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Abstract: Nanofiltration methods were used and evaluated for strontium removal from wastewater.
The phase inversion method was used to create a variety of polyethersulfone (PES)/TiO2 nanoribbons
(TNRs)–multi-walled carbon nanotubes (MWCNTs) membranes with varied ratios of TNR-MWCNT
nanocomposite. The hydrothermal technique was applied to synthesize the nanocomposite (TNRs-
MWCNTs), which was then followed by chemical vapor deposition (CVD). The synthesized mem-
branes were characterized by scanning electron microscopy (SEM), transmission electron microscopy,
and FTIR. TNR macrovoids are employed as a support for the MWCNT growth catalyst, resulting in
a TNR-MWCNT network composite. The hydrophilicity, mechanical properties, porosity, filtration
efficiency of the strontium-containing samples, water flux, and fouling tendency were used to assess
the performance of the synthesized membranes. The effect of feed water temperature on water flux
was investigated as well as its effect on salt rejection. As the temperature increased from 30 to 90 ◦C,
the salt rejection decreased from 96.6 to 82% for the optimized 0.7 PES/TNR-MWCNT membrane,
whereas the water flux increased to ≈150 kg/m2. h. Double successive filtration was evaluated for
its high efficiency of 1000 ppm strontium removal, which reached 82.4%.

Keywords: polyethersulfone matrix; TNR-MWCNT nanocomposite; nanofiltration membranes;
strontium removal; temperature effect

1. Introduction

Strontium is a rare element that only makes up 0.048% of the earth’s surface [1]. It
has oxidation states ranging from 0 to 2, and its most common forms are celestite SrSO4
and strontianite SrCO3 [2]. The separation of strontium from water may be required in a
variety of situations, including drinking water and wastewater treatment. For the first, the
Federal–Provincial–Territorial Committee on Drinking Water recommends a maximum
allowed content of 7.0 mg/L in drinking water [3], while the US Environmental Protection
Agency (EPA) set a health reference threshold of 1.5 mg/L [4]; strontium levels in stream
water range from 0.001 to 13.6 mg/L [5]. For wastewater, as produced water accompanied
by oil in petroleum production companies contains from a slightly low to a very high
concentration of strontium, these strontium traces result from the dissolution of reservoir
shale rocks containing mineral clay celestine (SrSO4) [6] in produced water accompanied
by oil in the form of free water or emulsion. Strontium concentrations in produced water
in the Nanyishan oil-field brine of Qaidam, for example, reach 5364 mg L−1 [3], which is
generally higher than the minimal concentration for industrial exploitation. In addition, a
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water pollutants study from the Mishrif reservoir (Dubai) revealed a strontium value of
610 ppm [7], and there are two main alternatives for getting rid of wastewater. The first
alternative is to filter and treat it to an acceptable environmental range before discharging
it into a nearby river or sea, for example, salinity, oil content, dissolved oxygen content
(DO), chemical oxygen demand (COD), and naturally occurring radioactive material (such
as strontium). The second alternative for wastewater disposal is to inject it into disposal
wells in reservoirs that are distinct from drinkable groundwater zones; however, strontium
can react with reservoir water and develop scales that can block disposal well perforation
in this scenario as well. Many concerns have been raised from injecting produced water in
disposal wells, which may penetrate to underground water used for drinking and agricul-
ture and cause adverse effect to health. In addition, the wastewater from nuclear reactor
plants contains significant quantities of radionuclides such as 90Sr2+ and 137Cs+ [8,9], which
must be treated before disposal to reduce the amount to acceptable limits. Several methods
for separating Sr2+ from water have been investigated, including a series of evaporation
and condensation to raise the concentration of strontium in water before extraction [1], Sr2+

electrodeposition utilizing 18-crown-6 (DCH18C6) [10], ion-exchange adsorption using
hydrous crystalline silicotitanate for Sr2+ separation [11], and titanate nanobelt membranes
as sorbents for 90Sr2+ [12]. Nanofiltration was utilized as a separation method for strontium
in this study. Nanofiltration lies between ultrafiltration and reverse osmosis filtration in
properties as reverse osmosis removes particles with a diameter smaller than 0.0001 mi-
cron and ultrafiltration separates particles larger than 0.01 micron diameter compared to
nanofiltration membranes, which isolate particles in the range of 0.01 to 0.0001 micron as
their pores are in the range of 1 to 3 nm compared to ultrafiltration pores ranging from
10 to 100 nm [13]. In this regard, several attempts to extract Sr2+ via nanofiltration have
been made, including the use of hydraulic pellet coprecipitation microfiltration (HPC-
MF), which has given encouraging results for Sr2+ separation [14] and Sr2+ removal using
chitosan-modified graphene oxide [15]. Better results were obtained by using MWCNTs-
interconnected GO hybrid membranes [16]. Ethylenimine oligomer mixture can be used
for increasing the strontium rejection by complexing the oligomer with wastewater before
using the nanofiltration [17]; also, new adsorbents derived from almond green hull were
used for enhancing the separation of strontium [18], To decrease fouling caused by scales
formed from divalent cations such as (Mg2+, Ca2+, Sr2+, and Ba2+), polyelectrolyte multi-
layer NF can be employed as a preliminary step before reverse osmosis [19]. The filtration
efficiency of TiO2-doped ZrO2 nanofiltration membranes reached 99.2% [20]; Shaban et al.
designed a nanofiltration membrane made of polyethersulfone (PES) and titanium dioxide
nanoribbons/multi-walled carbon nanotube nanocomposite, which had high efficiency in
water desalination, with a NaCl salt rejection rate of 99% [21]. The efficiency of water filtra-
tion from strontium using TiO2 nanoribbons/multi-walled CNT nanocomposite blended
polyether sulfone membranes with varied ratios of TNR-MWCNT and at various tempera-
tures was investigated in this study for the first time. The morphologies and the structures
of the membranes are investigated. The performance of the produced membranes was
evaluated using hydrophilicity, filtering efficiency of strontium-containing samples, water
flow, and fouling propensity.

2. Experimental Details
2.1. Materials

Polyethersulfone PES (ultrason E6020P), MW = 58,000 g/mole, was from BASF Com-
pany, DMF (N, N-dimethylformamide) was from Sigma Aldrich-Germany, titanium diox-
ide powder TiO2 ferric nitrate Fe(NO3)3·9H2O, cobalt nitrate Co(NO3)2.6H2O, and alu-
minum nitrate Al(NO3)3·9H2O were from Loba Chemie, India, hydrochloric acid 36.6%
was supplied by scharlau from SDFCL, India, and sodium hydroxide NaOH was from
ADWIC Egypt.
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2.2. Synthesis Titanium Nanoribbons (TNR)

Gradually, 10 g of TiO2 powder was added to one liter of sodium hydroxide (concen-
tration 10 Molar) with continuous stirring for five hours; then, the solution was heated in a
Teflon-lined stainless steel autoclave for 170 ◦C for 24 h to form sodium titanate nanorib-
bons. After cooling at 15 ◦C, the produced powder was washed with dilute HCl (1 Molar);
then, it was filtered and rinsed with distilled H2O and dried over 60 ◦C for 7 h for the
formation of hydrogen titanium nanoribbons from sodium titanate nanoribbons; finally, it
was calcined at 350 ◦C for five hours for dehydration into TiO2-B [22].

2.3. Synthesis of Catalyst TNR-MWCNT Nanocomposite Powder

The catalyst for the growth of carbon nanotubes is synthesized by dissolving the
following chemicals in 100 mL of water: TNR, ferric nitrate, cobalt nitrate, and aluminum
nitrate in the ratios of 10:20:20:50, respectively. Then, ammonia is added while stirring until
pH 8 is reached and precipitation forms. After complete precipitation, the precipitated
product was filtered and dried at 40 ◦C for 6 h; then, it was calcined at 450 ◦C for 6 h [23].
Tubular chemical vapor deposition (CVD) with functionalized TNRs was utilized for the
growth of MWCNTs as a catalyst using C2H4 (carbon source) and N2 (carrier gas) with a
ratio of 1:10 v/v at 700 ◦C for 50 min. Then, the product prepared was purified by adding
the produced powder to 20 mL of nitric acid (8 molar) and sonicated for 5 h, and then,
20 mL of hydrochloric acid (5 molars) was added after sonication and refluxed at 120 ◦C
for 3 h. Finally, the product is filtered and rinsed using distilled H2O and dried at 75 ◦C for
24 h [24].

2.4. Fabrication of PES/Nanocomposite Blended Membranes

Membranes were produced by the phase inversion method by adding nanocomposite
powder (TNR-MWCNT) to 50 mL of DMF gradually [25]. The quantity of added nanocom-
posite powder was 0.1, 0.5, and 0.7 g to prepare the 0.1 PES/ TNR-MWCNT membrane,
0.5 PES/ TNR-MWCNT membrane, and 0.7 PES/ TNR-MWCNT membrane while stir-
ring over 3 h; then, it was completed by DMF to 100 mL. After stirring for 6 h to form a
homogeneous emulsion, 17.5 gm PES tablets were gradually added to the emulsion over
an ultrasonic vibrator at 45 ◦C and stirred for 12 h. Then, they were left in the refrigerator
for 12 h to expel air bubbles before being cast on a clean glass plate of 150 µ thickness using
a thin film casting device. Afterwards, they were immersed in a water bath, and the casted
membranes were removed and dried in the air [26].

2.5. Characterization Techniques
2.5.1. Hydrophilicity of Synthesized Membrane

The contact angles of the membranes before and after adding the nanocomposite were
measured using the sessile drop method to determine the nanocomposite addition effect
on hydrophilicity.

2.5.2. Morphology of Synthesized Membranes

A field emission scanning electron microscope FE-SEM (Model FEG 250, Quanta,
Tokyo, Japan) was used for characterization of the synthesized membranes and to define
the effect of adding nanocomposite and its concentration on PES membranes, and the
transmission electron microscope (TEM, Model 2010, JEOL, Tokyo, Japan) was used to scan
the synthesized MWCNT-TNR nanocomposite.

2.5.3. Fourier Transform Infrared Examination

Pure PES membrane and PES blended with nanocomposite membranes were examined
using FTIR (Bruker—Vertex 70, Bruker Optics Inc., Billerica, MA, USA).
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2.5.4. Mechanical Properties and Porosity

To assess membrane tensile strength and elongation, a mechanical testing system
(INSTRON-5500R, INSTRON, Norwood, MA, USA) was employed. The gauge length and
breadth of the dumbbell tensile specimens were 6.2 mm and 0.16 mm, respectively. After
a membrane specimen had been inserted between the grips of the testing equipment, the
tensile strength and elongation were determined. The measurements are within 5% of each
other’s accuracy.

Porosity was determined by immersing the manufactured membranes in distilled
water. Then, the surplus water was filtered out using filter paper to determine the weight
of the wet membrane (W2). After drying for 24 h at 85 ◦C, the membrane was weighted to
determine W1 (dry membrane) [27]. Membrane porosity is calculated using Equation (1):

Porosity =
W1 − W2

A × I × dw
(1)

Here, A is the membrane surface area (m2), I is membrane thickness (m), and dw is
water density (998 kg.m−3).

2.6. Membrane Performance
2.6.1. Filtration Efficiency

The water sample contains 100 ppm of strontium chloride, which was prepared by
dissolving 0.1 gm of strontium chloride in 1 L of distilled water and stirring for 2 h. Then,
filtration was carried out using a pressurized system as in Figure S1 (Supplementary Data).
The system contains a peristaltic pump to suck a strontium solution sample and pump it
to the membrane cell at a 45 psi discharge pressure. The membrane filter cell has an inlet,
outlet, and vent that expels water not passed through the filter to maintain pressure in the
required range.

2.6.2. Relationship between Concentration and Absorbance

Different concentrations of strontium were prepared. Then, the absorbance of its
solution was measured using a spectrophotometer (Lambda 950 UV/VIS, PerkinElmer,
Boston, MA, USA) to determine the relationship between absorbance and concentration.

2.6.3. Evaluation of Filtration Efficiency Using Different Membranes at Different
Temperatures

Filtration of a sample (100 ppm Sr2+) using a filtration apparatus with three different
membranes (0.1, 0.5, 0.7) PES/TNR-MWCNT at temperatures of 30 ◦C, 45 ◦C, 60 ◦C,
75 ◦C, and 90 ◦C was performed, and absorbance was measured using a Perkin Elmer
spectrophotometer to determine the filtration efficiency using the following equation:

Filteration Efficiency =
Co − C

Co
× 100 (2)

where Co is blank absorption and C is permeated solution absorption.
In addition, water flux at a discharge pressure of 45 psi was measured by observing

permeated quantity every 30 min, with a reduction in permeate quantity for the first 60
min, and then, a constant water flux was attained [28]. Water flux was calculated using the
following equation:

Jw =
M

A.∆t
(3)

where Jw is water flux (kg/m2.h), M is the permeate water weight (kg), A is the area of
membrane (m2), and ∆T is consumed time (h).
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2.6.4. Evaluation of Successive Filtration

To check if it can result in more filtration efficiency, double successive filtrations were
carried out. The filtration efficiency was evaluated by the spectrophotometric measure-
ments for the single filtration and double-successive filtration in a comparative manner.

2.6.5. Fouling Tendency

The fouling tendencies of membranes were investigated by a dynamic method. To
utilize as an excellent fouling agent, a solution of 8000 mg/L milk powder was made. The
first filtration using synthesized membranes and pure water was performed for 30 min at
45 psi, and water flux was recorded (Jw1) Then, a synthesized solution was used to perform
filtration at the same parameters of time and pressure using a solution of 8000 mg/L
milk. Then, the membranes were washed using deionized water and repeated filtration
using pure water while recording related water flux (JW2). The flux recovery ratio (FRR) is
obtained by [29]:

FRR = Jw2/Jw1 (4)

3. Results and Discussion
3.1. Hydrophilicity of Synthesized Membrane

The contact angles of the synthesized membranes were measured using the sessile
drop method [30], which involved measuring the angle between the water droplet and the
dry membrane surface immediately after a water droplet was dropped on the membrane
surface, then repeating the process five times and recording the average of the readings.
The contact angles for pure PES, 0.1 PES/TNR-MWCNT, 0.5 PES/TNR-MWCNT, and
0.7 PES/TNR-MWCNT membranes were 84, 81, 55, and 47, respectively [31]. This indicates
that hydrophilicity increases by an increasing percentage of embedded nanocomposite in
the PES matrix.

3.2. Morphological Properties
3.2.1. TNRs/MWCNTs Nanocomposite

Transmission electron microscopy (TEM) of a nanocomposite reveals wide, long, and
straight titanium nanoribbons with nanopits dispersed across the surface [32] that serve
as a substrate for the growth of multi-walled carbon nanotubes (MWCNTs). MWCNTs
having inner and outer tube widths of 7 to 10 nm and 18 to 20 nm, respectively, and
average nanoribbon widths of 15 to 150 nm are shown in Figure 1A. Figure 1B illustrates
the distribution of nanopits on the TiO2 surface, while Figure 1C illustrates the networking
of MWCNTs and spongy nanoribbons.

3.2.2. Pure PES Membrane

SEM examination of a pure PES membrane reveals the development of a top layer
that is denser and less porous, while the sub-layer has more micro pores, as shown in
Figure 2A. The total thickness of the pure PES membrane ranges from 110 to 120 µm.
The top view, as shown in Figure 2B, depicts the distribution of micro pits on the surface.
The inset histogram showed the pore diameter distribution, whereas the average pore
diameter is 1.51 µm. The difference in density and porosity between the top and sub-layers
was caused by the solvent/non-solvent exchange mechanism, in which after the casted
membrane was soaked in a distilled water bath, the water-immiscible polymer (PES) began
to create repulsion forces with water particles, causing the coagulation and precipitation of
membrane polymer particles. Simultaneously, the immiscibility of DMF in water caused
the partial diffusion of DMF particles out of the casted membrane’s polymer matrix, which
was replaced by water particles, causing repulsion between polymer nuclei to the outer
boundaries, resulting in a denser, less porous top layer and more porous sub-layer [33,34].
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Figure 1. TEM image of nanocomposite with magnified parts for (A) MWCNTs, (B) nanopits
distributed on nanoribbons surface, and (C) networking between nanoribbons and nanotubes.
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Figure 2. SEM images of pure PES membrane; (A) Cross-sectional view and (B) top view. The inset
histogram showed the pore diameter distribution of the PES.

3.2.3. TNRs-MWCNTs/PES Membranes

Figure 3A depicts a cross-sectional view of the 0.1 PES/TNR-MWCNT membrane,
showing that the top layer is denser and less porous than the PES membrane, while sub-
layer macrovoids occur with an asymmetric distribution along the membrane thickness.
The formation of macrovoids can be attributed to the hydrophilic nature of the added
nanocomposite, which supports mass transfer rates of solvent and non-solvent [34], allow-
ing water particles to pass through the hydrophobic polymer matrix faster, resulting in
repulsion forces that cause macrovoids to form. Figure 3B shows MWCNTs grown on the
TNRs macrovoids for the 0.1 PES/TNR-MWCNT membranes. The inset image showed the
growth of CNT with a diameter of 20 nm on the surface of TNR. In cross-sectional SEM im-
ages for 0.5 PES/TNR-MWCNT, the nanocomposite distribution increases, resulting in the
formation of more macrovoids that extend along with the membrane thickness, as shown in
Figure 3C,D. This can be attributed to an increase in the hydrophilic nanocomposite, which
increases solvent/non-solvent diffusion. In the case of 0.7 PES/TNR-MWCNT, Figure 3E
shows that the high concentration of nanocomposite, which leads to high viscosity, resulted
in the formation of multilayers. In addition, it resulted in the accumulation of nanocompos-
ite at certain points across the PES matrix, as shown in Figure 3F. From Figure 3A,C,E, the
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average thickness of the PES/MWCNT-TNR membranes is 140 µm. The increase in skin
layer thickness to 140 µm is attributed to a decrease in solvent/non-solvent diffusion due
to the increased viscosity. A large number of pores of various sizes were produced.
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Figure 4 showed top view SEM images for 0.1PES/MWCNT-TNR, 0.5 PES/MWCNT-
TNR, and 0.7 PES/MWCNT-TNR membranes. The pore density was less in membranes
containing nanocomposite than in pure PES. The pore size of each membrane was mea-
sured with a typical sample position. The SEM images in Figure 4 revealed that as the
amount of nanocomposite in membranes rose, the average pore size decreased. The sizes
of the pores are in the range 2.4–3.4 µm, 0.9–1.5 µm, and 0.37–0.67 µm for the 0.1, 0.5,
and 0.7 PES/MWCNT-TNR membranes, respectively. The mean pore areas are 6.9 µm2,
0.97 µm2, and 0.152 µm2 for 0.1, 0.5, and 0.7 PES/MWCNT-TNR membranes, respectively.
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3.2.4. FTIR Spectroscopy

As indicated in Figure 5A,B, FTIR was used to investigate pure PES, PES/TNR, and
PES/TNR-MWCNT membranes. FTIR results reveal the creation of bonds between func-
tional groups of nanocomposite and the PES matrix.
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The peaks’ positions and their assignments are listed in Table 1. The wider and
lower-intensity beaks of the TNR-PES membrane in Figure 5A were caused by the TiO2
suppressing effect [35–38]. Meanwhile, Figure 5B shows new function groups for PES/TNR-
MWCNT, as assigned in Table 1.

The primary FTIR modes of pure PES membrane are S = O at 1150–1307 cm−1, CSO2C
asymmetric stretch at 1322 cm−1, and benzene ring stretch at 1587–1489 cm−1. Peaks for TiO2
asymmetric vibration appear at 600 cm−1 and 1700 cm−1 for PES-TNR and 560 cm−1 for the Ti-
O bond. There are peaks at 810 and 3010 cm−1 for the C-H of the PES benzene ring, 570 cm−1

for the Ti-O bond, and 1750 to 1700 cm−1 for C = O stretching for PES/MWCNT-TNR.

3.2.5. Mechanical Properties

The membrane’s physical characteristics were improved because of the incorporation
of the MWCNT-TNR nanocomposite in the PES membrane. From Figure 6, the greatest
tensile strength of the membrane when mixed with 0.5 wt% MWCNT-TNR was 94 kg/cm2,
which reduced to 59.2 kg/cm2 when combined with 0.7 wt% but was still greater than that
of pure PES (38 kg/cm2). When the membrane was blended with 0.1 wt% MWCNT-TNR,
the maximum elongation was 32 mm, as shown in Figure 6. The elongation was reduced
to 15 mm at 0.7 wt% MWCNT-TNR because of the high viscosity of the cast solution and
the coalescence effect [39]. The blended PES membranes are strengthened by their large
surface area, high aspect ratio, and good interaction with MWCNT-TNR [40,41].

The porosity of the prepared membranes was determined using Equation (1). The
porosity of PES membrane was 30%. The porosity of membranes decreased as the content
of MWCNT-TNR increased. As the composite content increased to 0.1 wt%, 0.5 wt%, and
0.7 wt%, the porosity was reduced to 25%, 13%, and 6%, respectively. A high nanocom-
posite content cast solution becomes viscous, whereas a low nanocomposite content cast
solution becomes less viscous. This delayed membrane development and made the struc-
ture denser [41]. As a result, the pore size may be decreased or even blocked. The included
nanocomposite also functioned as a nucleation agent during the phase separation pro-
cess. As a result, membrane nucleation and growth rates increased, making macroporous
structure loosening simpler [41].

3.3. Evaluation of Membrane Filtration Efficiency
3.3.1. Evaluation of Membranes Filtration Efficiencies

The absorbance spectra of 100 ppm Sr2+ aqueous standard solutions were measured
using a UV/Vis Perkin Elmer spectrophotometer, which has maximum absorption at
289 nm. This solution will be used as a feed solution for salt rejection evaluation by the
membranes. In addition, the absorbance of various strontium concentrations (50, 75, 100,
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150, 250, and 500 ppm) was determined, and a plot between absorbance and concentration
was drawn. From the plot, a linear relationship appears, which indicates that solution
concentrations obey Beer’s Lambert law, so we can apply this method for determining the
change in strontium concentration in permeate solutions.

Beer’s Lambert law: A = ε L C (5)

where A, ε, L, and C refer to the absorbance, molar absorptivity, cuvette length, and solution
concentration, respectively.

Table 1. FTIR spectral bands and the related functional groups of PES/TNR-MWCNTS, pure PES,
and PES/TNRs membranes.

Peak Position
PES MWCNTs TNR

Assignment

������������� ������������� 570 Ti-O bond

������������� ������������� 600 and 1700 Asymmetric
vibration of TiO2

������������� 960–920 ������������� O-H

810 and 3010 ������������� �������������
C-H of PES
benzene ring

1170–1110 ������������� ������������� S=O stretching

������������� 1330–950 ������������� C-O stretching

1300–1245 ������������� �������������
Stretching peak
of C-O-C

1400 and 1600 ������������� �������������

Aromatic
vibration of C-H
of PES benzene
ring

1680–1640 ������������� C=C

1750 to 1700 ������������� ������������� C=O stretching

PES/MWCNT-
TNR

membrane

3500–2300 ������������ ������������

-OH of carboxyl
group linked to
CNT

1150, 1307 ������������� �������������
S=O asymmetric
stretch

1322 ������������� �������������

CSO2C
asymmetric
stretch

1244, 1260–1000 ������������� �������������
C-O asymmetric
stretch

1587–1489 ������������� �������������
C6H6 ring
stretch

PES membrane

2886, 2938, 2971 ������������� �������������
Aliphatic and
aromatic stretch

������������� ������������� 560 Ti-O bond

������������� ������������� 600 and 1700 Asymmetric
vibration of TiO2

1170–1110 ������������� ������������� S=O stretching
TNR/PES
membrane

1230, 1400, 1600 ������������� �������������

C-O-C Aromatic
vibration of C-H
of PES benzene
ring
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Figure 7. (A) Absorbance spectra of 100 ppm Sr2+ aqueous standard solution, and (B–D) absorbance
spectra of permeate after filtration using 0.1, 0.5, and 0.7 PES/TNR-MWCNTS membranes, respec-
tively. The inset of (A) shows absorbance values versus the strontium concentration at 289 nm.

The absorption spectrum of 100 ppm Sr2+ aqueous standard solution and the plot of
the absorbance at 289 nm and Sr2+ concentration are shown in Figure 7A. The 0.1, 0.5, and
0.7 PES/TNR-MWCNT membranes were used for the filtration of 100 ppm Sr2+ aqueous
solutions at 30 ◦C, 45 ◦C, 60 ◦C, 75 ◦C, and 90 ◦C. The measured absorption spectra using a
UV/Vis spectrophotometer in the range of 250 to 550 nm is shown in Figure 7B–D. From
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absorption curves appear the values of the maximum absorbance for each filtration, and
the filtration efficiencies are determined as shown in Table 2.

Table 2. Values of the maximum absorbance and filtration efficiency for 100 ppm Sr2+ aqueous
solutions at different temperatures using 0.1, 0.5, and 0.7 PES/TNR-MWCNT membranes.

0.1PES/TNR-MWCNT
Membrane

0.5PES/TNR-MWCNT
Membrane 0.7ES/TNR-MWCNT Membrane

Temperature of
Filtration Maximum

Absorbance Salt Rejection Maximum
Absorbance Salt Rejection Maximum

Absorbance Salt Rejection

30 ◦C 0.009012 94.1% 0.00829 94.8% 0.005373 96.6%
45 ◦C 0.014544 90.5% 0.011714 92.7% 0.012156 92%
60 ◦C 0.017006 88.9% 0.016885 89.4% 0.015976 90%
75 ◦C 0.0181522 88.2% 0.017911 88.8% 0.02393 85%
90 ◦C 0.02508 85% 0.02296 83% 0.02868 82%

As a result of the analyses, it appears that increasing the filtration temperature of
the 0.1, 0.5, and 0.7 PES/TNR-MWCNT membranes decreases the salt rejection ratio. At
30 ◦C, the 0.7 membrane has the maximum salt rejection compared to the 0.5 and 0.1 mem-
branes, which resulted from the agglomeration of nanocomposite at membrane macrovoids
obstructing strontium ions and increasing hydrophilicity. As the temperature rises, the
water flux and net salt ion transfer both increase, resulting in the salt rejection drops. It can
be shown that temperature enhances the convection, electro-migration, and diffusion of
salt ion flux. Temperature causes changes in membrane structural characteristics, solvent
viscosity, and solute diffusivity, which all cause these effects [42]. It appears that water flux
increases as filtration temperature rises, indicating that membrane pores expand as tem-
perature rises, as thermal expansion coefficients for the PES range of (1.4–2) 10−4 k−1 [43],
while the thermal expansion coefficients (CTE) for CNT and titanium oxide are (1.6–2.6)
10−5 K−1 [44,45] and (8.4–11.8) 10−6 K−1 [46], respectively. These differences in thermal
expansion coefficient resulted in an increase in PES pores, whereas nanocomposites with
lower CTE were unable to compensate, enabling increased water flux as the temperature
increases. Figure 8A shows that the salt rejection decreases by increasing filtration tempera-
tures in 0.1, 0.5, and 0.7 PES/TNR-MWCNT. Figure 8B shows that 0.1 PES/TNR-MWCNT
has the highest water flux, while the decrease in water flux in 0.5 PES/TNR-MWCNT is
attributed to the decrease in pores size of PES by filling nanocomposite. Whereas the slight
increase in water flux of 0.7PES/TNR-MWCNT compared to 0.5 PES/TNR-MWCNT may
be attributed to the formation of multilayers due to coagulation of nanocomposite [47,48].
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3.3.2. Successive Filtration of Highly Concentrated Sr2+ Aqueous Solutions

The filtration efficiency of a sample of strontium with a concentration of 1000 ppm was
evaluated using double successive filtration utilizing a 0.7 PES/TNR-MWCNT membrane
and measuring the absorbance of spectra of permeate in the wavelength range of 300 to
1000 nm, as shown in Figure 9A. Figure 9B shows that the filtration efficiency is increased
from 74.5% to 82.4% after the double filtration.
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3.3.3. Membranes Fouling Tendencies and Impacts

The fouling tendency was investigated by measuring a flux recovery ratio (FRR) based
on deionized water flux before (Jw1) and after (Jw2) filtration of a solution of 5000 ppm
of milk powder as a fouling agent solution using synthesized membranes. The higher
FRR value indicates a higher antifouling tendency and lower fouling. The FRR values for
0.1PES/TNR-MWCNT, 0.5PES/TNR-MWCNT, and 0.7PES/TNR-MWCNT were 72.7%,
78.7%, and 85.2%, respectively, indicating that the antifouling tendency increased by
increasing the ratio of the embedded nanocomposite. The increasing antifouling tendency
was attributed to the increased hydrophilicity due to the incorporated nanocomposite [48].

The industrial impact of this research can be concluded as follows. The hydrothermal
technique of synthesizing TNR produced nanoribbons with nano pits on their surfaces,
which were employed as catalyst support surfaces to grow CNTs on the surfaces of TNRs.
There was no agglomeration of nanoparticles while utilizing tubular chemical vapor depo-
sition (CVD) in the synthesis of CNT using C2H4 as the carbon source and N2 as the carrier
gas. As a result, the combined approaches utilized in this study construct a TNR-MWCNT
network and prevent agglomeration, which is one of the challenges in nanoparticle man-
ufacture. Furthermore, several studies looked at nanofiltration for desalination, but just
a few looked into removing strontium from water. Meanwhile, the threat of strontium
contamination has increased as a result of high levels of strontium identified in wastewater
from the oil and gas industry that exceed permitted limits. Almost Sr-contaminated wastew-
ater is dumped in the sea or injected into wells, posing a risk of contamination of nearby
underground water sources. Using our manufactured PES/MWCNT-TNR membrane saves
space, increases efficiency, eliminates the need for chemicals, and increases water flow
when compared to other standard techniques. Since the produced wastewater has a high
temperature after separation from petroleum products in oil treatment stations at petroleum
enterprises that utilize demulsifiers and heaters, the influence of feed water temperature on
filtering efficacy is significant, as shown in this study. Furthermore, the simple fabrication
of PES/MWCNT-TNR membranes will be beneficial in large-scale manufacturing for use
in petroleum industries, as well as increasing tensile strength from 38 kg/cm2 for pure PES
membrane to 94 kg/cm2 for 0.5 wt% PES/MWCNT-TNR membranes, which will improve
membrane endurance in industrial applications. Meanwhile, this can alleviate the problem
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of generated water containing excessive levels of strontium, which is a health hazard. This
sort of water treatment will be more beneficial at oil-producing off-shore sites where space
is limited and the primary means of disposing of generated water is by injecting it into
disposal wells, where strontium will develop scales that obstruct well permeability and
reduce water injection rate.

4. Conclusions

Membranes of PES blended with MWCNT-TNR were synthesized with different ratios
of nanocomposite and characterized using TEM, SEM, and FTIR. TEM scanning shows the
formation of a network between TNRs and MWCNTs. SEM showed that the top layer of
formed membranes is dense and less porous while the sub-layer has macrovoids. SEM
also showed the formation of macrovoids in the PES matrix after the incorporation of
nanocomposite and the effect of nanocomposite ratio on macrovoid size and distribution,
while FTIR scanning proved the formation of a bond between PES and TNR-MWCNT
nanocomposite. The pore diameter and porosity are decreased by increasing the ratio of
the incorporated nanocomposite. The tensile strength was enhanced from 38 kg/cm2 for
pure PES membrane to 94 kg/cm2 for the 0.5 wt% PES/MWCNT-TNR membranes. The
synthesized membranes are used for water filtration of strontium at different temperatures.
Salt rejection has decreased as the temperature of the water has risen, while water flux
increases by elevating the temperature due to the increasing diameter of PES matrix
pores and changes in membrane structural characteristics, solvent viscosity, and solute
diffusivity. At 30 ◦C, the highest filtration efficiency was 96.6% for the 0.7 wt% PES/TNR–
MWCNT membrane, compared to 94.8% for the 0.5 wt% PES/TNR–MWCNT membrane
and 94.1% for the 0.1 wt% PES/TNR–MWCNT membrane. The highest water flow was
84.4 kg/m2.h for the 0.1 wt% PES/TNR–MWCNT, while the lowest was 76.6 kg/m2.h for
0.7 wt% PES/TNR–MWCNT. The successive filtration of strontium increased filtration
efficiency from 74.5% to 82.4%, which indicated that better efficiency could be achieved by
adding multiple filtration steps. By increasing the incorporated ratio of nanocomposite, the
antifouling properties of the membranes increased.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14071390/s1, Figure S1: Peristaltic pump sucking Strontium
solution and pump it to membrane cell at 45 psi discharge pressure.
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