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A B S T R A C T   

Background: Community health worker (CHW)-led maternal health programs have contributed to 
increased facility-based deliveries and decreased maternal mortality in sub-Saharan Africa. The 
recent adoption of mobile devices in these programs provides an opportunity for real-time 
implementation of machine learning predictive models to identify women most at risk for 
home-based delivery. However, it is possible that falsified data could be entered into the model to 
get a specific prediction result – known as an “adversarial attack”. The goal of this paper is to 
evaluate the algorithm’s vulnerability to adversarial attacks. 
Methods: The dataset used in this research is from the Uzazi Salama (“Safer Deliveries”) program, 
which operated between 2016 and 2019 in Zanzibar. We used LASSO regularized logistic 
regression to develop the prediction model. We used “One-At-a-Time (OAT)” adversarial attacks 
across four different types of input variables: binary – access to electricity at home, categorical – 
previous delivery location, ordinal – educational level, and continuous – gestational age. We 
evaluated the percent of predicted classifications that change due to these adversarial attacks. 
Results: Manipulating input variables affected prediction results. The variable with the greatest 
vulnerability was previous delivery location, with 55.65% of predicted classifications changing 
when applying adversarial attacks from previously delivered at a facility to previously delivered 
at home, and 37.63% of predicted classifications changing when applying adversarial attacks 
from previously delivered at home to previously delivered at a facility. 
Conclusion: This paper investigates the vulnerability of an algorithm to predict facility-based 
delivery when facing adversarial attacks. By understanding the effect of adversarial attacks, 
programs can implement data monitoring strategies to assess for and deter these manipulations. 
Ensuring fidelity in algorithm deployment secures that CHWs target those women who are 
actually at high risk of delivering at home.   
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1. Introduction 

The decrease in maternal mortality in sub-Saharan Africa (SSA) over the past two decades [1–3] is partially attributed to the 
increasing number of women delivering at healthcare facilities where women can receive immediate emergency care if needed [4–16]. 
Community health worker (CHW) interventions have been a crucial factor for connecting women to health facilities for facility-based 
delivery, particularly in low- and middle-income countries [17–21]. 

The recent adoption of digital tools, such as mobile devices [22–27], in CHW-led maternal health programs, provides an oppor
tunity for real-time implementation of predictive models [28–35]. These predictions can then assist the implementation of targeted 
interventions for those most at risk for home-based delivery. Other groups have led work to predict facility-based delivery in SSA [29], 
but to our knowledge, none of these algorithms are currently integrated into program implementation. As programs transition to 
integrating algorithms into targeted maternal health care, it is important to understand the vulnerability of these algorithms to 
incorrect or manipulated data. 

Our previous research applied machine learning techniques to predict health facility delivery among pregnant women enrolled in 
Uzazi Salama (“Safer Deliveries”), a CHW-led, digitally-supported maternal health program in Zanzibar, Tanzania [36,37]. The 
overarching goal is to use information recorded at the program enrollment visit to provide a real-time prediction of delivery location. 
Women identified as high risk of delivering at home can then immediately receive additional support, such as the CHWs providing 
additional birth planning counseling or women receiving money to cover transport costs. 

Given that this algorithm would be implemented in real-time, it is possible that falsified data could be entered into the model [38] 
in order to get a specific prediction result. For example, a CHW may try to influence a prediction of home-based delivery to have a 
heavier workload for which they are paid more or to influence a prediction of facility-based delivery to avoid providing additional 
services. On the other hand, a woman may try to influence a prediction of home-based delivery with the goal of receiving more support. 
In this paper, we evaluate this algorithm’s vulnerability to falsified responses to produce a specific prediction, often referred to as 
“adversarial attacks” in the machine learning literature [39–43]. The findings from this analysis will enable us to quantify the sus
ceptibility of our developed algorithm to adversarial attacks, which can be used to inform methods to monitor for or mitigate the 
impact of these attacks when the algorithm is deployed. 

2. Material and methods 

2.1. Description of Uzazi Salama and the resulting dataset 

The Uzazi Salama program was established in 2016 in Zanzibar to reduce maternal and neonatal mortality by increasing facility 
delivery rates and to support women during their antenatal care period. In January 2020, the program was expanded to provide 
additional postpartum and child health services, and was renamed Jamii ni Afya (“Communities are Health”). Women enrolled in this 
program were assigned CHWs, who provided women three home visits during pregnancy to provide birth planning support, and three 
visits during the postpartum period to monitor the woman’s recovery and child’s health. 

In this study, we included women enrolled in Uzazi Salama between January 1, 2017 and June 30, 2019. After excluding women 
who delivered on the way to the facility and women with no birth location documented, we have a sample size of 38,787, of which 77% 
of women delivered in a health facility. A wide range of information is available for the women at the time of registration, including 
both individual- and community-level variables. Individual-level variables are those depending on a specific woman, such as de
mographic characteristics, self-reported clinical characteristics, current pregnancy characteristics, and program-associated charac
teristics. Community-level variables are calculated based on program-level information including all women who had been enrolled 
and delivered up to the time of registration of the specific women under consideration, such as the rate of facility delivery in a woman’s 
shehia (local area). 

2.2. Machine learning model development 

To develop the algorithm, we followed the training and data pre-processing procedure outlined in previous work [37]. We 
randomly sampled 80% of the data, stratified by home or facility delivery, to form the training set, while the remaining 20% of data 
served as the test set. Missing values were imputed by K-Nearest Neighbor (KNN) imputation [44–46] with K = 5, which used ob
servations from the five most “similar” women to impute a plausible value for missing data. In order to calculate the “similarity” 
between women, categorical and ordinal variables need to be transformed into numerical representations. For categorical variables, 
we performed one-hot encoding, where we created a new column for each category within a variable, and assigned 1 if a woman 
belongs to this category, and 0 otherwise. For ordinal variables, we assigned each category with an integer, starting from 1, according 
to the order of the categories. 

Three different techniques were employed to address the outcome imbalance problem in earlier work: undersampling, over
sampling, and a synthetic minority oversampling technique (SMOTE) [37]. Since they all had similar prediction accuracy and the 
sample size is sufficiently large, we used an undersampling approach during the model training phase by randomly selecting a subset of 
those who delivered in a health facility of an equal size to the number who delivered at home in the training dataset. 

Earlier work explored four prediction models [37], including logistic regression, logistic regression with LASSO regularization, 
random forest, and neural network, all resulting in similar performance properties, with overall accuracy ranging between 72.4% and 
74.6%. In this paper, the LASSO regularized logistic regression [47] is used as our prediction model because of its high performance 
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and feasibility for “real-time” predictions on smartphones. The overall accuracy of the final prediction model is 73.7%, with sensitivity 
at 71.0%, specificity at 74.5%, and area under the receiver operating characteristic (ROC) curve at 0.799. 

For the final model, the ten variables that best discriminated between home deliveries and facility deliveries were as follows: 
previous delivery location, rate of facility delivery among women with the same CHW, rate of facility delivery in shehia, name of the 
recommended delivery facility, residential district, parity (categorized as 0 previous births, 1–2 previous births, 3–4 previous births, 
5–7 previous births, and 8 or more previous births), education level, floor material, access to electricity at home, and payment fee 
charged at first antenatal care (ANC) visit. 

The values for the variables parity and previous delivery location are related, since women with parity zero would not have a 
previous delivery location. To avoid overlap in the two variable values, we combined these two variables into an interaction term. In 
this new variable, parity is represented in the tenth digit: 0* indicates no previous births, 1* indicates 1–2 previous births, 2* indicates 
3–4 previous births, 3* indicates 5–7 previous births, and 4* indicates 8 or more previous births. Previous delivery location is on the 
units digit: *1 indicates previously delivered at home, *2 indicates previously delivered on the way to a facility, *3 indicates previously 
delivered at a facility, and *4 indicates no previous delivery information. This categorizes women with parity equals zero and women 
without a previous delivery location into the same group “04”. In modeling, this variable is treated as a non-ordinal categorical 
variable. 

2.3. Adversarial attacks 

2.3.1. Definition 
The action of trying to deceive a prediction model by using adversarial samples is called “adversarial attack”, where adversarial 

samples are manipulated inputs to a machine learning (ML) model that result in erroneous outputs [39]. The attacks can be categorized 
into various categories based on the goal of the adversary and the stage at which the adversarial samples are used [39]. 

In this paper, we are exploring a “targeted, black-box evasion attack”, where an individual tries to change the output of the ML 
classifier to a specific class (hence, targeted), has no knowledge about the ML model (hence, black-box), and only has influence on the 
model execution and not the model development (hence, evasion). For our specific problem, the prediction model will already be 
developed and deployed on the phone, and the CHW or woman may alter their replies to influence the final classification. Even though 
both individual-level and community-level variables are included in the prediction model, only individual-level variables are can
didates for adversarial attacks, since the community-level variables are fixed and could not be easily manipulated by CHWs. 

Table 1 
Data manipulation process and variables remained in the LASSO logistics regression model by input variable type.  

Binary variables 

Description: Yes/No response 
Manipulation: Change a Yes into a No or a No into a Yes 
Variables: 
Prior c-section RCH card obtained at visit 
Access to electricity at home† HIV status is unknown 
Drinking water source Partner gave permission for facility delivery 
Roof material Danger sign mother: abdominal pain 
Savings acquisition type: personal savings Danger sign mother: vaginal bleeding 
Savings acquisition type: Husband/relatives Danger sign mother: severe headache 
Savings acquisition type: VSLA loan Danger sign mother: difficult breathing 
Savings acquisition type: Other  
Categorical variables 
Description: Multiple categories without order 
Manipulation: Change each category into all the other possible categories 
Variables: 
District*† The time of CHW experience (in months)* 
Delivery facility name recommendation† The interaction term between parity† and previous delivery location†
Delivery facility type recommended 
Ordinal variables 
Description: Multiple ordered categories 
Manipulation: Change all the data into the highest/lowest possible level 
Variables: 
Education level† Total ANC visits prior to enrollment 
Continuous variables 
Description: Any real number 
Manipulation: Add/Subtract a fixed number and stop if the upper/lower limit is reached 
Variables: 
Facility delivery rate based on shehia*† The product of delivery rate based on shehia and CHW* 
Facility delivery rate based on CHW*†
Gestational age at enrollment 

*indicates a community-level variable (not manipulable); †indicates one of the ten most influential variables. 
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2.3.2. Notation 
We use x to denote the value of the manipulated variable and an arrow (→) to denote the direction that the variable is manipulated. 

We use ̂y = 1 to indicate that the woman was originally (before an attack) predicted to have facility delivery, and ̂y = 0 to indicate that 
the woman was originally predicted to have home delivery. We use y to denote the value of the prediction after an attack. 

2.3.3. Constructing an adversarial attack 
To quantify the sensitivity of a model to an adversarial attack, we will manipulate one input variable and hold all other variables 

fixed, known as “One-At-a-Time (OAT)” adversarial attack [47–49]. We consider different data manipulation processes for four types 
of input variables: binary, categorical, ordinal, and continuous (Table 1). 

For demonstration purposes, we manipulate one binary variable (access to electricity at home), one categorical variable (previous 
delivery location), one ordinal variable (education level), and one continuous variable (gestational age at enrollment) respectively for 
our adversarial attacks. The criterion for choosing these variables includes: inclusion in the final LASSO model (Table 1), being a top 
ten most predictive variable, and being an individual-level variable, as community-level variables are fixed on phones and could not be 
misreported. Although gestational age is not in the top ten most predictive variables, we still included it because no other continuous 
variable was among the ten most predictive variables and it was the most predictive of any of the continuous variables. Note that the 
gestational age data used in this study is the reported gestational age, not the actual gestational age verified by ultrasound, which may 
be inconsistent in some cases [50]. 

Manipulating access to electricity. Let x = 1 indicate a household has access to electricity, and x = 0 indicate a household has no access 
to electricity. In the evaluation, we changed all women whose households have access to electricity to not having access to electricity 
(x = 1 → 0), and vice versa (x = 0→ 1). 

Manipulating previous delivery location. Let x = 1 indicate a woman previously delivered at home, x = 2 indicate a woman previously 
delivered on the way to a facility, and x = 3 indicate a woman previously delivered at a facility. In the evaluation, we manipulate the 
previous delivery location in each subset into the other two categories. For example, in the subset with x = 1, the manipulation includes 
x = 1 → 2 and x = 1→ 3. 

Manipulating education level. Let x = 1 indicate having some primary education, x = 2 indicate completed primary education, x = 3 
indicate having some secondary education, x = 4 indicate completed secondary education, and x = 5 indicate having higher education. 
In the evaluation, we change all the non-extreme education levels into the most primary one (x = 2,3,4,5 → 1) or the most advanced 
one (x = 1,2,3,4→ 5). 

Manipulating gestational age at enrollment. Let x be the gestational age at enrollment in weeks, with values ranging from 1 week to 40 
weeks. We set x = 10 as the lower limit and x = 30 as the upper limit of our data manipulation threshold. In the evaluation, we then 
conduct three different adversarial attacks scenarios, where the manipulation magnitude increases from (a) to (c):  

(a) Add/Subtract 5 to each x and stop if the upper/lower limit is reached  
(b) Add/Subtract 10 to each x and stop if the upper/lower limit is reached  
(c) Change each x directly into the upper/lower limit 

2.3.4. Evaluating an adversarial attack 
We show the impact of adversarial attacks under various conditions based on the manipulated variable x and their values of the 

original prediction ŷ. To quantify the susceptibility of algorithms, we report the “attacker success rate” as the proportion of prediction 
results changed due to the attack within a subset of women. The higher the attacker success rate, the more vulnerable the model is to 
this particular manipulation. 

3. Results 

Manipulating access to electricity at home. Among women with access to electricity (x = 1) and original prediction to have a facility 
delivery (ŷ = 1), the attacker success rate is 4.4% when changing to no access to electricity (x = 1 → 0). When conditioning on women 
with no access to electricity (x = 0) and original prediction to have a facility delivery (ŷ = 1), the attacker success rate is 0% when 
changing to having access to electricity (x = 0 → 1). Among women with access to electricity (x = 1) and original prediction to have a 
home-based delivery (ŷ = 0), the attacker success rate is 0% when changing to no access to electricity (x = 1 → 0). When conditioning 

Table 2 
Adversarial attacks for access to electricity at home.  

Condition Number of observations Attack New prediction Attacker success rate 

ŷ = 1, x = 1 10,883 x = 1 → 0 y = 1: 10,400 
y = 0: 483 

483/10,883  
= 4.44% 

ŷ = 1, x = 0 13,890 x = 0 → 1 y = 1: 13,890 
y = 0: 0 

0% 

ŷ = 0, x = 1 2213 x = 1 → 0 y = 1: 0 
y = 0: 2213 

0% 

ŷ = 0, x = 0 11,801 x = 0 → 1 y = 1: 1300 
y = 0: 10,501 

1300/11,801  
= 11.02%  
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on women with no access to electricity (x = 0) and original prediction to have a home delivery (ŷ = 0), the attacker success rate is 
11.0% when changing to having access to electricity (x = 0 → 1) (Table 2). 

Manipulating previous delivery location. When we condition on women with previous home delivery (x = 1) and original prediction to 
have a facility delivery (ŷ = 1), the attacker success rate is 0% when we manipulate previous delivery location into facility delivery (x 
= 1 → 3). When we condition on women with previous facility delivery (x = 3) and original prediction to have a facility delivery (ŷ =
1), the attacker success rates are 55.7% when we manipulate previous delivery location into home delivery (x = 3 →  1). When we 
condition on women with previous home delivery (x = 1) and original prediction to have a home delivery (ŷ = 0), the attacker success 
rate is 37.6% when we manipulate previous delivery location into facility delivery (x = 1 → 3). When we condition on women with 
previous facility delivery (x = 3) and original prediction to have a home delivery (ŷ = 0), the attacker success rates are 0% when we 
manipulate previous delivery location into home delivery (x = 3 → 1) (Table 3). 

Manipulating education level. Among women with more than some primary education (x ∕= 1) and original prediction to have a 
facility delivery (ŷ = 1), the attacker success rate is 3.9% when changing education level to some primary education (x = 2,3,4,5 →  1). 
When conditioning on women who have not had higher education (x ∕= 5) and original prediction to have a facility delivery (ŷ = 1), the 
attacker success rate is 0% when changing education level to higher education (x = 1,2,3,4 → 5). Among women with more than some 
primary education (x ∕= 1) and original prediction to have a home delivery (ŷ = 0), the attacker success rate is 0% when changing 
education level to some primary education (x = 2,3,4,5 → 1). When conditioning on women who have not had higher education (x ∕=
5) and original prediction to have a home delivery (ŷ = 0), the attacker success rate is 11.6% when changing education level to higher 
education (x = 1,2,3,4 → 5) (Table 4). 

Manipulating gestational age at enrollment. Among women with larger gestational age at enrollment (x > 10) and original prediction 
to have a facility delivery (ŷ = 1), the attacker success rate is 0% when applying a downward manipulation, no matter the magnitude of 
the manipulation. Among women with smaller gestational age at enrollment (x < 30) and original prediction to have facility delivery 
(ŷ = 1), the attacker success rate is 2.0%, 3.5%, 4.3% when applying an upward manipulation of 5 weeks, 10 weeks, and replacing to 
30 weeks, respectively. Among women with larger gestational age at enrollment (x > 10) and original prediction to have a home 
delivery (ŷ = 0), the attacker success rate is 4.3%, 7.7%, 11.0% when applying a downward manipulation of 5 weeks, 10 weeks, and 
replacing to 10 weeks, respectively. Among women with smaller gestational age at enrollment (x < 30) and original prediction to have 
home delivery (ŷ = 0), the attacker success rate is 0% when applying an upward manipulation, no matter the magnitude of the 
manipulation (Table 5). 

4. Discussion 

Our paper demonstrates the effects of adversarial attacks on four different variables when predicting facility-based delivery for 
women enrolled in a CHW-led maternal health program in Zanzibar. For the four exemplar variables, the variable manipulations that 
led to change in predicted values were intuitive; for example, access to electricity at home is a proxy for wealth, and wealth is 
associated with facility delivery. Therefore, changing from access to no access to electricity did change some women’s prediction from 
facility-based delivery to home-based delivery. The fact that these effects are intuitive further emphasizes our concern that CHWs or 

Table 3 
Adversarial attacks for previous delivery location.  

Condition Number of observations Attack New prediction Attacker success rate 

ŷ = 1, x = 1 577 x = 1 → 2 y = 1: 577 
y = 0: 0 

0% 

x = 1 → 3 y = 1: 577 
y = 0: 0 

0% 

ŷ = 1, x = 2 171 x = 2 → 1 y = 1: 53 
y = 0: 118 

118/171  
= 69.01% 

x = 2 → 3 y = 1: 171 
y = 0: 0 

0% 

ŷ = 1, x = 3 16,593 x = 3 → 1 y = 1: 7359 
y = 0: 9234 

9234/16,593  
= 55.65% 

x = 3 → 2 y = 1: 15,651 
y = 0: 942 

942/16,593  
= 5.68% 

ŷ = 0, x = 1 7369 x = 1 → 2 y = 1: 2318 
y = 0: 5051 

2318/7369  
= 31.46% 

x = 1 → 3 y = 1: 2773 
y = 0: 4596 

2773/7369  
= 37.63% 

ŷ = 0, x = 2 167 x = 2 → 1 y = 1: 0 
y = 0: 167 

0% 

x = 2 → 3 y = 1: 18 
y = 0: 149 

18/167  
= 10.78% 

ŷ = 0, x = 3 4994 x = 3 → 1 y = 1: 0 
y = 0: 4994 

0% 

x = 3 → 2 y = 1: 0 
y = 0: 4994 

0%  
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women could identify variables to misreport in order to achieve a desired prediction. 
Manipulating previous delivery location had the highest attacker success rate. This is not surprising given that previous delivery 

location is the most predictive variable in the algorithm. If prediction algorithms are deployed in practice, these variables that are 
highly vulnerable to adversarial attacks must be monitored to ensure the distributions of input data match expected distributions. 
Possible ways to secure input data quality include detecting and removing out-of-distribution samples using Gaussian Discriminant 
Analysis before carrying out the prediction or implementing manual assessments to ensure accurate reporting from the CHWs. 

4.1. Limitations 

Several limitations should be considered when interpreting these results. First, we imputed missing values with KNN imputation. 
Although KNN imputation is intuitive for continuous variables, we needed additional manipulations for categorical and ordinal 
variables. Different approaches for KNN with categorical and ordinal variables may yield different predictive models and different 
vulnerabilities to adversarial attacks. Second, we focused our evaluation on one-at-a-time adversarial attacks, which gives us the 
attacker success rate when changing only a single variable while holding all other variables constant. This simplified setup limits our 
ability to model the more complicated real-world scenario, where individuals may manipulate multiple responses simultaneously [51]. 
In future work, we will consider a more generalizable setting by taking the dynamic interactions between variables into account. Third, 
this paper specifically looked at adversarial attacks on a binary classification algorithm in the context of LASSO regularized logistic 
regression model because this is the current algorithm implemented by our collaborators in Zanzibar. In future research, we will 
examine how different algorithms could potentially reduce the vulnerability to adversarial attacks and expand our research to un
derstand the impact of adversarial attacks on a multiple-level classification algorithm. Finally, this paper focuses narrowly on how the 
prediction results would change under adversarial attacks once this prediction model is built; future research should consider the 
potential of model poisoning, whereby data is manipulated during the model building stages, and also strategies to monitor for and 
prevent adversarial attacks during prediction. 

Table 4 
Adversarial attacks for education level.  

Condition Number of observations Attack New prediction Attacker success rate 

ŷ = 1, x ∕= 1 
(x = 2,3,4,5) 

19,668 x = 2,3,4,5 → 1 y = 1: 18,895 
y = 0: 773 

773/19,668  
= 3.93% 

ŷ = 1, x ∕= 5 
(x = 1,2,3,4) 

24,427 x = 1,2,3,4 → 5 y = 1: 24,427 
y = 0: 0 

0% 

ŷ = 0, x ∕= 1 
(x = 2,3,4,5) 

7197 x = 2,3,4,5 → 1 y = 1: 0 
y = 0: 7197 

0% 

ŷ = 0, x ∕= 5 
(x = 1,2,3,4) 

13,942 x = 1,2,3,4 → 5 y = 1: 1616 
y = 0: 12,326 

1616/13,942  
= 11.60%  

Table 5 
Adversarial attacks for gestational age at enrollment.  

Condition Number of observations Attack New prediction Attacker success rate 

ŷ = 1, x > 10 23,878 x = x → max(x-5, 10) y = 1: 23,878 
y = 0: 0 

0% 

x = x → max(x-10, 10) y = 1: 23,878 
y = 0: 0 

0% 

x = x → 10 y = 1: 23,878 
y = 0: 0 

0% 

ŷ = 1, x < 30 21,564 x = x → min(x+5, 30) y = 1: 21,125 
y = 0: 439 

439/21,564  
= 2.04% 

x = x → min(x+10, 30) y = 1: 20,809 
y = 0: 755 

755/21,564  
= 3.50% 

x = x → 30 y = 1: 20,648 
y = 0: 916 

916/21,564  
= 4.25% 

ŷ = 0, x > 10 13,504 x = x → max(x-5, 10) y = 1: 576 
y = 0: 12,928 

576/13,504  
= 4.27% 

x = x → max(x-10, 10) y = 1: 1049 
y = 0: 12,455 

1049/13,504  
= 7.68% 

x = x → 10 y = 1: 1487 
y = 0: 12,017 

1487/13,504  
= 11.01% 

ŷ = 0, x < 30 12,285 x = x → min(x+5, 30) y = 1: 0 
y = 0: 12,285 

0% 

x = x → min(x+10, 30) y = 1: 0 
y = 0: 12,285 

0% 

x = x → 30 y = 1: 0 
y = 0: 12,285 

0%  
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4.2. Conclusion 

This paper investigates the vulnerability of an algorithm to predict facility-based delivery when facing adversarial attacks. We 
found that manipulating input variables indeed has a large impact on the prediction results. By understanding the effect of adversarial 
attacks and the most vulnerable variables, programs can implement data monitoring strategies to deter these manipulations. Ensuring 
fidelity in algorithm deployment secures that CHWs target those women who are actually at high risk of delivering at home. 
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Summary table 

What was already known on the topic.  

• The increasing adoption of mobile devices in community health worker-led maternal health programs provides an opportunity for 
real-time implementation of machine learning predictive models to identify those at risk for poor outcomes thus to devise addi
tional interventions.  

• Research groups have developed prediction models to identify women at risk for home-based delivery in sub-Saharan Africa. 

What this study added to our knowledge.  

• This paper is the first to assess the vulnerability of algorithms to predict home-based versus facility-based delivery to adversarial 
attacks.  

• Manipulation of all variables resulted in changes in the model’s predicted results; the variable previous delivery location had the 
highest attacker success rate among all the examined variables.  

• When these models are implemented in real-world programs, variables that are highly vulnerable to adversarial attacks must be 
monitored for accuracy to ensure accurate predicting. 
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