; ***p = 0.001–0.01; ****p < 0.0001; WT and SOCS3 KO vs.

PTEN;SOCS3 KO: @p = 0.01–0.05; @@p = 0.001–0.01; @@@p = 0.001–0.01; @@@@p < 0.0001.

(G-I) Representative images of CST sprouting phenotype at C7 after PTEN (H-H0) or PTEN;SOCS3 co-deletion (I-I0) in
8-months-old mice, 6 weeks after pyramidotomy; PTEN single deletion and PTEN;SOCS3 co-deletion significantly

enhanced CST sprouting compared to WT (G-G0 ), to similar levels.

(J) Sprouting axon number indices on the contralateral, denervated side of the spinal cord expressed as a function of the

distance to midline after pyramidotomy at 6.5 months and AAV-Cre injection at 8 months of age. PTEN single deletion

and PTEN;SOCS3 co-deletion significantly increased sprouting compared to WT up to 450 mm. Data presented as

meansG SEM, N (at 8 months) = 8 (WT), 11 (PTEN KO), 6 (PTEN;SOCS3 KO). WT and SOCS3 KO vs. PTEN KO: *p = 0.01–

0.05; **p = 0.001–0.01; ***p = 0.001–0.01; ****p < 0.0001; WT and SOCS3 KO vs. PTEN;SOCS3 KO: @p = 0.01–0.05; @@p =

0.001–0.01; @@@p = 0.001–0.01; @@@@p < 0.0001. See also Figure S1.
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Figure 4. PTEN;SOCS3 deletion increased STAT3 signaling independently of age

(A–D) Representative images of pSTAT3 (at Tyr705) and td-Tomato (tdT) in layer V of the right sensorimotor cortex of

4-week-old (young), 3-month-old (full adult) and 12-month-old (middle-aged) mice (the age at which AAV-Cre was

injected, withmice sacrificed 4 weeks later). The control mouse shown was from the 3-month-old group. Scale bars: 50 mm.

(E–G) Quantification of the relative pSTAT3-Y705 immunoreactivity (IR) in mice of different genotypes and ages. N = 2 per

condition (genotype/age combination). 150 cells were quantified per mouse. Stats: D’Agostino Normality Test; Student’s

t test (for normally distributed data) or a Mann–Whitney U test (for non-normally distributed data). Data presented as

means G SEM Significance level: *p = 0.01–0.05; **p = 0.001–0.01; ***p = 0.001–0.01, ****p < 0.0001). Of note, ANOVA

did not show significant differences between the three age groups.
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CST sprouting in SOCS3-deleted mice. Rather, SOCS3 deletion continues to elevate STAT3 signaling in

older mice, but CST sprouting is no longer enhanced through other mechanisms.

DISCUSSION

In this study, we systemically examined the impact of age on the sprouting-enhancing effects of two mo-

lecular manipulations and found that PTEN but not SOCS3 deletion remains effective with increased age.

The age-resistant effect of PTEN deletion was even observed with delayed gene deletion at six weeks after

injury, a time point more conducive for clinical application than acute or subacute time points. Together

with our previous report showing an age-dependent decline in CST regeneration in PTEN-deleted mice

(Geoffroy et al., 2016), the current study indicates that, compared with regeneration, promoting sprouting

is likely a more robust neural repair strategy across age. Meanwhile, there is a pathway-dependent effect of

age on CST sprouting such that the contribution of each pathway needs to be carefully examined in

different age groups to understand the full effect.
8 iScience 25, 105383, November 18, 2022
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Age has been recognized as one of the most important biological variables (along with sex) that broadly

impacts experimental outcomes in biomedical research. The dichotomy between the predominantly young

animal models and the predominantly older human populations that suffer certain pathological conditions

is often cited as a leading contributor to the failure of the clinical translation of promising therapeutic stra-

tegies. For instance, age has been proposed as one important factor underlying a large number of unsuc-

cessful clinical trials in the field of stroke (Fisher et al., 2009). Spinal cord injuries used to occur predomi-

nantly in younger people, at an average age of �29 in the 1970s. This age corresponds to �6 months in

mice, while 6–10-weeks-old mice are often used as the starting point for regeneration studies. Today,

the average age of people who suffer a new spinal cord injury has increased to �43 in the US, whereas

the average age of people living with a paralyzing spinal cord injury is �48, with �75% at 40 or older

(CDRF, 2009; NSCISC, 2019). Despite its importance, efforts to address the age impact remain limited

due to the substantial challenges associated with a protracted experimental timeline—even more so for

genetic tests where multiple genetic alleles need to be bred together in the first place. Even for spinal

cord injury studies in rats where genetic breeding is typically not required, the average age of animals

used is 96 days old and less than 0.35% of the animals are 12 months or older (Nielson et al., 2014) (and

Ferguson A., personal communication). This striking dichotomy in age between human spinal cord injury

populations and experimental animal models will likely impede the clinical translation of promising restor-

ative therapies.

Müller and colleagues previously reported that geriatric age (R22 months) reduces the spontaneous

sprouting of multiple axonal populations including the CST, serotonergic (5-HT) raphespinal and catechol-

aminergic (TH) coerulospinal tracts but surprisingly does not diminish the spontaneous regenerative

growth of 5-HT, TH and calcitonin gene-related peptide (CGRP)-immunoreactive axons into a spinal

cord injury site in rats (Jaerve et al., 2011). Although the exact mechanism remains unclear, transcriptomic

analyses revealed substantial differences in axotomy-induced gene expression changes in the sensori-

motor cortex between young and old rats (Jaerve et al., 2012). We and others previously showed an

age-dependent decline in CST and rubrospinal tract axon regeneration in PTEN-deleted mice (Geoffroy

et al., 2016). Data from a previous study focusing on chronic injury rather than age suggest that such regen-

eration can still occur at R12 months of age, but at a much slower pace than in younger mice (Du et al.,

2015). The current study indicates that PTEN deletion enhances CST sprouting at comparable levels

regardless of age: from early postnatal to young adult to middle age at 12 months (based on the age

when gene deletion is initiated, rather than injury induced or tissue collected). This age-resistant enhance-

ment of CST sprouting by targeting PTEN is in stark contrast to its age-sensitive effect on CST regenera-

tion. Therefore, at least when targeting the PTEN/mTOR pathway in CST neurons, enhancing sprouting ap-

pears to be a more robust strategy across age than enhancing regeneration. One caveat in comparing our

previous regeneration study (Geoffroy et al., 2016) with the current sprouting study is that the former used a

thoracic spinal cord injury model while the latter used a pyramidotomy injury in the brainstem. It remains

possible that injuries at different locations elicit different levels of axon spouting following the same mo-

lecular manipulation, which can be further compounded by age. Future studies are required to exclude

this possibility.

Even in the case of regeneration, our previous study indicates that PTEN deletion in middle-aged mice re-

mains effective in elevating mTOR activity (as assessed with pS6 immunoreactivity), increasing neuronal

soma size and enhancing rostral CST axon growth toward the injury site; yet, regenerating axons could

not navigate beyond the injury site as efficiently as in younger mice (Geoffroy et al., 2016). At the time,

we suggested extrinsic factors, e.g., glial scar, alteration in inflammation, as a potential cause of this

age-dependent decline (Geoffroy et al., 2016). At a superficial level, our current study appears to support

that hypothesis because, unlike regenerating axons, sprouting axons do not need to navigate through or

around a hostile injury terrain. However, the current data indicate that neuron-intrinsic factors are also at

play (Geoffroy et al., 2017), since different signaling pathways (i.e., PTEN/mTOR vs. SOCS3/STAT3) are

differentially affected by age in regulating sprouting.

In addition to resisting an age-dependent decline in enhancing CST sprouting when initiated pre-injury,

PTEN deletion also does so when applied 6 weeks after injury as amodel of delayedmolecular intervention.

Given that most people with spinal cord injury likely have retained some spared axonal pathways (Angeli

et al., 2018), targeting PTEN to promote sprouting of spared axons could be an attractive strategy for the

clinical translation since it is robust across the age and can be applied at a clinically relevant time point. A
iScience 25, 105383, November 18, 2022 9
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six-week delay in mice presumably corresponds to even a longer delay in humans, which may allow suffi-

cient time for spinal cord injury patients to prepare physically, mentally, and emotionally for restorative

therapies. Sprouting-enhancing interventions would likely need to be combined with other activity-depen-

dent strategies such as rehabilitative training in order to harness functional recovery. In this regard, it is

interesting to note that 12 months of age in mice corresponds to about 40 years of age in humans (Dutta

and Sengupta, 2016), which is much closer to the prevalent age that is impacted by spinal cord injury in hu-

mans than most animal models.

Compared with the age-resistant effect of PTEN deletion on CST sprouting, SOCS3 deletion falls short in

enhancing CST sprouting in middle-aged mice, and strikingly this loss may occur as early as �10–12 weeks

of age when gene deletion was initiated. It should be noted, however, mice in which SOCS3 deletion was

initiated at P1 had pyramidotomy at 6 weeks and then sprouting assessed at 10 weeks of age, thus the

enhanced sprouting in these mice reflects the young adult rather than the neonatal age. The synergistic

effect of PTEN and SOCS3 co-deletion was lost by 10 weeks of age at the initiation of gene deletion

and 16 weeks of age at the time of pyramidotomy. In line with this, initiating SOCS3 deletion at 3 months

of age six weeks after pyramidotomy did not enhance CST sprouting. Just as PTEN deletion remains effec-

tive in elevating mTOR signaling in middle-aged mice (Geoffroy et al., 2016), the current study argues

against a simple failure of SOCS3 deletion to elevate STAT3 signaling (as assessed at Tyr705) as the cause

of the age-dependent decline in enhancing CST sprouting. It is possible that SOCS3 deletion is a weaker

manipulation per se than PTEN deletion in promoting CST sprouting, which is exacerbated by increased

age. It is also possible that aspects of STAT3 signaling other than phosphorylation at Tyr705 is affected

by age, e.g., phosphorylation at Ser727, or the nuclear entry of STAT3. Additional boosting of this signaling

pathway, e.g., by CNTF delivery (Jin et al., 2015; Sun et al., 2011), may be required to enhance sprouting in

older mice. Along this line, a previous study indicates that virally mediated overexpression of STAT3 can

enhance the sprouting of uninjured CST axons after unilateral pyramidotomy (as well as regenerative

CST sprouting rostral to a spinal cord injury although to a lesser extent) in 6–12 week old mice (Lang

et al., 2013). How the SOCS3/STAT3 pathway can be manipulated to optimize CST sprouting in adult

mice remains to be fully elucidated.

Together, our data indicate that advancing age can negatively impact both the regeneration of injured

axons and the sprouting of spared axons after CNS injury, but the impact on regeneration tends to be

more pronounced than sprouting. Meanwhile, there is a pathway-dependent effect of age on axonal repair.

In particular, targeting the PTEN/mTOR pathway to promote sprouting can be applied at a delayed, clin-

ically relevant time point cross age. Regardless, our data clearly demonstrate the need to test any prom-

ising therapies (drug targets, drugs, gene therapies, cell therapies, and so forth) in the age group corre-

sponding to the human population, before any clinical testing. A strategy that promotes axonal growth

(regeneration and/or sprouting) and functional recovery in young animals (2–3 months old) may not extrap-

olate to 6- or 12-month-old animals which correspond to �20/25 and 40 years old in humans, respectively.

Elucidating the age impact is not only crucial for potential clinical translation, it could also lead to a better

understanding of the mechanisms involving different molecular signaling pathways in spinal cord repair.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-goat tdTomato SICGEN AB8181-200

anti-goat Alexa Fluor 546 Thermo Fisher A-11056

anti-rabbit pSTAT3-Y705 Cell Signaling 9145

biotinylated anti-rabbit Vector Laboratories BA-1000-

anti-mouse PKCg Santa Cruz Biotechnology sc-211

Bacterial and virus strains

AAV-Cre (AAV-2/2) Salk Institute Viral Vector Core https://www.salk.edu/science/

core-facilities/viral-vector-core/

Chemicals, peptides, and recombinant proteins

Normal Horse Serum Vector Laboratories S-2000

Triton X-100 Bio-Rad 1610407

SDS (Sodium n-Dodecyl Sulfate) Millipore Sigma 428015

Cryo OCT Fisher scientific 1437365

Critical commercial assays

TSA� Plus Fluorescein System Perkin Elmer NEL741001KT

VECTASTAIN� Elite� ABC-HRP Kit Vector Laboratories PK-6100

Experimental models: Organisms/strains

B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)

Hze/J

The Jackson Laboratory 007914

PTENf, B6.129S4-Ptentm1Hwu/J, The Jackson Laboratory 006440

SOCS3f, B6;129S4-Socs3tm1Ayos/J The Jackson Laboratory 010944

Oligonucleotides (genotyping primers)

ROSA26 Forward:

AGGGAGCTGCAGTGGAGTA

The Jackson Laboratory 007914

ROSA26 Reverse:

CCGAAAATCTGTGGGAAGTC

The Jackson Laboratory 007914

tdTomato Forward:

CTGTTCCTGTACGGCATGG

The Jackson Laboratory 007914

WPRE Reverse:

GGCATTAAAGCAGCGTATCC

The Jackson Laboratory 007914

PTEN Forward:

CAAGCACTCTGCGAACTGAG

The Jackson Laboratory 006440

PTEN Reverse:

AAGTTTTTGAAGGCAAGATGC

The Jackson Laboratory 006440

SOCS3 Forward:

CGGGCAGGGGAAGAGACTGT

The Jackson Laboratory 010944

SOCS3 Reverse:

GGAGCCAGCGTGGATCTGC

This study

Recombinant DNA

AAV-CAG-Cre (AAV-2/2) Zhigang He (Liu et al., 2010). N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

GraphPad Prism version 9.0 GraphPad software Inc. https://www.graphpad.com/

Other

2,2,2-Tribromoethanol Avertin 2.5% Fisher scientific 421430100

Vetbond 3M 50822189

Fluoromount-G Southern Biotechnology 0100-01
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Binhai Zheng (bizheng@health.ucsd.edu).
Materials availability

No new materials were generated in this study.

Data and code availability

d The data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Male and female laboratory mice (Mus Musculus) aged postnatal day 1–�14.5 months old were used in all

studies. All mice were originally obtained from The Jackson Laboratory: 1) the Rosa26-CAG-loxP-STOP-

loxP-tdTomato reporter, Ai14 or B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, stock # 007914, referred to

as tdTf or tdT (Madisen et al., 2010); 2) the PTEN conditional allele PTENf, B6.129S4-Ptentm1Hwu/J, stock

# 006440 (Lesche et al., 2002); 3) the SOCS3 conditional allele SOCS3f, B6; 129S4-Socs3tm1Ayos/J, stock #

010944 (Yasukawa et al., 2003). Mice were backcrossed to C57BL/6J over 9 generations before inter-

breeding. Mice were interbred to obtain PTENf/f;tdTf/f, SOCS3f/f;tdTf/fand PTENf/f;SOCS3f/f;tdTf/f mice.

All the procedures were approved by the Institutional Animals Care and Use Committee at University of

California San Diego.
METHOD DETAILS

Viral production and cortical injection for neuronal targeting

As reported previously (Geoffroy et al., 2015, 2016; Meves et al., 2018), AAV-Cre (AAV-2/2) was produced at

the Salk Institute Viral Vector Core with HEK293T cells and purified using iodixanol gradients. Detailed viral

production and purification protocols can be found at Salk Viral Core’s website. qPCR was used to deter-

mine the viral titer; virus was used at 0.5 3 1012 GC/mL. Delivery of the virus was performed using modified

a 10 mL Hamilton syringe with a fine glass pipette attached to the needle. The syringe was mounted on

a stereotaxic device for precise injection. A mix of male and female mice were used for all the groups.

For postnatal injections, postnatal day 1 (P1) pups, tdTf/f, PTENf/f;tdTf/f, SOCS3f/f;tdTf/ or PTENf/f;

SOCS3f/f;tdTf/f mice were cryo-anesthetized, placed on an ice-cold pad and injected with 1 mL of AAV-

Cre in the right sensorimotor cortex. After injection, pups were placed on a 37�Cwarming pad and covered

with some home cage bedding to decrease the risk of rejection by the mother. Pups were returned to their

mothers once they regained consciousness and normal color and behavior. For adult injections, mice

(tdTf/f, PTENf/f;tdTf/f, SOCS3f/f;tdTf/ or PTENf/f;SOCS3f/f;tdTf/f at different ages) were anesthetized (2.5%

Avertin, Sigma) and a right craniotomy performed. A total of 1.2 mL of AAV-Cre (0.4 mL/site) was injected

into the right sensorimotor cortex, 0.7 mm deep from the cortical surface, targeting the left forelimb at
14 iScience 25, 105383, November 18, 2022
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the following 3 sites: 0.5 mm anterior, 1.2 mm lateral; 0.1 mm anterior, 2.2 mm lateral, and 0.3 mmposterior,

1.2 mm lateral.
Corticospinal tract axotomy (pyramidotomy)

Surgeons performing the injury were blind to age and genotype. Unilateral pyramidotomy was performed

to assess CST axonal sprouting as previously reported (Geoffroy et al., 2015; Meves et al., 2018). Briefly,

mice (tdTf/f, PTENf/f;tdTf/f, SOCS3f/f;tdTf/f or PTENf/f;SOCS3f/f;tdTf/f at different age) were anesthetized

with 2.5% Avertin (Sigma). An incision was made on one side of the trachea to reach the base of the skull

and access the medullary pyramids. The entire left pyramidal tract was cut with a feather micro scalpel, just

caudal to the foramen magnum. The skin was closed using Vetbond (3M) and mice were placed on soft

bedding on a warming blanket held at 37�C until full recovery from anesthesia.
Tissue processing

Tissue processing was performed as previously reported (Geoffroy et al., 2015; Meves et al., 2018) and

described below. Mice were given lethal dose of Fatal plus, and perfused transcardially with 4% parafor-

maldehyde. Brains and spinal cords were collected and post fixed overnight at 4�C in the same fixative

solution. Tissue was incubated in 30% sucrose for 3 days for cryo-protection. Brain, medulla and different

segments of the spinal cord (from C1 to C7) were embedded in OCT compound, and snapped frozen on

dry ice. Tissues were sectioned with a cryostat at 20 mm thickness for further processing.

Transverse sections of the medullary pyramids were processed to control for labeling efficiency and for

counting tdTomato-labeled CST fibers (see below). Selected transverse sections of cervical spinal cord

(C5-7) were immunostained for PKCg (1:100, Santa Cruz Biotechnology) to examine the completeness of

the lesion for each animal; mice with PKCg staining on the injured side and thus incomplete lesion were

excluded from the study, as reported previously (Lee et al., 2010).

For immunohistochemistry, anti-goat tdTomato (1:500, SICGEN, AB8181-200) and anti-rabbit pSTAT3-

Y705 (1:100, Cell Signaling, 9145) antibodies were used as previously reported (Chen et al., 2018) and

described below. Cervical sections were stained with tdTomato only. Sections were blocked with PBS

with 0.4% Triton X-100 and 5 Normal Horse Serum (NHS) for 2 h at room temperature followed by overnight

incubation of tdTomato. The next day, sections were washed and incubated with secondary anti-goat Alexa

Fluor 546 (Invitrogen) for 1 h at room temperature. After several washes with PBS, sections were cover-slip-

ped with Fluoromount-G (Southern Biotechnology). Brain sections were co-stained with tdTomato and

pSTAT3-Y705. Sections were pre-treated with 1% NaOH for 20 min at room temperature, washed with

PBS, incubated with 0.3% glycine in PBS for 10 min, rinsed with PBS and finally treated with 0.03% sodium

dodecyl sulfate (SDS) in PBS for 10 min. After additional washes, sections were blocked in 5% NHS in 0.2%

Triton X-100 in PBS (PBS-TX) for 1 h at room temperature, and then incubated with anti-pSTAT3 antibody

for overnight at room temperature. The next day, sections were washed in PBS- TX and then incubated in

biotinylated anti-rabbit (1:250, in PBS) for 2 h at room temperature. After several washes, sections were

incubated with ABC solution (in 0.1% Tween 20 1X PBS, Vector Laboratories) over night at 4�C. On the third

day, sections were washed with PBS (4 times, 30 min each) then with TSA (Alexa Fluor 488, 1:200 in PBS,

Perkin Elmer) for 10 min. After several washes in PBS, sections were stained for tdTomato as described

above.
Microscopy and quantification

Stained tissue sections were photographed using an upright epifluorescence microscopy (Zeiss Axio

Imager M1) using the 20X (for sprouting and cortical sections) or 100X (medulla). Sprouting axon number

index was quantified using ImageJ as reported previously (Geoffroy et al., 2015; Meves et al., 2018) and

described below. Five randomly selected sections between C6/C7 per animal were quantified and aver-

aged. Lines were drawn through the central canal and across the dorsoventral axis, at 50 mm from the

midline, then every 100 mm laterally in the denervated side of the gray matter. Numbers of axons crossing

theses lines were averaged from five sections and normalized against total axon count in medulla to obtain

the sprouting axon number index, which was plotted as a function of the distance from the midline.

Relative pSTAT3-Y705 immunoreactivity (IR) was measured in the tdTomato expressing cortical neurons us-

ing ImageJ. At least 150 cells in total were quantified per mouse, from 3 cortical sections. We first
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performed an internal normalization to the IR from non-tdTomato neurons that surround the tdTomato +

neurons, and then this was normalized to the IR from the age-matched controls measured.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using GraphPad Prism version 9.0. Statistical significance was set at

p < 0.05. Post hoc comparisons were carried out only when a main effect showed statistical significance.

CST sprouting data were analyzed using a two-way ANOVA followed by Tukey’s multiple comparisons

test. Immunostaining intensity data were analyzed using D’Agostino Normality Test followed by a Stu-

dent’s t test (for normally distributed data) or a Mann–Whitney U test (for non-normally distributed data).
16 iScience 25, 105383, November 18, 2022
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