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FHIR Genomics: enabling standardization for precision
medicine use cases
Gil Alterovitz 1,2✉, Bret Heale 3, James Jones1, David Kreda4, Fan Lin1,5, Lei Liu1, Xin Liu1, Kenneth D. Mandl 1,6, David W. Poloway1,
Rachel Ramoni7, Alex Wagner 8 and Jeremy L. Warner 9

The development of Fast Healthcare Interoperability Resources (FHIR) Genomics, a feasible and efficient method for exchanging
complex clinical genomic data and interpretations, is described. FHIR Genomics is a subset of the emerging Health Level 7 FHIR
standard and targets data from increasingly available technologies such as next-generation sequencing. Much care and integration
of feedback have been taken to ease implementation, facilitate wide-scale interoperability, and enable modern app development
toward a complete precision medicine standard. A new use case, the integration of the Variant Interpretation for Cancer
Consortium (VICC) “meta-knowledgebase” into a third-party application, is described.
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INTRODUCTION
Successful practice of precision medicine will depend upon
knowledge-based interpretation of genomic variant data at the
point of care, leading to drastically improved diagnosis,
prognosis, and treatment selection.1–4 Variant data are identi-
fied both by traditional genetic panels and high-throughput
sequencing, with many large genomic databases already
housing non-compatible data structures, often employing
codes based on different nomenclatures.5–7 It follows that an
effective standard is needed to assimilate genomic results from
various formats with other clinical data. Currently, most genetic
test reports entered into the Electronic Health Record (EHR) are
in PDF format.8 There is a great opportunity to expand
functionality with the recently developed SMART platform
utilizing the Fast Healthcare Interoperability Resources (FHIR)
specification, enabling apps to be launched directly from within
the EHR.
FHIR consists of multiple linkable and extendable data

structure specifications called resources, modeling concepts in
healthcare scenarios such as patients, conditions, and clinical
observations and reports. These resources can be tailored to
use cases by standardized sets of constraints and extensions
called profiles. This approach has been praised both by large
EHR vendors and major technology companies.9–12 Given this
critical mass and building on the work of Alterovitz et al.13, the
authors and others in the Health Level Seven (HL7) community
have enumerated many clinical genomics use cases in a domain
analysis model, including clinical sequencing, cancer screening,
pharmacogenomics, public health reporting, and decision
support tools.14 These use cases and others required the
introduction of additional specific data structures to expand
the FHIR data model and prototype apps to showcase
interoperability.

RESULTS
FIHR Genomics introduces

1. A new resource, MolecularSequence, for capturing non-
interpretive (raw) sequencing data or pointing to it stored in
an external repository as needed.

2. New profiles on the existing resources Observation,
DiagnosticReport, ServiceRequest, Task, and FamilyMember-
History to facilitate sharing genetic test results, including
observed variants from reference sequences and their
clinical implications and interpretations.

A full description of the FHIR Genomics artifacts and suggested
usage can be found at https://www.hl7.org/fhir/genomics.html.
The genomics artifacts have been subject to ballot and are

deemed ready for trial use implementation. International pilot
evaluators from across the spectrum of stakeholders—including
hospitals, universities, and vendors—have experimented with
FHIR-based clinical genomics apps and use cases.13,15 Regular
development and testing opportunities arise during international
FHIR “Connectathon” events, held three times a year. These events
create short feedback loops where research institutions, produc-
tion EHR systems, and other developers join the community and
test the specification for necessary interoperability and features.
Further trial use and feedback will result in increasing maturity of
the elements within FHIR as they move toward normative status,
where adoption can occur without future iterative developments
causing breaking changes.
A FHIR Genomics implementation guide has also received HL7

ballot feedback, leveraging standardized “components” within
Observation, containing coordinated “codes” and “values.” Codify-
ing individual concepts with this feature facilitates search
operations and eases implementation. The guide leverages more
profiles on top of the resources versioned in FHIR Release 4,
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introducing a hierarchical structure of profiles and examples for
many use cases.

DISCUSSION
During the domain analysis, it was observed that sequencing data
may often need reanalysis, either when delegated to different
organizations or determined necessary after updated interpretive
information (e.g., on drugs and diseases) becomes available. Using
FHIR for genomics data provides corresponding reusability; new
resource instances can easily be linked to existing ones thanks to
FHIR’s JSON/XML-based architecture and RESTful application
program interface (API). This allows for simple implementation,
small payload sizes, and intuitive non-duplicative retrieval of data.
Figure 1 shows an example depicting a common workflow of FHIR
Genomics from an EHR perspective—an order is requested, and
test results are reported.
Mirroring the common approach of a Picture Archiving and

Communication System, it is proposed that EHRs will store only
metadata—such as path, address, and IDs—and then retrieve raw
sequencing data as needed, forming a Genomic Archiving Commu-
nication System (GACS). This approach takes into consideration the
large size and limited clinical application of raw genomic data, as well
as the trend of new infrastructure being released to the research
community before clinical optimization.16 Following this model,
MolecularSequence enables GACS integration with its repository
feature, which can carry URIs and identifiers needed to retrieve

sequencing data stored in specifications maintained by the Global
Alliance for Genomics and Health (GA4GH), for example. A similar
approach may also be taken with genomic knowledge-based
artifacts as scientific evidence constantly increases. Following
ref. 15, an FHIR Genomics app may take a patient’s clinical context
and observed variations and link this information to external
databases to ease interpretation (see Fig. 2).
Compared to other clinical data standards able to communicate

genomic information, FHIR Genomics stands out for its inter-resource
linkage capabilities and separation of interpretive and non-
interpretive data. Before FHIR, HL7 v2 was the healthcare information
exchange standard and was extended for genetics test reports with
an implementation guide.17 However, criticism was made regarding
the “Segment” structure—segments were not uniformly created and
could lack unique identities, resulting in inefficiencies for data
mining, downstream analysis, and complex interoperability. Con-
cerns were also held against the rigid HL7 v3 standard,18 where one
must largely implement the entire model to transmit data.
Apps can easily retrieve data using services such as SAMtools19

and export them into FHIR’s normative and widely adopted
Observation resource using the defined genomic profiles. For
communication with EHRs, clinicians, patients, and decision
support engines, scaling this conversion (e.g., to all variants
detected from whole-genome sequencing) may stress systems, so
filtering for clinical actionability and/or translating on demand
from a GACS implementation may be needed. Servers storing FHIR
Genomics resources can interface with the research community

Fig. 1 FHIR Genomics workflow use case. a A ServiceRequest instance; b a DiagnosticReport instance refers to Observations under “result”; c a
MolecularSequence instance carries the reference sequence and variant information; d an Observation instance carries clinical interpretation;
e additional Observations can carry further analysis information. Arrows depict the inter-resource pointers.
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through GA4GH APIs such as Beacon,20 though careful data
security considerations must be made, as these servers may also
contain additional sensitive clinical information.
FHIR Genomics has been shown to represent genomic data that

suits the needs of current and upcoming clinical genomics use
cases, and SMART technology continues to translate the potential
of a single data standard into powerful precision medicine apps.
As envisioned, the FHIR Genomics framework enables many value-
added opportunities such as clinically integrated genomics
knowledge-based apps and a translational bridge between
research-oriented genomics data and precision medicine.

METHODS
To further probe the capabilities of the FHIR Genomics guidance, a prototype
app was expanded to read and record genomic variants per updates to the
FHIR R4 standard and implementation guide.21 In addition, cancer variants
were linked to the Variant Interpretation for Cancer Consortium meta-
knowledgebase API22 for context, with evidence classified by the AMP/ASCO/
CAP somatic classification guidelines.23 A reference server was constructed
using the Health Services Platform Consortium sandbox (https://sandbox.
hspconsortium.org) where the app was successfully integrated with sample
patient data. Additional supported use cases require storage and validation
of information and terminologies cataloged by diverse efforts in the
genomics research community, including ClinVar identifiers,24 HGVS
nomenclature,25 HUGO Gene Nomenclature Committee identifiers,26 NCBI
reference sequences,27 terms from the Sequence Ontology,28 clinical
guidelines,29,30 and services, such as LOINC31 and SNOMED CT.32

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All relevant data are available from the authors without restriction. Guidance for the
data structures needed for FHIR genomics can be found at http://hl7.org/fhir/R4/
genomics.html and http://hl7.org/fhir/uv/genomics-reporting/index.html.

CODE AVAILABILITY
Code for the updated reference SMART-on-FHIR application is freely available on
GitHub via https://github.com/smart-cancer-navigator/Application, with a public
instance and instructions for linking to the public HSPC sandbox hosted at https://
smart-cancer-navigator.github.io/app. Python code for a prototype reference server
with sample FHIR genomics data is also available on GitHub at https://github.com/
bcl-lab/FHIR-Genomics_v2.
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