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Abstract 

Background: Glioma, caused by carcinogenesis of brain and spinal glial cells, is the most common 
primary malignant brain tumor. To find the important indicator for glioma prognosis is still a 
challenge and the metabolic alteration of glioma has been frequently reported recently.  
Methods: In our current work, a risk score model based on the expression of twenty metabolic 
genes was developed using the metabolic gene expressions in The Cancer Genome Atlas (TCGA) 
dataset, the methods of which included the cox multivariate regression and the random forest 
variable hunting, a kind of machine learning algorithm, and the risk score generated from this model 
is used to make predictions in the survival of glioma patients in the training dataset. Subsequently, 
the result was further verified in other three verification sets (GSE4271, GSE4412 and GSE16011). 
Risk score related pathways collected in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database were identified using Gene Set Enrichment Analysis (GSEA). 
Results: The risk score generated from our model makes good predictions in the survival of glioma 
patients in the training dataset and other three verification sets. By assessing the relationships 
between clinical indicators and the risk score, we found that the risk score was an independent and 
significant indicator for the prognosis of glioma patients. Simultaneously, we conducted a survival 
analysis of the patients who received chemotherapy and who did not, finding that the risk score was 
equally valid in both cases. And signaling pathways related to the genesis and development of 
multiple cancers were also identified.  

Conclusions: In summary, our risk score model is predictive for 967 glioma patients’ survival 
from four independent datasets, and the risk score is a meaningful and independent parameter of the 
clinicopathological information. 
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Introduction 
Gliomas account for 70% of brain cancers, of 

which, 101,600 new cases and 61,000 related deaths 
have been reported, according to the latest statistic 
reports in China, 2015 [1]. The median survival time of 
glioma patients is only about 12 months [2], and the 
five-year survival rate of glioma patients is less than 
3% [3]. Clinically, World Health Organization (WHO) 
classifies gliomas into different grades according to 

the pathological observations [4]. And yet, the 
implementation of the staging system is not predictive 
of prognosis. Therefore, bio-molecular markers are 
needed to predict glioma patients’ survival. 

 Over the past decades, bio-molecular markers 
for glioma prognosis have been extensively reported 
[5-7]. Among these biomarkers, metabolic genes are 
especially important. For example, IDH1.R132H and 
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IDH2.R172H mutations have been frequently 
reported in glioma cases [8], and patients harboring 
IDH1 and IDH2 mutations have a different metabolic 
pattern[9] and usually have a better prognosis 
compared to patients with IDH1/2 wild type [10, 11]. 
Methylation of O-6-methylguanine-DNA methyl-
transferase (MGMT) is another metabolic biomarker 
for prognosis, and is clinically relevant to the efficacy 
of the treatment [12, 13]. In addition, the metabolic 
status of glioma stem cells is distinct from that of the 
adjacent normal tissues [14]. However, single bio- 
molecular marker usually fails to predict glioma 
patients’ survival in consideration of the hetero-
geneity of cancer, and classification based on 
transcriptome level contains a large amount of 
redundant information. On the contrary, the 
robustness of models based on multiple molecular 
biomarkers have been proved across datasets and 
applied to other cancers [15-17]. 

 In this vein, we selected genes related to survival 
based on metabolic gene expressions, and built a 
prognostic model using Random Forest machine 
learning algorithm and Cox regression. The model 
accurately categorized the patients into good 
prognosis and poor prognosis groups, and the result 
was verified in other three validation sets. The 
evaluation of correlations between clinical indicators 
and the risk score shows that the independence of risk 
score compared to other clinical features and the score 
outperforms other clinical observations in predicting 
the patients’ survival. Meanwhile, the score is valid 
for patients who received chemotherapy and who 
didn’t. KEGG pathway analysis shows that multiple 
pathways associated with cancer changed signifi-
cantly between the high-risk group and the low-risk 
group, including apoptosis and JAK-STAT signaling 
pathways. 

Methods 
Data pre-processing 

 The raw gene expression data and clinical data 
were obtained from University of California Santa 
Cruz (UCSC) Xena and Gene Expression Omnibus 
(GEO) databases. Background proofing and Robust 
Multichip Average standardization were implement-
ted among samples in each batch. Subsequently, 
probes were corresponded to Entrez gene names by 
referring to the annotation files provided by 
manufacture in all datasets and platforms. For genes 
matching more than one probes, average values were 
regarded as the relative expressions. Genes involved 
in metabolism were extracted from the previous 
report [18], and these genes were retained for further 
analysis. The R Language was used for the statistical 

analysis of clinical information. 

Marker selection and model establishment 
 Cox univariate regression was used to assess the 

correlation between the overall survival and the 
expression level of each metabolic gene with R, and 
significant genes (p<0.01) were retained for further 
analysis. Subsequently, random forest variable 
hunting was implemented to select the most 
important genes to establish the predicting model [19, 
20]. The number of iterations and repeats are both 100. 
Based on the expression of screened genes, the risk 
score model was developed through Cox multivariate 
model as the following formula: 

Riskscore =  � 𝑥𝑥𝑖𝑖 ∗ 𝛽𝛽𝑖𝑖
𝑛𝑛

𝑖𝑖
 

Where xi indicates the expression of gene i, 
meanwhile βi means the coefficient of gene i generated 
from the Cox multivariate regression.  

Statistical applications and pathway analysis 
 R function survival::coxph was used for the Cox 

multivariate and univariate regression analysis, and R 
function randomForestSRC::var.select was used for 
random forest survival analysis [21] using the 
following parameters: 100 repeats, 100 iterations. The 
risk score difference between categories divided by 
clinical indicators was calculated based on Student’s 
-test. R package “rms” was used for nomogram 
calculation and visualization. GSEA [22] was 
implemented using a java software developed and the 
default parameters were used by comparing the 
high-risk (higher than median) and low-risk group 
(lower than median).  

Results 
Marker selection and model establishment 

Metabolic genes and related metabolic pathways 
were reserved for further analysis and the other genes 
were excluded. In order to find out the survival 
associated metabolic genes, we used Cox univariate 
regression to analyze the relationship between overall 
survival time and gene expression evaluated by 
microarray (U133A) in TCGA dataset (N=529, median 
survival: 12 months). 101 genes were identified 
(p<0.01) and regarded as survival associated genes. 
We used Random Forest machine learning algorithm 
to remove redundant information from the selected 
genes, and twenty genes were filtered for further 
studies (Fig. 1A, Table 1). The functions of these 20 
genes were described in detail in Table S1. The 
coefficients of OAS1, MAN1B1, CYB561, SLC12A7, 
PYGL and NQO2 were negative numbers (Fig. 1B), 
suggesting that the high expression of these genes 
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was significantly associated with longer overall 
survival time. 

 

Table 1. Hazard ratio (HR), 95% confidence interval (CI), p values 
of candidate genes according to Cox univariate and multivariate 
regression 

Gene Univariate Multivariate 
Entez ID Gene symbol HR 95% CI pvalue HR 95% CI pvalue 
241 ALOX5AP 1.1 1-1.2 0.00484 1.06 0.96-1.17 0.2784 
10449 ACAA2 1.2 1.1-1.3 0.00329 1.12 0.97-1.29 0.12932 
5836 PYGL 1.2 1.1-1.3 0.00093 0.97 0.85-1.11 0.70363 
4938 OAS1 1.1 1-1.2 0.0073 1.01 0.92-1.1 0.84306 
4837 NNMT 1.1 1-1.1 0.00011 1.03 0.98-1.1 0.26509 
2184 FAH 1.2 1-1.3 0.00698 0.94 0.75-1.17 0.58805 
2137 EXTL3 1.2 1.1-1.4 0.005 1.19 0.94-1.51 0.14242 
8706 B3GALNT1 1.2 1-1.3 0.00809 1.01 0.86-1.19 0.88426 
7378 UPP1 1.2 1.1-1.3 0.00014 1.09 0.95-1.24 0.21579 
4835 NQO2 1.2 1-1.4 0.00777 0.92 0.77-1.09 0.33263 
11253 MAN1B1 1.2 1.1-1.5 0.009 0.99 0.77-1.27 0.93416 
1261 CNGA3 1.1 1-1.2 0.00299 1.03 0.94-1.12 0.51853 
9488 PIGB 1.3 1.1-1.4 9.00E-05 1.04 0.86-1.27 0.66946 
3073 HEXA 1.3 1.1-1.5 0.00113 1.07 0.84-1.36 0.56997 
1534 CYB561 1.3 1.1-1.4 0.00153 1.21 0.96-1.52 0.10342 
35 ACADS 1.6 1.2-2.2 0.00175 1.18 0.81-1.73 0.38462 
10577 NPC2 1.2 1-1.3 0.00705 0.92 0.73-1.15 0.45549 
10723 SLC12A7 1.2 1.1-1.4 0.00167 0.98 0.81-1.19 0.85272 
8309 ACOX2 1.2 1.1-1.3 0.00082 1.03 0.9-1.18 0.6778 
11285 B4GALT7 1.4 1.1-1.8 0.00496 1.02 0.73-1.43 0.90036 

 

Prediction of risk score model 
 Using the TCGA dataset as the training set, the 

predictive value of the risk score model was 
estimated. The glioma patients were grouped into two 
groups by the median value of the risk score. The 
overall survival time is 14.9 (95% CI: 13.5-16.7) 
months in low-risk group, which was remarkably 
longer (p=0.0015) than 13.1 months (95% CI: 
12.0-15.1), the median survival time of high-risk 
group (Fig. 2A). As shown in Fig. 2B, the comparison 
of progression-free survival (PFS) between the two 

groups also showed the same trend (p=0.0015). The 
sooner the patients’ events occurred as the risk score 
increased, and the risk score is positively correlated 
with the expression of oncogenes and negatively with 
suppressor genes in twenty candidate genes (Fig. 2C). 
One-year survival area under receiving operating 
characteristic (AUROC) curve was plotted, and the 
AUROC for age, gender, risk score and primary 
tumor diameter were 0.689, 0.502, 0,692 and 0.523 (Fig. 
2D), indicating that the risk score is a strong 
prognostic indicator for glioma patients. 

Validation of risk score 
The good predictive effect of the risk score in the 

training set might be due to the overfitting between 
the data and the model. For further validation, we 
used other three independent datasets, GSE4271 [23], 
GSE4412[24] and GSE16011[25], to evaluate the 
prognostic robustness of the risk score. Using the 
median risk score value, we categorized the samples 
into two groups in each dataset, and the survival 
differences were analyzed. In group whose patients 
with low risk score, the patients’ survival time is 
obviously longer in all of the validation sets (p=0.03, 
0.01 and 0 for GSE4271, GSE4412 and GSE16011, 
respectively, Fig. 3A-C, top panel). Same as the 
training set, we found that the patients were dead 
sooner as the risk score increased in each verification 
dataset (Fig. 3A-C, middle panel). Furthermore, the 
relationship between the expression of the 20 
candidate genes and the risk score was also similar to 
that of the training set (Fig. 3A-C, bottom panel). 
These results suggest that this model has considerable 
robustness in predicting the prognosis of glioma 
patients. 

 

 
Figure 1. Risk score model development. The frequency of genes presented in random forest variable hunting (A) and the coefficient for each gene (B). 
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Fig. 2 Risk score in predicting survival. The high-risk group has a significantly longer overall survival (OS) time than low risk group (A), and it is also similar to 
progression free survival (PFS, B). Detailed survival information of samples, risk score and gene expression (each point represents a sample, C) and one-year survival 
ROC were also plotted (D). 

 

Risk score is independent of other clinical 
indicators 

 We did a survey of the clinical information of 
patients in each dataset (Table 2). The relationship 
between the risk score and other clinical indicators 
was explored. Firstly, we grouped the patients by 
other clinical indicators including age, gender, 
chemotherapy, and radiotherapy, respectively. Then 
we analyzed whether there were differences in risk 
scores within the categories divided by each clinical 
indexes. The results showed that these indicators 

were independent of the risk score (Fig. 4A). 
Thereafter, we used Cox multivariate regression to 
analyze the significance of age, gender, diameter, 
chemotherapy, radiation and risk score in the 
prediction of clinical outcome. The result indicated 
that the risk score was a valuable prognostic predictor 
(Fig. 4B). A nomogram was plotted using the 
aforementioned clinical information to promote the 
application of risk score (Fig. 4C). The above results 
showed the importance and independence of the risk 
score as a candidate prognostic indicator. 
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Table 2. Clinical characteristics of GBM patients from the TCGA, GEO (GSE4271, GSE4412 and GSE16011) datasets. 

Characteristics TCGA GSE4271 GSE4412 GSE16011 
Sample No. 529 77 85 276 
Gender*-M/F 311/202 51/25 32/53 184/92 
Age (year)*a 58.7(10.9-86.6) 48(22-82) 42(18-82) 51.5(11.7-81.2) 
Chemotherapy*-yes/no 350/89    
Radiotherapy*-yes/no 434/64    
Tumor diameter (cm)*a 1(0.3-3.0)    
Survival status*-dead/alive 422/89 15/62 59/26 237/35 
Overall survival time (days)* 370(3-3881) 665(21-3339) 389(7-2516) 452(0-7548) 

* Data is missing. 
a Age, Tumor diameter and Overall survival time were expressed as median (range) 

 

 
Fig. 3 Risk score performance validation. The performance of risk in predicting survival was validated in GSE4271 (A, top panel), GSE4412 (B, top panel) and 
GSE16011 (C, top panel) datasets. The detailed survival information and gene expression of the three dataset (A-C, middle and bottom panel) also resembles the 
profile of training dataset (TCGA). 

 

Risk score and chemotherapy 
 Chemotherapy is one of the most essential 

auxiliary treatments for glioma. So, the risk score 
performance was investigated in patients who 
received chemotherapy and who did not. The patients 
receiving chemotherapy were partitioned into 
high-risk group and low-risk group based on the 
median risk score of TCGA samples. As shown in Fig. 
5A, among the patients who received chemotherapy, 
the prognosis of the low-risk group was significantly 
better than that of the high-risk group. The survival 
distribution of patients without chemotherapy is 

similar to that of patients with chemotherapy (Fig. 
5B). These results reveal that the score is effective for 
patients who received chemotherapy and who did 
not. 

Risk score related pathway analysis 
In order to find out the reason why risk score 

could predict glioma patients’  survival, here we 
grouped the samples according to the median risk 
score, which are high and low risk groups. GSEA was 
implemented to investigate the altered pathways 
between high and low risk groups. Various cancer 
associated signaling pathways, including 
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glycosaminoglycan degradation, JAK-STAT signaling 
pathway, apoptosis, cytokine receptor interaction, 
complement and coagulation cascades, and ECM 
receptor interaction, were significantly enriched (Fig. 
6A, p<0.05). Among these pathways, apoptosis, 
cytokine receptor interaction and JAK-STAT signaling 

pathway were shown (Fig. 6B-D). According to these 
results we draw the conclusion that the survival of 
glioma patients can be accurately predicted by the risk 
score, perhaps because the score can reflect the 
multi-level status of glioblastoma. 

 

 
Fig. 4 Clinical observations and risk score. The distributions of risk score in age (<60, >60), gender (male, female), chemotherapy (no-not received, yes-received) and 
radiotherapy (no-not received, yes-received) are shown (A), and the risk score is an important indicator for survival (B) according to Cox multivariate regression. The 
nomogram was plotted to facilitate utilization of risk score (C). 

 
Fig. 5 Risk score and chemotherapy. The risk score successfully predicts the survival of patients who received chemotherapy (A) and who did not (B). 
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Fig. 6 KEGG pathways associated with risk score. GSEA based on the expression of TCGA dataset revealed significant (p<0.01) pathways associated with risk score 
(A), including apoptosis (B), cytokine-cytokine receptor interaction (C) and JAK-STAT signaling pathway (D). For each gene set, vertical bars along the x-axis of the 
GSEA plot represent the positions of genes within the ranked list (i.e. their fold change). Negative GSEA enrichment score curve indicates anti-enrichment 
(down-regulation), and positive curve denotes enrichment (up-regulation) (B, C, D). 

 

Discussion 
 Metabolism alterations of glioma have been 

frequently reported in the past years. The major 
mutation in glioma is IDH1/IDH2, which is a key 
metabolic gene in the oxidative decarboxylation of 
isocitrate in tricarboxylic acid (TCA) cycle, converting 
isocitrate to ɑ-ketoglutarate as reducing NADP+ to 
NADPH[26]. Mutations of IDH1/2 convert isocitrate 
to a toxic metabolite 2-hydroxyglutarate instead[27]. 
In addition to mutations in IDH1/2, the expressions 

of other metabolic enzymes also play an important 
role in carcinogenesis[28] and cancer 
development[29]. However, single biomarker is not 
robust in predicting the survival. For example, none 
of the genes that were significantly associated with 
survival could be detected in all the datasets we used 
in this study. Recent studies highlight the robustness 
of multiple genes in predicting survival of cancer 
patients[30-32]. In our current work, by utilizing the 
expressions of metabolic genes, we developed a 
model to predict the survival of glioma patients, and 
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validated its effect in three independent datasets. The 
clinical significance of risk score was evaluated and 
associated KEGG pathways were identified. 

 It is noted that these 20 genes are involved in 
different metabolic categories. For example, ACADS 
and ACOX2 are involved in fatty acid metabolism[33, 
34]; B3GALNT1, B4GALT7, HEXA and MAN1B1 are 
in glycan synthesis and metabolism[35-38]; other 
genes are categorized into ion transport (CNGA3 and 
SLC12A7)[39, 40], NAD metabolism (NNMT, 
NQO2)[41, 42], and redox and tyrosine metabolism 
(FAH)[43], indicating that aberrant gene expressions 
in multiple metabolic pathways affect the prognosis of 
glioma. Among these metabolic genes, most have not 
been reported to be associated with prognosis of 
glioma patients, and only ACOX2 is involved in the 
prognosis of breast cancer[44]. Although few of these 
genes we screened for cancer prognosis are reported, 
to some extent they can reflect the status of the 
cancer-driven genes related to their upstream and 
downstream. These genes we screened are enriched in 
multiple cancer-related pathways. According to these 
results, we draw the conclusion that the survival of 
glioma patients can be accurately predicted by the risk 
score, perhaps because the score can reflect the 
multi-level status of glioblastoma. However, it is 
unclear how these genes play their own role in the 
mechanism and so exploring the impact of metabolic 
enzymes on survival requires more investigations. 

 Limitations of this study exist. Firstly, it is a 
retrospective study. Thus, information including time 
to recurrence, treatment records and detailed 
pathological stage was unavailable. Secondly, 
although the model was validated across cohorts, it 
still need more samples to further confirm before 
clinical utilization. Last but not least, the genes in the 
model was optimized, but still it is a locally optimal 
solution instead a global optimal solution. One of the 
evidence is that the p values of these 20 genes in 
multivariate regression was mostly >0.05. 

Conclusions 
 Our results show that the risk score based on 20 

metabolic genes ’  expression is effective for 
predicting the survival of glioma patients. 
Meanwhile, the risk score is independent from other 
clinical indicators. Moreover, the score can reflect the 
multi-level status of glioblastoma. Our research might 
provide a new approach to the prognosis of glioma 
patients and motivate basic medical research on the 
prognosis of glioma. 
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