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stract: Public sentiments towards global pandemics are important for public health assessment and 
ase control. This study develops a modularized deep learning framework to quantify public 

timents towards COVID-19, followed by leveraging the predicted sentiments to model and forecast 
daily growth rate of confirmed COVID-19 cases globally, via a proposed G parameter. In the 

posed framework, public sentiments are first modeled via a valence dimensional indicator, instead 
iscrete schemas, and are classified into 4 primary emotional categories: (a) neutral; (b) negative; 
positive; (d) ambivalent, by using multiple word embedding models and classifiers for text 

timents analyses and classification. The trained model is subsequently applied to analyze large 
umes (millions in quantity) of daily Tweets pertaining to COVID-19, ranging from 22 Jan 2020 to 

ay 2020. The results demonstrate that the global community gradually evokes both positive and 
ative sentiments towards COVID-19 over time compared to the dominant neural emotion at its 
ption. The predicted time-series sentiments are then leveraged to train a deep neural network (DNN)
odel and forecast the G parameter by achieving the lowest possible mean absolute percentage error 
PE) score of around 17.0% during the model’s testing step with the optimal model configuration. 

words: Text sentiment classification, Global sentiment evolution, COVID-19 transmission, Deep 
ning, Twitter data, Natural language processing  
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ntroduction 

Since its inception in late 2019, the coronavirus disease 2019 (COVID-19) has already been 
arded as one of the greatest crises faced by humanity in the 21st century. The virus COVID-19 is 
 as deadly as a severe acute respiratory syndrome (SARS), however, the novel virus is generally 
re infectious to the general population. In addition, COVID-19 can be more fatal to the elderly 
up as the death rate has already reached more than 8% for those aged between 70 and 79, and above 
% for those 80 years old and above [1]. To control the spread of COVID-19, imposing social 

ancing and community lockdown measures have since been implemented in many countries [2,3]. 
ever, while generally effective, prolonged lockdown policies are likely to impose a negative 
tional impact on the general population. This guess lacks statistical evidence. 
Collaboration among the different nations is key to addressing the current pandemic situation as 

daily growth rate in the number of confirmed COVID-19 cases indicates that no single country has, 
far, been able to effectively control the virus spread while keeping their borders fully open. 
ording to the Global Health Security Index proposed by Economist Intelligent Unit (EIU) in 2019, 
global average score of preparedness level in handling an epidemic or pandemic is 40 out of 100, 
 even among the most developed and high-income countries, the average score is 51.9 [4]. The EIU 
ssment underlines an imperative and urgent need to modify the present strategies to manage the 

VID-19 outbreak in the global context. However, it is time-consuming and tedious to collate near 
-time information pertaining to the dynamic COVID-19 behavior globally, and especially difficult 
anage the social mobility of individuals in this challenging period. Social media platforms, even 

h the risk of misinformation and privacy leakage [5], provide alternative avenues for data collection 
he applications of pandemic monitoring [6], participatory governance development [7], interaction 
delling among cities [8], and disaster recovery [9]. Effective policy on pandemic control and 
vention relies on accurate information on the current pandemic situation and its potential trend soon. 
overview of the data analytics for epidemic monitoring and control can be found in Feng et al. [10]. 

Epidemic models are used to analyze COVID-19 evolution for insight and future guidance. There 
two types of epidemic models, i.e., data-driven models and mechanistic models. Data-driven 

dels focus on predictions about the near future according to past data [11]. In comparison, 
hanistic models simulate transmission dynamics [12]. Mechanistic models can project the 
plete situation from the onset of the pandemic to a global stable state, which is mathematically 
rmined as pandemic-free states [13]. Compartment models, including the classic susceptible-
osed-infectious-removed (SEIR) model and its variants, are the representatives of mechanistic 
dels [14]. However, at the early stage, little about the pandemic is known and it is hard to select the 
per parameters (e.g., contact rate) to generate curves that fit the real situations. Instead, data-driven 
dels do not rely on assumptions about parameters. A spike in coronavirus cases is affected by 
eral factors that have complex underlying dependencies. The triggers can be changes to the 
onavirus (e.g., the Delta variant in May 2021 and the Omicron variant in November 2021), human 
bility patterns, infection prevention policies, the effectiveness of vaccines over time, and the 
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nerable populations. Historical data alone do not generate precise predictions, especially when a 
e arises. 
Public sentiments not only passively reflect the public’s perception of COVID-19 but also 

vely affect their behaviors (e.g., mobility patterns), which in turn will affect the COVID-19 
ations [15]. For example, traditional methods leveraging on questionnaires exposed that lockdowns 
 distort individuals’ time perception, which further adversely affects their emotions, stress level, 
ceived task complexity, and other cognitive abilities [16]. In several megacities, sentiment shows a 
ain degree of correlation with the indicators about the ongoing COVID-19 conditions, such as 
rantine, new cases, hospitalization, and deaths [17,18]. On the other hand, the triggered from 
rgencies can be used as cues for predictive analysis of ongoing situations, as exemplified by a 
nt study conducted in Houston, Texas (United States, US) [19]. Additionally, text mining 
niques have been applied to internet information to detect possible signals having underlying 
ortant information about the transmission of COVID-19 [20], which thus serve as early warnings 

he local and global communities [21]. 
There is no conclusive evidence of the public’s sentiments towards COVID-19 since its inception 

sidering geographic boundaries. Empirical studies show gradually developed anger in the global 
ulation during 2020 [22], varying degrees of augmentation in emotions within the Chinese local 
munity [23], and both fear and passion towards lockdown [24]. Current studies on COVID-19 

timental responses have the limitations of binary classification of sentiments (i.e., positive and 
ative) which ignores a common condition of neural posts [25], and ignorance of the time index 
,27]. Considering several separate periods, Marathe et al. concluded that negative sentiment had 
eased than stabilized during the four lockdowns in India based on Twitter data [28]. Interestingly, 
udy on sentiment towards online learning in the post-pandemic period showed that neural sentiment 
inates according to Twitter analysis while negative sentiment dominates by questionnaires [29]. 
ever, the sample size is small for both analyses (i.e., 5000 Tweets and less than 100 questionnaire 

onses). Efforts have been paid to seek other evidence for pandemic prediction and control, such as 
ction probability under varying distances from the source of infection [30], visitors’ trajectory data 
crowd control [31], and aggregators by demographic information [32]. In summary, empirical 
ence of global sentiment variations with a fine time resolution (i.e., daily) towards the evolving 

VID-19 is scares. Besides, the effect of collective sentiment on the prediction of the pandemic 
ation remains unknown. 

To better inform the current pandemic situation and project it to the near future state, this study 
nds to (i) quantify the public’s sentiment towards COVID-19 with a daily resolution by processing 
rge volume of COVID-19 Tweets, which are responses to historical COVID-19 situations, and (ii) 
mpirically test the feasibility of incorporating sentiment analysis results to predict future COVID-
situation at a global scale, where it is assumed that sentimental responses towards COVID-19, in 
, will stabilize the predication of future pandemic situation. The study investigates the use of 

eral deep learning pipelines, i.e., frameworks, to perform extensive sentiment classification 
lyses towards COVID-19 by exploiting the availability of emotional responses-related datasets, 
owed by performing transfer learning to analyze large volumes of daily COVID-19-associated 
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itter data (between January 2020 to May 2020) to develop a level of quantitative understanding of 
general populations’ emotional responses towards the current pandemic. Following this, the 

timent results are leveraged to forecast the temporal spread of COVID-19 via the daily increase 
 in the number of confirmed cases globally. In summary, this study contributes in the following 
ects: (i) developing a modularized deep learning model framework for text sentiment analysis and 
dating the prediction results on multiple open-source datasets; (ii) initiating a transfer learning 
cess that enables the adaptation of the trained deep learning model to analyze the temporal evolution 
he global sentiments towards COVID-19; and (iii) correlating sentiment category distribution, as 
ived from the preceding transfer learning step, to model and forecast, via deep learning, the growth 
 in the confirmed number of COVID-19 cases globally. 
The rest of the paper is structured as follows. Section 2 reviews the existing methods in the 

rature for text sentiment classification analysis. Section 3 describes the architecture of this 
dularized deep learning model(s) for processing and classifying text sentiments and followed a 
dictive analysis of the ongoing situation. Section 4 describes the open-source datasets leveraged to 
n, validate, and test the proposed deep learning model(s), results, and discussions. Finally, Section 
ccinctly summarizes the key findings obtained from this study, as well as future works. 

iterature review on sentiment analysis 

Sentiment analysis is an important task in the domain of natural language processing (NLP) and 
uage modelling [33]. However, sentiment classification from short texts generally presents a two-
 challenge, namely: (i) there are currently no quick labeling methods for text sentiments which 
 hinder supervised learning for NLP analysis for effective basic deployment for multiple 

lications [34,35]; (ii) ambiguity is likely to occur which can affect the resulting model’s 
sification accuracy [36]; (iii) content quality may differ across different datasets which again can 

der the training phase of the language model [31]. To address these issues, studies have been 
ducted to improve different variants of NLP models to improve performance for sentiment analysis, 
ell as other related machine learning tasks [37]. Generally, sentiment classification can be grouped 
 two main categories, namely lexicon-based and machine learning categories.  
Lexicon-based methods skip the traditional model training step and instead focus on the semantic 

ntation of separate words. In corpus-based methods, certain words are correlated with positive or 
ative sentiments. For example, the word “excellent” is considered with a positive polarity, and the 
d “poor” is considered with a negative polarity [38]. In dictionary-based methods, where lexicon 
sed, keywords reflecting sentiments in the document are explicitly used to evaluate the sentiments 
he text. The dependence on specific words, however, limits the generalization of the available 
pus or lexicon in sentiment analysis towards other topics. Besides, text writers may not explicitly 
ress their emotions, such as by using adjectives. Besides, statistical methods do not consider 
textual information, and thus developed models may suffer from contextual polarity. Considering 
large effort to build a topic-centered corpus or lexicon, domain adoption is an important issue to 
ress effectively, where a general-purpose sentiment lexicon has since been introduced which 
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forms well as domain-specific lexicons [39]. Several sentiment lexicons have been combined and 
iewed for domain adaption purposes for classifying available sentiments of product reviews [40].  

Machine learning methods belong to supervised feature-based learning and can usually improve 
performance of sentiment analyses. Common features include unigram, bigram, n-gram, word 
edding, and parts of speech. These features are leveraged as inputs to different types of classifiers 
odel and predict the label of the sentiment itself. The derived classification results depend on 

eral factors which include, but are not limited to, the type of feature engineering method used for 
 pre-processing, development of the classifier model, labeling quality of the raw/processed datasets,
ell as the task objective itself. For instance, Naïve Bayes, maximum entropy, support vector 

hine (SVM) achieved around 80% classification accuracy for binary classification task on the 
set named  sentiment140 by using features derived from unigram and bigram [41]. In comparison, 
performance of multi-class sentiment classification is of limited accuracy. For example, studies on 
two open-source Twitter datasets, including CrowdFlower and Electoral-Tweets, reported low F1-
res of 0.32 and 0.31 respectively [35]. 

Deep learning architectures such as convolutional neural networks (CNN), recurrent neural 
orks (RNN), and Long Short-Term Memory (LSTM) [42,43], serve as good alternatives to 

lyze sentiments. Combinations of different architectures are expected to improve the accuracy 
formance of sentiment analysis. For example, a hybrid approach integrating CNN and LSTM has 
n shown to significantly improve the resulting accuracy for classifying different types of sentiments 
]. Attention neural networks have been used to address aspect-level sentiments [45] and multi-
ain sentiments [46]. In summary, effective text sentiment classification requires the careful 
ction of text features and classifiers, which can be tedious and time-consuming. Hence, developing 
odular architecture for sentiment analysis will allow for easy modifications and model refinements, 
ell as provide improved interpretability. 
Transfer learning in sentiment classification is promising as it reduces the workload required to 

otate new data and integrates the inherent characteristics of pre-existing labeled datasets used for 
ning the model previously [47-49]. Cross-corpus sentiment classification problems, either on 
tical or diverse domains, can be approached by leveraging the source dataset(s) having rich 

timent labels to analyze the target dataset, where the latter lacks suitable labels for the supervised 
ning task. The key objective in performing a cross-corpus sentiment classification task is to extract 
pus invariant features to bridge the source and the target (or unseen) dataset for integrating corpus 
ariant information between two datasets. Transfer learning has also been coupled with deep learning 
lysis for sentiment classification. For example, manifold regularization is used to enhance a semi-
ervised framework for cross-corpus sentiment classification [50], while transfer network using 
p learning has demonstrated good model performance in classifying sentiment polarity on cross-
ain topics [47]. However, selecting the optimal source dataset and pre-trained classifier model 
ains an open research question in the domain of classifying text sentiments. 
Overall, sentiment is a fundamental element in demonstrating one’s cognition and brain activities, 

 responses to an action. Text sentiment analysis using the Twitter dataset contains more information 
ut users’ preferences and cognitive states. The sentiment analysis results can then be leveraged in 
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y applications such as social network analysis, recommender systems, and trend prediction. For 
mple, sentiments and emotions from Tweets have been used to identify user clusters for 
mmendation purposes [51], where the “mood”, i.e. fluctuations, of Twitter data has been 
rmined to be an effective economic indicator for short- and long-term stock predictions [52,53]. 

summary, sentiment analysis is an important topic in the NLP domain, hence the proposed 
dularized deep learning approach in this study aims to quantitatively investigate the complex 
tionship between global public sentiments and the transmissivity of COVID-19 on the global scale. 

ethodology 

The proposed modularized deep learning approach investigates the feasibility of using existing 
n-source datasets to analyze global sentiments towards COVID-19. The approach aims to first 
duct sentiment analysis using relevant Twitter data where the generated sentiments results. Coupled 
h the growing number of COVID-19-related Tweets, the sentiment analysis results are used as 
del input features to model and forecast the growth rate in the confirmed number of COVID-19 
es globally. The in-built sentiment analysis in the proposed approach consists of a series of 
tematic analyses, where each addresses specific tasks as follows: (i) building word embedding 
dels from the available corpus in the open datasets using deep learning techniques; (ii) constructing 
tence representation using the built word embeddings from the preceding step; (iii) classifying the 
 sentiments based on the sentence representation.  
Situational predictive analysis correlates and explores the quantitative relationship between 

erent sentiments and the daily increase rate of confirmed COVID-19 cases globally. The 
ework of the proposed modular deep learning model for text sentiment and situational predictive 

lyses, coupled with transfer learning, is illustrated in Fig. 1. For model training, datasets with and 
hout labeled sentiment classes are selected as the corpora to train the selected word embedding 
del. The word representations derived from the trained word embedding models are then leveraged 
nput model features for training and validating selected classifier(s). The predictive capability of 
trained classifier(s) is then subsequently applied for the sentiment analysis of new unlabeled texts 
cerning the target objective. Finally, the derived quantitative sentiment results are then exploited 
odel and predict the daily increase rate of COVID-19 on 3 structurally different neural networks 
) regressors. 

 Data preprocessing 

Various preprocessing techniques are used to pre-process the available text data by removing 
ctuations, stop words, and non-English words for reducing the “noises” and feature dimensions of 
learned word vector. As stop words are common words with high occurrence frequency but little 
antic meaning, such as “ourselves”, “hers”, “with”, etc., the stop words ae removed in the analysis 
g the stop words corpus in the open-source python library Natural Language Toolkit (NLTK). 
ilarly, non-English words are removed using the English words corpus from the NLTK library.  
ry original, i.e., raw, Twitter post is tokenized into individual words, followed by comparing the 

enized words with the available pool of punctuations, stop words corpus, and English words corpus 
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text cleaning. For example, considering an original Tweet as “When I couldn't find hand sanitizer 
red Meyer, I turned to #Amazon. But $114.97 for a 2 pack of Purell??!!Check out how 

ronavirus concerns are driving up prices. https://t.co/ygbipBflMY”. By removing the available 
ctuations, stop words, and non-English words, the remaining tokenized words are ['I', 'could', 'find', 
d', 'Fred', 'I', 'turned', 'Amazon', 'pack', 'driving']. 

 

. 1. The framework of deep learning in sentiment analysis and situation prediction towards COVID-
The training dataset (dataset 1) and target dataset (dataset 2) are fed to the language model so that 
r word vectors are obtained on a shared corpus, after which the samples from the training dataset 
used for training and validation to calibrate the classifier, and the samples from the target dataset 
analyzed using the calibrated classifier. The sentiment analysis results, together with the no. of 
ets, are used as features to predict the daily increase rate of confirmed COVID-19 cases. 

 Text feature extraction 

1. Word embedding 
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Word embedding learns the word representation from the corpus. Representing tokenized words 
ord vectors is the first step in almost all NLP tasks. Word embedding is the representation of a 

que word using a one-dimensional (1D) vector. There are two types of methods to derive the word 
tors: singular value decomposition (SVD) and iteration-based methods. SVD methods solve the 
blem by counting the occurrence of a word in a document which is denoted as a word-document 
rix, or by counting the co-occurrence of two words which is represented as a window-based co-
urrence matrix. These methods are often associated with underlying problems of dynamic word 
, high dimensional words, and extremely sparse matrix as a significantly large number of English 
ds do not co-occur. Instead of computing and storing huge datasets, iteration-based models update 
probability in each iteration and thus solve the above-mentioned problems more efficiently. 
mple iteration-based methods are the unigram, bigram, continuous bag of words (CBOW) model, 
 Skip-gram model. CBOW and Skip-gram are two promising models of lexical semantics and have 
n demonstrated to perform markedly better in encapsulating semantic relatedness than other 
uage analytic models [54]. Both CBOW and Skip-gram are described briefly below, which serve 

he two primary candidates for the first component of the proposed modular sentiment classification 
itecture. 
CBOW and Skip-gram models learn the word vectors by optimizing the probability of word 

urrence in a stream of text via a neural network with one hidden layer, i.e., a shallow deep neural 
ork model. CBOW predicts the missing center word given the context words. Conversely, Skip-

m predicts the context words given the center word. The objective function to be minimized in 
OW is the cross-entropy of probability as expressed in Eq. (1). Intuitively, CBOW finds the center 
d with the maximum probability given the context words. On the contrary, the cost function used 

he Skip-gram model is expressed in Eq. (2). Skip-gram locates the output words with the maximum 
duct of probabilities corresponding to each output word given the input center word. The input 
rix, output matrix, and neural network parameters are solved using backpropagation and a 
hastic optimizer. 

Minimize 𝐽𝐽 = − log𝑃𝑃(𝑤𝑤𝑐𝑐|𝑤𝑤𝑐𝑐−𝑚𝑚, … ,𝑤𝑤𝑐𝑐−1,𝑤𝑤𝑐𝑐+1, … ,𝑤𝑤𝑐𝑐+𝑚𝑚) 
= − log𝑃𝑃(𝑢𝑢𝑐𝑐|𝑣𝑣�) 

= − log
exp(𝑢𝑢𝑐𝑐𝑇𝑇𝑣𝑣�)

∑ exp�𝑢𝑢𝑗𝑗𝑇𝑇𝑣𝑣��
|𝑉𝑉|
𝑗𝑗=1

 

= −𝑢𝑢𝑐𝑐𝑇𝑇𝑣𝑣� + log� exp(𝑢𝑢𝑗𝑗𝑇𝑇𝑣𝑣�)
|𝑉𝑉|

𝑗𝑗=1

 

(1) 

re 𝑤𝑤𝑐𝑐 is the targeted center word, 𝑤𝑤𝑐𝑐−𝑚𝑚, … ,𝑤𝑤𝑐𝑐−1,𝑤𝑤𝑐𝑐+1, … ,𝑤𝑤𝑐𝑐+𝑚𝑚 are the context words around the 
ter word with a window of size 𝑚𝑚, 𝑢𝑢𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛 is the 𝑛𝑛 × 1 output vector representation of a center 

d 𝑤𝑤𝑐𝑐, 𝑣𝑣� = 𝑣𝑣𝑐𝑐−𝑚𝑚+𝑣𝑣𝑐𝑐−𝑚𝑚+1+⋯+𝑣𝑣𝑐𝑐+𝑚𝑚
2𝑚𝑚

∈ 𝑅𝑅𝑛𝑛 is the average of the input vectors corresponding to the input 

text words, and |𝑉𝑉| is the number of possible output words.  
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Minimize 𝐽𝐽 = − log𝑃𝑃(𝑤𝑤𝑐𝑐−𝑚𝑚, … ,𝑤𝑤𝑐𝑐−1,𝑤𝑤𝑐𝑐+1, … ,𝑤𝑤𝑐𝑐+𝑚𝑚|𝑤𝑤𝑐𝑐) 

= − log � 𝑃𝑃�𝑤𝑤𝑐𝑐−𝑚𝑚+𝑗𝑗�𝑤𝑤𝑐𝑐�
2𝑚𝑚

𝑗𝑗=0,𝑗𝑗≠𝑚𝑚

 

= − log � 𝑃𝑃�𝑢𝑢𝑐𝑐−𝑚𝑚+𝑗𝑗�𝑣𝑣𝑐𝑐�
2𝑚𝑚

𝑗𝑗=0,𝑗𝑗≠𝑚𝑚

 

= − log �
exp�𝑢𝑢𝑐𝑐−𝑚𝑚+𝑗𝑗

𝑇𝑇 𝑣𝑣𝑐𝑐�
∑ exp(𝑢𝑢𝑘𝑘𝑇𝑇𝑣𝑣𝑐𝑐)|𝑉𝑉|
𝑘𝑘=1

2𝑚𝑚

𝑗𝑗=0,𝑗𝑗≠𝑚𝑚

 

= − � 𝑢𝑢𝑐𝑐−𝑚𝑚+𝑗𝑗
𝑇𝑇 𝑣𝑣𝑐𝑐

2𝑚𝑚

𝑗𝑗=0,𝑗𝑗≠𝑚𝑚

+ 2𝑚𝑚 log� exp (𝑢𝑢𝑘𝑘𝑇𝑇𝑢𝑢𝑐𝑐)
|𝑉𝑉|

𝑘𝑘=1

  

(2) 

re 𝑤𝑤𝑐𝑐 is the targeted center word, 𝑤𝑤𝑐𝑐−𝑚𝑚, … ,𝑤𝑤𝑐𝑐−1,𝑤𝑤𝑐𝑐+1, … ,𝑤𝑤𝑐𝑐+𝑚𝑚 are the context words around the 
ter word with a window of size 𝑚𝑚, 𝑣𝑣𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛 is the 𝑛𝑛 × 1 input vector representation of a center word 
 𝑢𝑢𝑐𝑐−𝑚𝑚+𝑗𝑗 ∈ 𝑅𝑅𝑛𝑛 is the output vector representation of each context word, and |𝑉𝑉| is the number of 
sible output words. 

2. Sentence representation 
Sentiment classification is usually performed at a sentence- or paragraph-level for each text 

pus. For consistency and convenience, “sentence” refers to short texts that have one sentiment label, 
n if it contains more than one sentence. This part explains the techniques used to construct sentence 
resentation from available word vectors, including sum, term frequency-inverse document 
uency (TF-IDF) weighted sum, and concatenation of word vectors, where the derived results will 
ed to the proposed classification model in the subsequent stages. 
By removing punctuations and non-English words from the original sentence, each tokenized list 
ords derived can be denoted as 𝑆𝑆 = [𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑙𝑙] where 𝑤𝑤𝑖𝑖 is a word in the sentence and 𝑙𝑙 is the 

l number of words in this message. Some words will not have the required word embeddings in the 
ned word2vec model (CBOW or Skip-gram) as both models learn the word vectors from a certain 
pus which will remove very rare-occurring words via a parameter termed “min_count”. Those 
ds without word vectors in the corpus are assigned zero values in all dimensions. 
Both the sum and TF-IDF weighted sum methods maintain a common defined 1D size of sentence 

tor for consideration as a word-vector. The sum method constructs the sentence vector from 
enized words via Eq. (3). TF-IDF is one method that assesses the weight of each word considering 
ccurrence frequency and relative importance in the corpus. TF counts the occurrence frequency of 

h word in one document, which is then divided by the document length to avoid a preference for 
g documents. IDF is the log of total documents divided by the number of documents containing 
ain words. IDF measures the importance of each word assuming less importance of words that 
ear in more documents. TF-IDF is the product of the two scores TF and IDF. TF-IDF weight sum 
hod constructs the sentence vector from tokenized words by Eq. (4). 

𝑠𝑠 = 𝑣𝑣1 + 𝑣𝑣2 + ⋯+ 𝑣𝑣𝑙𝑙 (3) 
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re 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑙𝑙 ∈ 𝑅𝑅  are the word vectors of the tokenized words in the given sentence, and 𝑠𝑠 ∈
is the sentence vector. 

𝑠𝑠 = 𝑐𝑐1𝑣𝑣1 + 𝑐𝑐2𝑣𝑣2 + ⋯+ 𝑐𝑐𝑙𝑙𝑣𝑣𝑙𝑙 (4) 
re 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑙𝑙 ∈ 𝑅𝑅𝑛𝑛  are the word vectors of the tokenized words in the given sentence, 

2, … , 𝑐𝑐𝑙𝑙 are the corresponding weight of each tokenized word from the TF-IDF model, and 𝑠𝑠 ∈ 𝑅𝑅𝑛𝑛 
e sentence vector. 
Concatenation constructs the sentence representation from word vectors by connecting the 1D 

tors into a 2D matrix according to Eq. (5). Compared to posting-padding, pre-padding is determined 
e more effective in CNN and LSTM for NLP-related tasks [55]. Sentence vectors are pre-padded 

h zero vectors to the maximum length of the sentence sequence before they are fed into a 
sification model. 

𝑠𝑠 = [𝑣𝑣1𝑇𝑇; 𝑣𝑣2𝑇𝑇; … ; 𝑣𝑣𝑙𝑙𝑇𝑇] (5) 
re 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑙𝑙 ∈ 𝑅𝑅𝑛𝑛 are the column word vectors of the tokenized words in the given sentence, 
 𝑠𝑠 ∈ 𝑅𝑅𝑛𝑛×𝑙𝑙  is the sentence matrix. Each row of 𝑠𝑠 represents the word vector of one word in the 
tence. 

3. Co-corpus transfer learning 
Given two independently collected datasets of text corpora, the main purpose of transfer learning 

 develop one specific sentence transformation which can best represent the features of the samples 
 the two datasets under the same distribution of tokenized words. That is, one cannot distinguish 

ch dataset the sample comes from using the transferred features [56]. To achieve this objective, the 
s from the two datasets are pre-processed in the same manner and fed into one word embedding 
del, so that the resulting output representing the learned word-vector shares the same corpus. 

 Learning classifiers 

The classifier is a key module that predicts the label given the word vectors or sentence vectors 
the sentiment classification task. The neural network has demonstrated promising performance in 
P tasks, where multiple deep learning architectures have been proposed. There is no consistent 
clusion about which neural networks collectively show an excellent performance towards a certain 
. Three NN classifiers with varying manipulations of the position information are compared in 
s of the performance of classification. Specifically, MLP does not include any position 
rmation about the context words. CNN provides local position information about the context words.
N provides extra memory about the context words. As there is no rule of thumb about the best 
ice for sentiment classification tasks on a certain dataset, the three NN classifiers are tested on 
ltiple datasets to select a more advanced network structure. These three NN classifiers, two-layer 
ltilayer perceptron (MLP), CNN, and RNN are described below. 

1. Two-layer MLP 
A two-layer feed-forward neural network enables the non-linearity of the inputs in predicting the 

timent label from the sentence vector. The input layer is the sentence representation 𝑠𝑠 ∈ 𝑅𝑅𝑛𝑛 from 
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previous module. The neurons in the first hidden layer are calculated as the weighted sum of input 
rons with a bias term activated by a nonlinear function, as shown in Eq. (6). The neurons in the 
ond hidden layer are calculated as the weighted sum of neurons in the first hidden layer with a bias 

 activated by a non-linear function, as shown in Eq. (7). The neurons in the output layer are 
ulated as a weighted sum of the second hidden layer. The softmax function is used to get the 

bability over each class, as shown in Eq. (8). A visual illustration of the feed-forward neural 
ork is shown in Fig. 2. 

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑠𝑠 + 𝑏𝑏1) (6) 
re 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1×𝑛𝑛 is the weight matrix connecting the input layer and the first hidden layer, 𝑑𝑑1 is the 
ber of neurons in the first hidden layer, 𝑏𝑏1 ∈ 𝑅𝑅𝑑𝑑1 is the bias terms for the input layer, 𝜎𝜎(∙) is the 

vation function, and ℎ1 is the vector representation for the neurons in the first hidden layer. In this 
k, the activation function uses an exponential linear unit (ELU).  

ℎ2 = 𝜎𝜎(𝑊𝑊2ℎ1 + 𝑏𝑏2) (7) 
re 𝑊𝑊2 ∈ 𝑅𝑅𝑑𝑑2×𝑑𝑑1 is the weight matrix connecting the first hidden layer and the second hidden layer, 

is the number of neurons in the second hidden layer, 𝑏𝑏2 ∈ 𝑅𝑅𝑑𝑑2 is the bias terms for the first hidden 
r, 𝜎𝜎(∙) is the activation function, and ℎ2 is the vector representation for the neurons in the second 

den layer. In this work, the activation function uses the ELU. 
𝑝𝑝 = softmax(𝑊𝑊3ℎ2) (8) 

re 𝑊𝑊3 ∈ 𝑅𝑅𝑑𝑑𝑜𝑜×𝑑𝑑2 is the weight matrix connecting the second hidden layer to the output layer, 𝑑𝑑𝑜𝑜 is 
number of neurons in the output layer representing the number of classes, and softmax(𝑧𝑧𝑖𝑖) =
xp𝑧𝑧𝑖𝑖
exp𝑧𝑧𝑗𝑗 

 transfers the output into normalized probability over each class. 

 
Fig. 2. Two-layer MLP for classifying texts. 

2. CNN 
CNN combines the local features of the input sentence matrix by sliding a convolutional window 

g a spatial dimension of the input matrix. The resultant feature map is further reduced by a max-
ling layer, which picks out the maximum value over a defined pooling window. The CNN used in 
 study includes one convolutional layer, one max-pooling layer, one flatten layer, and two dense 
rs. Denote the input sentence matrix as 𝑠𝑠 = [𝑣𝑣1𝑇𝑇;  𝑣𝑣2𝑇𝑇; … ; 𝑣𝑣𝑙𝑙𝑇𝑇] , and 𝑠𝑠𝑖𝑖:𝑗𝑗 = [𝑣𝑣𝑖𝑖𝑇𝑇; … ; 𝑣𝑣𝑗𝑗𝑇𝑇]  is the 
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hing of 𝑖𝑖  to 𝑗𝑗  word vectors in 𝑠𝑠. The convolution operation to obtain the feature map 𝐶𝐶 is 
wn in Eq. (9). The feature map 𝐶𝐶 is reduced by a factor of “pool_size”, which defines the height of 
pooling window. The reduced 2D feature map is then flattened to 1D features, which is fed to the 
se layer.  

A simple CNN architecture for classifying texts is shown in Fig. 3. An input sentence matrix is 
wn as an example of the input format. The sentence matrix formulation from the raw text is briefly 
strated below. For instance, the original Tweet text is “I should be sleep, but im not! thinking about 
ld friend who I want. but he's married now. damn, &amp; he wants me 2! scandalous!”. After pre-

cessing, the tokenized words are ['I', 'sleep', 'thinking', 'old', 'friend', 'I', 'want', 'married', 'damn', 
ndalous']. It can be observed that punctuations and some words that are recognized as stop-words 
on-English words have been removed in the pre-processing stage. The sentence matrix is formed 

concatenating the word vectors from the pre-trained word embedding model. It can be observed 
 the words ‘I’ and ‘scandalous’ are not in the model due to their too high or too low frequency in 
whole corpus and are substituted with zero vectors. Pre-padding with zero vectors is used to unify 
size of the input and to get the feature map of the convolution operation for the first several rows. 

𝐶𝐶𝑗𝑗 = 𝑓𝑓(𝑊𝑊 ∘ 𝑠𝑠𝑖𝑖:𝑗𝑗 + 𝑏𝑏) (9) 
re ∘ is the element-wise multiplication, 𝑊𝑊 and 𝑏𝑏 denote the weight matrix and bias terms for the 
volution kernel, respectively, and 𝑓𝑓 is the activation function. 

A 1D convolution layer is used to perform the convolution operations. The number of filters is 
sen among the dimension of the word vector 𝑛𝑛, 𝑛𝑛

2
, and 𝑛𝑛

4
. Kernel size is chosen among 3, 4, and 5. 

sal padding is used, where zero vectors are padded for the first several times of implementation of 
nvolutional operator. The movement per step is set to 1. ReLU is used as the activation function. 

 
Fig. 3. A simple CNN architecture for classifying texts. 

3. RNN 
 RNN propagates context information through faraway time-steps. The gradient descent method 

ften used to find the best weight matrices of RNN by optimizing the loss function. Learning long-
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 dependency using RNN is challenging. For example, it suffers from a vanishing gradient problem, 
re the gradient value goes to zero in the backpropagation process [57]. LSTM is an improved 

del of RNN and performs better with the use of more complex units of activation. LSTM units are 
nd to have more persistent memory and can selectively remember patterns for long durations of 
e. LSTM unit depends on both the old state ℎ(𝑡𝑡−1) and the input 𝑥𝑥(𝑡𝑡).  

LSTM unit contains three gates: input gate, forget gate, and output gate. The mathematical 
ulation of LSTM units is shown in Eqs. (10)-(15). Intuitively, new memory is generated based on 

input words 𝑥𝑥(𝑡𝑡) and the past hidden state ℎ(𝑡𝑡−1). The input gate estimates the importance of this 
ly generated memory. Similarly, the output gate evaluates the usefulness of memory in the 
ulation of current memory. The gated new memory and gated memory are combined to form the 
l memory. The output gate controls how much information in the final memory is stored in the 

den state, which will be passed to the next LSTM unit. A basic RNN architecture for classifying 
s including the input layer, RNN layer, and two dense layers with softmax output is shown in Fig. 
he number of units in the LSTM layer is picked among the three values, 20, 50, and 100 based on 
r performance. 

𝑖𝑖(𝑡𝑡) = 𝜎𝜎�𝑊𝑊(𝑖𝑖)𝑥𝑥(𝑡𝑡) + 𝑈𝑈(𝑖𝑖)ℎ(𝑡𝑡−1) + 𝑏𝑏(𝑖𝑖)� (10) 

𝑓𝑓(𝑡𝑡) = 𝜎𝜎�𝑊𝑊(𝑓𝑓)𝑥𝑥(𝑡𝑡) + 𝑈𝑈(𝑓𝑓)ℎ(𝑡𝑡−1) + 𝑏𝑏(𝑓𝑓)� (11) 

𝑜𝑜(𝑡𝑡) = 𝜎𝜎�𝑊𝑊(𝑜𝑜)𝑥𝑥(𝑡𝑡) + 𝑈𝑈(𝑜𝑜)ℎ(𝑡𝑡−1) + 𝑏𝑏(𝑜𝑜)� (12) 

𝑢𝑢(𝑡𝑡) = tanh�𝑊𝑊(𝑢𝑢)𝑥𝑥(𝑡𝑡) + 𝑈𝑈(𝑢𝑢)ℎ(𝑡𝑡−1) + 𝑏𝑏(𝑢𝑢)� (13) 

𝑐𝑐(𝑡𝑡) = 𝑖𝑖(𝑡𝑡) ∘ 𝑢𝑢(𝑡𝑡) + 𝑓𝑓(𝑡𝑡) ∘ 𝑐𝑐(𝑡𝑡−1) (14) 

ℎ(𝑡𝑡) = 𝑜𝑜(𝑡𝑡) ∘ tanh�𝑐𝑐(𝑡𝑡)� (15) 

re 𝑖𝑖(𝑡𝑡), 𝑓𝑓(𝑡𝑡), 𝑜𝑜(𝑡𝑡) are the outputs of the input gate, forget gate, and output gate, respectively, 𝑢𝑢(𝑡𝑡) is 
ew memory, 𝑐𝑐(𝑡𝑡) is the final memory, ℎ(𝑡𝑡) is the new hidden state of the LSTM unit, 𝜎𝜎(∙) is the 

oid activation function, 𝑊𝑊(𝑖𝑖) and 𝑈𝑈(𝑖𝑖) are weights for input gate, 𝑊𝑊(𝑓𝑓) and 𝑈𝑈(𝑓𝑓) are weights for 
et gate, 𝑊𝑊(𝑜𝑜)  and 𝑈𝑈(𝑜𝑜)  are the weights for the output gate, 𝑊𝑊(𝑢𝑢)  and 𝑈𝑈(𝑢𝑢)  are the weights for 
erating new memory, 𝑏𝑏(𝑖𝑖), 𝑏𝑏(𝑓𝑓), 𝑏𝑏(𝑜𝑜), and 𝑏𝑏(𝑢𝑢) are the bias terms for the input gate, forget gate, 
put gate, and new memory generation, respectively, and ∘ denotes element-wise multiplication. 

 Classifier loss function and performance evaluation 

Cross entropy is used as the loss function in training the ANN classifiers. Cross entropy for multi-
s classification per observation is expressed in Eq. (16). The cross-entropy of each observation is 
med to form the loss of the classifier. 

𝐿𝐿 = −�𝑦𝑦𝑜𝑜,𝑐𝑐 log 𝑝𝑝𝑜𝑜,𝑐𝑐

𝑚𝑚

𝑐𝑐=1

 (16) 

re 𝑚𝑚 is the number of classes, 𝑦𝑦𝑜𝑜,𝑐𝑐  is a binary indicator representing whether class label 𝑐𝑐 is a 
rect observation 𝑜𝑜, and 𝑝𝑝𝑜𝑜,𝑐𝑐 is the predicted probability that observation 𝑜𝑜 is of class 𝑐𝑐. 

Accuracy is the ratio of correctly classified samples to the total number of samples, as shown in 
 (17). To test the modular architecture for text classification, a labeled dataset is split into training 
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ples (64%), validation samples (16%), and testing samples (20%). The performance of the model 
valuated by training accuracy, validation accuracy, and testing accuracy. In transfer learning, the 
led dataset is split into training samples (80%) and validation samples (20%), and the target dataset 

hout labels is tested by the calibrated model using the labeled dataset. 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (17) 

re 𝐴𝐴𝐴𝐴𝐴𝐴 denotes the accuracy. 

 
Fig. 4. A basic RNN architecture for classifying texts. 

 Modelling COVID-19 temporal evolution using predicted sentiments 

The predicted sentiments from the trained classifiers, as part of the proposed modularized deep 
ning framework (Fig. 1), are subsequently leveraged as model input features to train, validate, and 
 personalized deep neural networks (DNNs) to model and forecast the temporal evolution in the 
l number of confirmed COVID-19 cases on a global context, via a proposed 𝐺𝐺𝑡𝑡  parameter as 
ined in Eq. (18).  

𝐺𝐺𝑡𝑡 =
𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡−1
𝑌𝑌𝑡𝑡−1

× 100% (18) 

re 𝑌𝑌𝑡𝑡 represents the global number of confirmed COVID-19 cases at time (𝑡𝑡), and 𝑌𝑌𝑡𝑡−1 represents 
global number of COVID-19 cases at time (𝑡𝑡 − 1) from the previous day. Ideally, the infected 
ulation should be a dynamic group with newly infected ones in and recovered ones out, however, 
rently, daily data recording does not track the recovery time for each infected case. Therefore, only 
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newly confirmed cases are included but recovered cases are not excluded in 𝑌𝑌𝑡𝑡 . The effect of 
very time on mortality and recovery rates is highlighted in Bhapkar et al. [58]. 

The reported numbers of confirmed COVID-19 cases are collated from an open-source database 
ps://ourworldindata.org/coronavirus-data). This study analyzes the computed 𝐺𝐺𝑡𝑡  values for the 
iod ranging between 22 Jan 2020 and 10 May 2020, as illustrated in Fig. 5.  

 
Fig. 5. Temporal variations of 𝐺𝐺𝑡𝑡 between 22 Jan 2020 and 10 May 2020 

Modelling the proposed 𝐺𝐺𝑡𝑡 is performed using three unique scenarios, termed Scenarios A to C, 
h a defined number of multi-time steps based upon historical records, as measured in days. In all 
narios, the forecasting step is carried out with an additional fixed lead-time of 1 day, atop the 
ined number of multi-time steps for the respective scenario. For example, as generically 
mplified in Fig. 6, to model and forecast the 𝐺𝐺𝑡𝑡 parameter on 26 Jan 2020 with 3 days of multi-
e steps and 1 lead day, the historical data for the period between 22 Jan 2020 and 24 Jan 2020 are 
d for the modelling step. Three customized DNNs are used to predict 𝐺𝐺𝑡𝑡, as shown in Fig. 7. Their 
erparameters are listed in Table 1. The exact descriptions of Scenarios A to C are given in the 
owing: 
Scenario A: The G parameter (𝐺𝐺𝑡𝑡), in its current state of time, is modeled directly as a function of 
3 days, 5 days, 7 days, and 9 days of multi-time steps for the historical predicted sentiments as 
defined in Eq. (19), with a fixed lead-time of 1 day. The DNN design to model Scenario A is 
illustrated in Fig. 7(a).  
Scenario B: The G parameter (𝐺𝐺𝑡𝑡), in its current state of time, is modeled directly as a function of 
3 days, 5 days, 7 days, and 9 days of multi-time steps for the historical predicted sentiments and 
𝐺𝐺𝑡𝑡 for the same historical period as defined in Eq. (20), with a fixed lead-time of 1 day. The DNN 
design to model Scenario B is illustrated in Fig. 7(b).  
Scenario C: Built upon the same conditions as that of Scenario B, with the exception that the 
historical 𝐺𝐺𝑡𝑡 values for the defined multi-time steps are assimilated or fused into selected hidden 
layers of the DNN model, the DNN design to model Scenario C is illustrated in Fig. 7(c). 

𝐺𝐺𝑡𝑡 = 𝑓𝑓�𝑋𝑋1,𝑡𝑡−𝑁𝑁−2,𝑋𝑋1,𝑡𝑡−𝑁𝑁−1, … ,𝑋𝑋1,𝑡𝑡−2, … ,𝑋𝑋𝑀𝑀,𝑡𝑡−𝑁𝑁−2,𝑋𝑋𝑀𝑀,𝑡𝑡−𝑁𝑁−1, … ,𝑋𝑋𝑀𝑀,𝑡𝑡−2� (19) 

𝐺𝐺𝑡𝑡 = 𝑓𝑓�𝑋𝑋1,𝑡𝑡−𝑁𝑁−2, … ,𝑋𝑋1,𝑡𝑡−2, … ,𝑋𝑋𝑀𝑀,𝑡𝑡−𝑁𝑁−2, … ,𝑋𝑋𝑀𝑀,𝑡𝑡−2,𝐺𝐺𝑡𝑡−𝑁𝑁−2, … ,𝐺𝐺𝑡𝑡−2� (20) 
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re 𝑋𝑋 represents the predicted sentiments from the trained classifier, 𝑀𝑀 the total number of features 
uding all the unique predicted sentiments and the number of Tweets, and 𝑁𝑁 the value of multi-time 
s for the historical records. 

 
Fig. 6. Example for modelling and forecasting 𝐺𝐺𝑡𝑡 parameter 

le 1. Summary of hyperparameter values for training DNNs in Scenarios A-C 
per-parameters Scenario A Scenario B Scenario C 
. of neurons in the input layer M × N (M+1) × N M × N 
. of neurons in hidden layer 1 int((M × N)/2) int((M × N)/2) int((M × N)/2) 
. of neurons in hidden layer 2 int((M × N)/3) int((M × N)/3) int((M × N)/3) 
. of neurons in hidden layer 3 int((M × N)/4) int((M × N)/4) int((M × N)/4) 
. of neurons in hidden layer 4 Nil Nil 1 + N 
. of neurons in hidden layer 5 Nil Nil 3 
. of neurons in hidden layer 6 Nil Nil 3 
. of neurons in the output 
er 

1 

. of lead days 1, 3, 5, 7, 9 
tch Size 4, 8, 16 
mber of Epochs 500 
arning rate  0.0001 
tivation function  Exponential Linear Unit (ELU) 
timization function Adam 
y cost function  Mean Squared Error (MSE)  
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(c) 

. 7. DNN design for Scenarios A to C to model and forecast 𝐺𝐺𝑡𝑡 parameter: (a) Scenario A; (b) 
nario B; and (c) Scenario C 

 Regressor performance evaluation 

In all proposed scenarios (Scenarios A to C), evaluation of the respective models, during their 
ing phase, is performed with the following metrics, namely: (i) mean squared error (MSE) in Eq. 
); (ii) root mean squared error (RMSE) in Eq. (22); (iii) mean absolute percentage error (MAPE) in 
 (23). MSE is selected as the key cost function for the model training step (see Table 2) to minimize 
error difference between the measured and predicted G values, while RMSE and MAPE are also 
puted at the same time for a comprehensive analysis. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
��𝐺𝐺𝑝𝑝,𝑖𝑖 − 𝐺𝐺𝑚𝑚,𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 (21) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
��𝐺𝐺𝑝𝑝,𝑖𝑖 − 𝐺𝐺𝑚𝑚,𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 (22) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�

𝐺𝐺𝑝𝑝,𝑖𝑖 − 𝐺𝐺𝑚𝑚,𝑖𝑖

𝐺𝐺𝑚𝑚,𝑖𝑖

𝑛𝑛

𝑖𝑖=1

× 100% (23) 

re 𝑁𝑁 is the number of data samples being analyzed, 𝐺𝐺𝑝𝑝,𝑖𝑖 the predicted G value at a specific day 
=  𝑖𝑖), and 𝐺𝐺𝑚𝑚,𝑖𝑖 the recorded G value on a specific day (𝑡𝑡 =  𝑖𝑖). 

xperimental studies 

 Background 

Previous research studies on emotional response classification analyses encompass multiple text 
ats such as news headlines, blogs, Facebook dialogues, and Tweets [35]. Tweets differ from other 

rature materials in their text length, where the maximum number of characters for a single Twitter 
t is limited to 280 in quantity. Besides, misspellings and slang are commonly found in Tweets as 
pared to formal documents, such as reviews. This study selects one open-source emotional 
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onses dataset with known sentiment labels and another open-source unlabeled dataset as the 
pora to train the deep learning word embedding model. The predictions from the trained word 
edding model serve as the input features into the proposed classification model. The trained 
sification model is subsequently used to analyze new unlabeled emotional response data 
cerning the target COVID-19 topic. Several datasets with labels are evaluated separately using the 
posed modular model for two purposes: (i) to investigate the performance of each modular model 
selecting the best combination of modules as illustrated in Fig. 1;  (ii) to evaluate the labeling 
lity of the extracted open-source dataset for selecting the specific dataset having the least volume 
noise’ (non-English words, punctuations, etc.), which extracted knowledge will be transferred to 
new dataset. The training and target datasets are described in the following. 

Sentiment classification has attracted attention from interdisciplinary research groups including 
puter science, psychology, and social science. Two fundamental viewpoints coexist in emotional 
onse classification: (i) emotions are fundamentally distinct constructs; (ii) emotions can be 

racterized by feature dimensions. These two aspects correspond to two sets of theories dominating 
discussion of emotions, namely: (a) discrete emotional theories; (b) dimensional emotional theories.
 former considers a limited number of emotions, each with its characteristics, while the latter 
ntifies a specific emotion via dimensions. The two most important dimensions are emotional 
nce, indicating a positive or negative degree, and emotional arousal as indicative of emotional 
nsity.  
In existing text sentiment datasets, each sentence is labeled with a specific emotional word. To 

fy the labels for automatic sentiment classification, this study considers the sentiment labels from 
dimensional perspective. For simplicity, only the valence dimension is considered in this study. 
ence is considered as two independent dimensions rather than a bipolar continuum [59]. This 
udes the situation where emotional experience is both positive and negative at the same time, which 
amed ambivalent. Taking binary values of positive and negative, valence can be classified into four 
gories: purely positive, purely negative, neutral, and ambivalent, as shown in Table 2.  
Table 2 highlights that the two components of valence, “positive” and “negative”, are independent 

er than being the two ends of one scalar. For example, to judge the valence of a given text, if it is 
sidered as the absence of negative emotion and the existence of positive emotion, it will be 
sified as positive. 
There are two open-source datasets used for model training, namely: (i) IndianCovid19 and (ii) 

id19Tweets. Specifically, the IndianCovid19 dataset consists of around 3k Tweets from India on 
topic of COVID-19 and lockdown. The Tweets have been collected between the dates 23rd March 
0 and 15th July 2020. The texts have been labeled into four categories including “fear, sad, anger, 
 joy”. The dataset can be downloaded from Kaggle [60]. Covid19Tweets consists of around 45k 
eets from multiple regions on the topic of COVID-19. The Tweets are manually tagged with five 
ls “extremely positive, positive, neutral, negative, extremely negative”. The dataset can be 
nloaded from Kaggle [61]. 
GlobalCOVID-19 is used as the target dataset. This dataset is hydrated by day according to the 

wn Tweets ID, which can be downloaded from GitHub [62]. A total of 110 days of Tweets were 
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ydrated from January 22 , 2020 to May 10 , 2020 to analyze the global public sentiments towards 
evolving pandemic situation. The daily number of Tweets varies from hundreds to millions in 
ntity as COVID-19 persists in the global community since January 2020. 

The labels of the sentiment datasets are grouped into the same valence classification criteria, 
ch considers the two components in the valence dimension as independent dimensions rather than 
 ends of the polarity. Thus, the positive and negative dimensions can be combined into four 
gories: neutral, positive, negative, and ambivalent. The re-mapping rules from the original labels 

he unified labels are shown in Table 3. 
le 2. Valence categories that consider positive and negative as two independent dimensions. 
otion dimension Positive 

0 1 
gative 0 Neutral Positive 

1 Negative Ambivalent 

le 3. Re-mapping of labels to the four categories of sentiment valence. 
taset Valence categories 

Neutral Positive Negative Ambivalent 
dianCovid19 - Joy Sad, fear, anger - 
vid19Tweets Neutral Positive, extremely 

positive 
Negative, extremely 
negative 

- 

e: “-” denotes an empty class. 

 Hyperparameter tuning and training details 

There are two components to the proposed NLP architecture which require hyperparameter tuning 
chieve the desired level of accuracy in the coupled word embedding and classification models. The 
d embedding model serves as a feature extraction tool, while the classification model is built upon 
NN deep learning architecture. 
“Size” and “window” are the two most important parameters for the CBOW and Skip-gram 

dels. “Size” refers to the word vector dimensionality, while “Window” refers to the context window 
. For example, with a window size of L, the L preceding words and L succeeding are used to predict 
center word in the CBOW model and to be predicted given the center word in the Skip-gram model. 
erally, a large dense vector dimension means a higher dimension of features and is expected to 
rove classification accuracy. While the increase in accuracy can plateau off when the word vector 
ension goes over a certain value, a slower increase in accuracy can be observed for a large dense 
tor dimension when compared to an initial rapid increase in the accuracy score when the dense 
tor dimension is small. Similar patterns are observed when using CBOW and Skip-gram models. 
ce, a proper word vector size must be selected to balance the model’s accuracy performance and 
esulting vector size. 
The number of layers regardless of their types (fully connected layers, CNN layers, etc.) in the 

lt ANN classifiers including MLP, CNN, and RNN, are kept consistent in the experimental runs. 
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 only difference between the three architectures is the type of hidden layers that follow the input 
r as this study intends to compare the varying effects of dense layer, CNN layer, and RNN on the 

del’s resulting classification accuracy. Figures 2, 3, and 4 respectively illustrate the different 
mple designs of the deep learning architectures for MLP, CNN, and RNN models. The number of 
rons in the output layer is kept consistent in all proposed architectures, while the number of neurons 
the different dense layers is adjusted accordingly to achieve the desired level of accuracy 
formance. As a rule of thumb, the multiple deep learning classifiers are compiled using a common 
h size value of 256 and using an Adam optimizer to minimize the in-built cost function. The value 
pochs for MLP is set to 100 and model training for CNN and RNN is terminated at a relatively low 
ber of epochs to avoid over-fitting of the respective networks. 

 Sentiment evolution analysis 

As discussed previously, two sets of Tweet sentiment data are used to test the proposed modular 
itecture for text sentiment classification. IndianCovid19 and Covid19Tweets datasets provide 

eets on COVID-19 specifically. IndianCovid19 dataset contains around 3k Tweets which are 
sidered relatively small in data quantity for NLP analysis. The Covid19Tweets dataset collects 
eets from multiple regions and is preferred due to its larger data quantity of around 45k. It is, 
ever, worth noting that these selected datasets are still considered relatively small in data quantity. 
y are chosen due to their relevance and availability. The classification results obtained using the 
erent combinations of modules (Fig. 1) are shown in Table 4 and Table 5, respectively, for the 
erent datasets selected. Due to its direct relevance and labeling quality, Covid19Tweets is leveraged 
he knowledge base in the transfer learning process of analyzing the evolution of the general public’s 
timents from the much larger target dataset, Global COVID-19. The latter is collected by day and 
ize quantity is within the range of millions from March 2020 to May 2020. The execution times 
compiling the different classifiers trained upon the Covid19Tweets dataset are listed in Table 6, 
le training curves (loss vs epochs, accuracy vs epochs) on the Covid19Tweets dataset are shown 
igs. 8-10. Stacked line plots of the daily number of Tweets classified into the four above-mentioned 
gories are shown in Fig. 11, while the percentages of the four sentiments and their evolution along 

e are shown in Fig. 12. The daily Tweets on COVID-19 are grouped by month and the percentages 
weets in the four classes per month are shown in Fig. 13. Class-wise word cloud for Tweets on a 

cific day is shown in Fig. 14. The performance of the proposed architecture and the mined public’s 
timents towards the pandemic situation is elaborated in detail in the following. 

The best module combination for text sentiment classification is Skip-gram-Concatenation-RNN 
 the simplest architecture with relatively good performance is Skip-gram-Sum-MLP. The language 
del Skip-gram performs better than CBOW in solving the sentiment classification task, as the 
sification results on the datasetCovid19Tweets using Skip-gram (bottom half of Table 5) are 
ays superior in comparison to the ones using CBOW (top half of Table 5). It should be noted that 
derived results using the dataset of IndianCovid19 do not provide much insight or information for 
st of the modules. This could be due to the extremely small data size, which is one-tenth of the total 
ber of Tweets in the other two small datasets used in this study.  Conceptually, both CBOW and 
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p-gram function by minimizing the negative conditional occurrence probability. As described 
ier, the main difference between Skip-gram and CBOW lies in their respective approaches to 
pute the word vectors of neighboring words around the center word. The obtained classification 
lts generally show that the multiplication operator in the probability is better than the average 
rator on word vectors from the two models.  

Among the sentence representation methods, the simple “Sum” operation is better than the “TF-
 weighted sum”. This may be caused by the low quality of learned/trained weightage values for 
different words derived from the TF-IDF model. In terms of selecting the specific ANN classifier, 
RNN classifier achieves the highest level of accuracy on all the experimental datasets. However, 
N and RNN are more vulnerable to over-fitting problems and it generally takes much longer to 
n those models as compared to the MLP model. As shown in Table 6, the execution time for 
piling CNN and RNN models is around 8 and 14 times more than that of the MLP model, 
ectively. Referring to Fig. 9, overfitting occurs at around the limiting epoch value of 20. For RNN 

h small units, such as 20 in the current analysis, smoothed training curves can be obtained as shown 
ig. 10. Validation curves follow training curves, which indicates effective training. With the 

ition of more units in the LSTM layer, the RNN network requires a smaller number of epochs to 
in the same level of accuracy performance and avoid overfitting. In comparison, the MLP model 
 be fine-tuned easily to achieve the best resulting accuracy and to achieve stable performance with 
experimental datasets as shown in Fig. 8. Thus, the combination Skip_gram-Sum-MLP is selected 
nalyze the evolution of public sentiments towards COVID-19 to attain a balance between the 

del’s resulting accuracy and its model training time. 
Several trends in the evolution of public sentiments towards COVID-19 can be observed from 

 study, as elaborated below. (i) Public attention towards COVID-19 generally increased 
matically from late March 2020 to May 2020 (Fig. 11). As shown in Fig. 11, the daily number of 
eets peaked at millions in several waves whereas the volume after mid-April 2022 was stably higher 
 before. It indicates that before mid-April 2022, there was fluctuating attention towards COVID-

and after mid-April 2022, the public remained highly interested in COVID-19. (ii) As the pandemic 
lves, public sentiments shifted from neutral to polarity around late February 2020 (Fig. 12 (a)-(c)). 
. 12 shows the raw percentage of the four sentiments and their 7-day rolling mean with SD. The 
icators are normalized to show the distribution of sentiments over the four categories, which is 
levant to the total Tweet volume. The rolling mean operation generally smooths the time series data 
xpose the trend. As shown in Fig. 10, during the period from Jan 2020 to May 2020, the quantity 
neutral Tweets reduces from more than 40% to around 30% in absolute percentage values. 
currently, an increasing trend can be observed for both percentages of negative and positive Tweets 

the COVID-19 topic. Besides, negative sentiment exhibited three waves while positive sentiment 
reased first, then increased, and stay flat. The statistical results are reasonable as the public’s 
wledge of COVID-19 accumulates with time and is most likely to develop their own opinions and 
erstanding of COVID-19 as compared to a blank state in the initial stage. (iii) Even though both 
ntity percentages of negative and positive sentiments increased over time, the volume of negative 
timents was generally more dominant than that of the positive sentiments with an exceedance of 
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und 10% for the former emotion (Fig. 12 (b)-(c)). (iv) The public displayed dynamic emotions 
ing the current pandemic (Fig. 12). The fluctuation and evolution of the public’s sentiments on a 
bal scale are in accord with the recognized trend of large vibrations at the early stage in other 
VID-19 studies [63,64]. The sentiment coined as “ambivalent” can be difficult to model at this 
e due to the lack of labeled data samples under the class “ambivalent”. Hence, there are no 
ivalent samples in the labeled dataset and the percentage of ambivalent Tweets can be considered 
nknown class.  
Box plot by month of the percentages of the Tweets in each category (Fig. 13) highlights the 

nthly trend. In detail, percentages of neutral Tweets decreased steadily till April 2020 and slightly 
eased in May 2020 (Fig. 13 (a)). Kind of reversely, the percentage of negative Tweets increased 
 Jan 2020 to Apr 2020 and decreased in May 2020 (Fig. 13 (b)). A more vibrating trend exhibits 

the percentages of positive Tweets (Fig. 13(c)). It has two troughs (February 2020 and April 2020) 
 one peak (March 2020). A word cloud of the tweet contents on 23 March 2020, aggregated by 
r respective classes, is shown in Fig. 14 for illustration. The neutral Tweets contain general 
criptions of COVID-19, while the negative Tweets contain negative words such as “sentenced” and 
sis”. The positive Tweets, on the other hand, contain positive words such as “want” and “drug”. 
 ambivalent, i.e., unknown class, Tweets contain both topics about “coronavirus” and “senate”. 
restingly, the words related to “senate” also appeared at high frequency in the pool of negative and 
ivalent Tweets such as “sentenced”, “contracted”, and “pass”. 

le 4. Valence classification results of the IndianCovid19 dataset. 
del modules setting  Performance (Accuracy) 

ord 
bedding 

 Sentence representation  Classifier  Train 
(64%) 

Val 
(16%) 

Test 
(20%) 

OW Skip-
gram 

 Sum TF-IDF 
weighted 
sum 

Concatenation  MLP CNN RNN     

          0.7683 0.7556 0.7557 
          0.7648 0.7758 0.7670 
          0.7638 0.7697 0.7670 
          0.7623 0.7717 0.7670 
          0.8098 0.7879 0.8042 
          0.7693 0.7778 0.7670 
          0.7623 0.7717 0.7670 
          0.7623 0.7717 0.7670 

e: A word vector dimension of 72 and a window size of 7 are used for the word embedding training. The 
 classifiers’ specifications are listed below. MLP: 72_24_8_4, epochs=100; CNN: (CNN filters=36, 
el_size=3)_16_4, epochs=20; RNN: (LSTM units=20)_16_4, epochs=100. The tick symbol “” represents 
 the module is selected, and the values in bold represent the best results. 
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le 5. Valence classification results of the Covid19Tweets dataset. 
del modules setting  Performance (Accuracy) 

ord 
bedding 

 Sentence representation  Classifier  Train 
(64%) 

Val 
(16%) 

Test 
(20%) 

OW Skip-
gram 

 Sum TF-IDF 
weighted 
sum 

Concatenation  MLP CNN RNN     

          0.5850 0.5761 0.5727 
          0.5459 0.5448 0.5465 
          0.5894 0.5683 0.5756 
          0.6300 0.5989 0.5999 
          0.6420 0.6159 0.6173 
          0.5807 0.5658 0.5610 
          0.6529 0.6167 0.6206 
          0.6929 0.6523 0.6502 

e: A word vector dimension of 72 and a window size of 7 are used for the word embedding training. The 
 classifiers’ specifications are listed below. MLP: 72_24_8_4, epochs=100; CNN: (CNN filters=18, 
el_size=3)_8_4, epochs=20; RNN: (LSTM units=20)_16_4, epochs=100. The tick symbol “” represents 
 the module is selected, and the values in bold represent the best results. 

le 6. Comparison of execution time in compiling the ANN classifiers on the Covid19Tweets 
set. The classifiers have the same structures specified in Table 5 and are trained on 100 epochs. 

assifier Execution time (s) 
LP 12.99 
N 102.97 
N 169.52 

e: CPU specification: Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz. 

 
. 8. Training curves of the classifier MLP on the Covid19Tweets dataset: (a) Loss; (b) Accuracy. 
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. 9. Training curves of the classifier CNN on the Covid19Tweets dataset: (a) Loss; (b) Accuracy. 

. 10. Training curves of the classifier RNN on the Covid19Tweets dataset: (a) Loss; (b) Accuracy. 

 
Fig. 11. Stacked line plot of daily no. of Tweets in the four categories. 
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. 12. Percentages of Tweets and their 7-day rolling mean with standard deviation (SD), indicated 
hadow, in the sentiment categories: (a) Neutral; (b) Negative; (c) Positive; (d) Ambivalent. 
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. 13. Boxplot of the percentage of Tweets in the four categories grouped by month: (a) Neutral; (b) 
ative; (c) Positive; (d) Ambivalent. 

 
. 14. Word cloud of the Tweet text on 23rd Mar 2020 in the class (a) Neutral; (b) Negative; (c) 
itive; (d) Ambivalent. 
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 Predictions of 𝑮𝑮𝒕𝒕 (Scenarios A-C) 

As discussed earlier, Scenarios A-C (Fig. 7) are investigated with varying batch sizes (4, 8, 16) 
 multi-time steps (1, 3, 5, 7, 9 days) to model and forecast 𝐺𝐺𝑡𝑡 in its current state of time with a fixed 
-time of 1 day. Figs. 15-17 depicts the MSE cost function versus the number of epochs for the 

del’s training and validation steps in corresponding scenarios, while Table 7 shows the testing 
lts (i.e., RMSE, MAE, and MAPE scores) for each of the model configurations. Note that the time-
es dataset for 𝐺𝐺𝑡𝑡 (Fig. 5) is split into 85% for model training and validation, and the remaining 15% 
testing. No random shuffling is performed prior to the data split for the model training and 
dation phase. At this stage, the key findings are summarized below: 

The model’s predictive capability generally improves from Scenario A to C, i.e., decreasing 
RMSE, MAE, and MAPE scores as shown in Table 7, due to the advantage provided when 
leveraging on the previous days of 𝐺𝐺𝑡𝑡 values to model the same parameter in its current state of 
time. Relatively, the proposed DNN design in Fig. 7(c) provides an additional edge to the 
modelling step by assimilating/fusing the previous days of 𝐺𝐺𝑡𝑡 values at the intermediate layers of 
the DNN model, where the corresponding values are concatenated with the transformed input 
features from the predicted emotional classes to set up a newly processed intermediate input layer 
to model the 𝐺𝐺𝑡𝑡 parameter. 
For Scenario C (with data assimilation for 𝐺𝐺𝑡𝑡), the best model configuration, which provides the 
lowest possible MAPE score of 17%, is based upon the batch size of 4 and uses 1 day of multi-
time steps for the data assimilation step. Comparison of the corresponding model predictions, using 
this configuration, with the respective monitored 𝐺𝐺𝑡𝑡 values from the model’s testing step are shown 
in Fig. 18. There is a reasonably good agreement between the predicted and monitored 𝐺𝐺𝑡𝑡 values, 
which hence provides the possibility of using the same trained model configuration to undergo 
model re-training with additional datasets for the 𝐺𝐺𝑡𝑡 parameter for near real-time predictions with 
a fixed lead-time of 1 day. For example, the current lowest MAPE score of 17% for the 𝐺𝐺𝑡𝑡 
prediction suggests that if the actual/monitored number of confirmed COVID-19 cases from the 
previous 2nd day (with a lead-time of 1 day) is 100,000, then the present model is likely to forecast 
the number of cases to range between 84,000 and 117,000. However, in extreme cases of a very 
large number of COVID-19 cases globally by day, then it becomes imperative to lower the current 
MAPE scores for decision-makers to better estimate the level of responses to handle any sudden 
spikes in COVID-19 cases. 
For Scenarios A and B, the use of larger multi-time steps generally improves the model’s predictive 
capability during its testing step, as shown in Table 7, however, without achieving a MAPE score 
of less than 30% in any of the modeled cases in the respective scenarios. On the contrary, for 
Scenario C which involves the proposed data assimilation component, the use of a smaller number 
of multi-time steps results in a better model’s predictive performance (see Table 7 and Fig. 16). At 
the same time, the results from Scenario C underlines strong volatility/fluctuations, i.e., low level 
of seasonality, in the 𝐺𝐺𝑡𝑡 values, hence smaller number of multi-time steps (e.g., previous 1 day of 
data) can better encapsulate any sudden changes/variations in the monitored 𝐺𝐺𝑡𝑡 values over time. 
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The empirical runtime of the proposed framework (Fig. 1) is provided. Table 8 shows the average 
putational time for the different components of the proposed framework. Note that for brevity, the 

rage computational runtime for the different steps in Part II is averaged across the varying multi-
e steps and batch sizes for each of Scenarios A to C. The total average runtime for the proposed 
del framework does not exceed 24 hours, hence enabling it to be used for the daily near real-time 
dictive analysis for predicting the 𝐺𝐺𝑡𝑡, in its current state of time, with a fixed lead-time of 1 day. 

 

. 15. Training and validation losses (Scenario A) for batch sizes of 4, 8, and 16 with a fixed total 
ber of epochs of 500 at varying lead-times: (a) 1 day lead-time; (b) 3 days lead-time; (c) 5 days 
-time; (d) 7 days lead-time; and (e) 9 days lead-time. 
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. 16. Training and validation losses (Scenario B) for batch sizes of 4, 8, and 16 with a fixed total 
ber of epochs of 500 at varying lead-times: (a) 1 day lead-time; (b) 3 days lead-time; (c) 5 days 
-time; (d) 7 days lead-time; and (e) 9 days lead-time. 
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. 17. Training and validation losses (Scenario C) for batch sizes of 4, 8, and 16 with a fixed total 
ber of epochs of 500 at varying lead-times: (a) 1 day lead-time; (b) 3 days lead-time; (c) 5 days 
-time; (d) 7 days lead-time; and (e) 9 days lead-time. 
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le 7. Summary of estimated RMSE, MAE, and MAPE scores for predicting 𝐺𝐺𝑡𝑡 under Scenarios A-
uring the model’s testing phase at varying multi-time steps and batch size. 

Scenario Multi-time 
steps (days) Batch size RMSE MAE MAPE 

A 

1 4 0.059 0.058 236.3% 
1 8 0.058 0.058 233.6% 
1 16 0.058 0.058 235.3% 
3 4 0.034 0.033 135.9% 
3 8 0.036 0.035 143.2% 
3 16 0.040 0.039 160.1% 
5 4 0.033 0.032 131.5% 
5 8 0.035 0.034 139.2% 
5 16 0.035 0.034 139.6% 
7 4 0.032 0.030 125.1% 
7 8 0.031 0.031 126.8% 
7 16 0.033 0.032 130.6% 
9 4 0.032 0.029 123.3% 
9 8 0.030 0.029 119.4% 
9 16 0.033 0.031 129.5% 

B 

1 4 0.032 0.031 126.5% 
1 8 0.042 0.042 172.0% 
1 16 0.044 0.044 178.8% 
3 4 0.014 0.013 55.6% 
3 8 0.015 0.014 57.6% 
3 16 0.018 0.017 68.9% 
5 4 0.017 0.015 61.3% 
5 8 0.016 0.014 59.1% 
5 16 0.016 0.015 62.0% 
7 4 0.018 0.015 63.3% 
7 8 0.018 0.017 68.3% 
7 16 0.018 0.017 69.9% 
9 4 0.022 0.020 84.0% 
9 8 0.020 0.019 77.2% 
9 16 0.019 0.017 72.6% 

C 

1 4 0.003 0.004 17.0%* 
1 8 0.015 0.013 54.6% 
1 16 0.009 0.008 33.7% 
3 4 0.015 0.013 54.2% 
3 8 0.013 0.012 49.0% 
3 16 0.033 0.029 117.9% 
5 4 0.015 0.013 53.1% 
5 8 0.019 0.016 65.9% 
5 16 0.020 0.017 69.6% 
7 4 0.016 0.013 54.9% 
7 8 0.023 0.022 87.4% 
7 16 0.022 0.019 77.1% 
9 4 0.020 0.018 75.2% 
9 8 0.016 0.014 56.3% 
9 16 0.012 0.010 42.7% 

e lowest MAPE score obtained from the best possible model configuration 
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. 18. Comparison between the predicted 𝐺𝐺𝑡𝑡  values (using the best model configuration) and 
nitored 𝐺𝐺𝑡𝑡 values. 
le 8. Summary of average computational runtime for proposed framework involving Part I and 

t II. 
t Step Average runtime 

Data Hydration (Tweet data ranging between 22 Jan 2020 & 10 May 
2020) 

6hrs 

Data Pre-Processing + Features Extractions 20mins 
MTV using MLP (100 epochs, model configuration from Table 5) 13.0s 
MTV using CNN (100 epochs, model configuration from Table 5) 103.0s 
MTV using RNN (100 epochs, model configuration from Table 5) 170.0s 
  
MTV for Scenario A (500 epochs, model configuration Table 1) 47.5s 
MTV for Scenario B (500 epochs, model configuration Table 1) 48.0s 
MTV for Scenario C (500 epochs, model configuration Table 1) 50.0s 
Trained Model Restoration 20.0s 
Model Predictions in Near Real-Time 10.0s 

TV – Model Training & Validation 

In this study, distribution over the four sentiments induced in the early 109 days are tested and 
w promising performance (i.e., MAPE of 17% for Scenario C) in the prediction of 𝐺𝐺𝑡𝑡 value. Testing 
lts from Scenarios A to C indicate that historical sentimental responses towards COVID-19 can 
e as an additional input, together with the historical COVID-19 records, to inform the near-future 

VID-19 situations. Besides, sentiments contribute to the prediction of 𝐺𝐺𝑡𝑡  values not as parallel 
uts with historical 𝐺𝐺𝑡𝑡 values but require some processing to get an abstract value as facilitated by 
first part NN (Fig. 7).  

In the past around 1000 days, there have been several COVID-19 waves, exhibiting recurrence 
erns of surges in new cases followed by declines, as shown in Fig. 19(a). The study empirically 
estigates the effect of sentiments towards COVID-19 predictions in the early days. It does not 
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nd to a later period as (i) a deluge of Tweets mentioned COVID-19 as it became a common topic, 
ch makes the retrieval of data (limited by the company twitter) and the processing extremely slow; 
 (ii) there is a selection problem because the later Tweets often mentioned COVID-19 casually 
er than talking about it, however, in NLP, topic modelling remains an active research topic [65,66]. 
ides the technical issues in obtaining sentiment indicators, generalization and adaptation of the 
posed method in pandemic prediction concern several scales, such as adaptation across events [67], 
ptation to different stages within an event, and adaptation to countries or cities [68,69]. The 
diction based purely on case data is solved by transfer learning [67,68]. This study utilizes both 
timent data and case data. It does not investigate the long-term sentiment variations towards 
VID-19. However, the importance of selecting the proper output variables is highlighted below for 
re practices. 
Three indicators (i.e., total confirmed cases, new confirmed cases, and daily growth rate of 

firmed cases) of COVID-19 situations since its inception to the most recent data are shown in Fig. 
It is observed that the curve of total cases has a smooth line (Fig. 19(a)), which is hard to expose 
waves. A relative measure called new cases can be obtained by the minus operator between the 
rds of total cases corresponding to two consequent days. Its raw values and smoothed curves (Fig. 

b)) consistently exhibit 5-6 waves, all of which happened in the middle or later period. Another 
tive measure termed 𝐺𝐺𝑡𝑡 is obtained by minor and division operators (Eq. (18)). Its raw values and 
othed curves (Fig. 19(c)) expose the vibrating trend in the early stage, which is not depicted by the 

vious two measures, though the later curves are stabilized by the large total cases. Therefore, it is 
med that at different stages, various measures are required to expose the details of the pandemic 
lution for disease control and prevention. For example, at the early stage 𝐺𝐺𝑡𝑡 is a good measure to 
ose the day-to-day difference while later the measure, new cases, is a better one. 
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. 19. Global data of COVID-19 evolution since the first reported case: (a) Total cases; (b) New 
es; and (c) Daily growth rate of confirmed cases, i.e., the defined 𝐺𝐺𝑡𝑡 values. Note: Highlighted 
ion is the studied period when little of COVID-19 was known. 

onclusions and future works 

This paper develops a modular deep learning framework for COVID-19-related text sentiments 
sification and its application in transfer learning to analyze the public sentiment towards a specific 

ic, followed by leveraging on the predicted sentiments to model and forecast the temporal evolution 
he number of confirmed COVID-19 cases globally. The proposed language architecture is first 
ned and validated on open-source sentiment datasets, where the subsequent classification results 
the testing datasets demonstrate that the proposed Skip-gram-Concatenation-RNN module 
bination provides the best predictive performance. At the same time, the alternative module 



Journal Pre-proof

 

com799 
pro800 
com801 

802 
reg803 
gra804 
tow805 
Feb806 
40%807 
sen808 
The809 
in t810 
feat811 
CO812 
via 813 
batc814 
whi815 
test816 

817 
text818 
var819 
a lo820 
sen821 
an a822 
top823 
insi824 
ben825 
fram826 
ind827 

828 

Au829 

830 
Ze 831 
Con832 

833 

De834 

835 
rela836 
Jo

ur
na

l P
re

-p
ro

of

34 

bination in Skip-gram-Sum-MLP also results in acceptable model performance, while also 
viding an additional advantage of the relatively simple model design which can reduce the total 
putational cost for model training and validation. 
As the COVID-19 pandemic continues to evolve, the present classification results demonstrate 

ular patterns in the predicted sentiments. Overall, the results indicate that the general populations 
dually exhibit positive or negative sentiments towards COVID-19, as compared to neutral responses 
ards the pandemic during the 1st two months of 2020 for the virus’ inception. At around late 
ruary 2020, the percentages of neutral, negative, and positive Tweets also gradually changed from 
, 34%, and 26% to 30%, 40%, and 30% respectively. Generally, the total amount of negative 

timents generated towards COVID-19 is greater than that of the positive sentiments by around 10%. 
 predicted sentiments (four classes in total) in time-series profiles, coupled with the increased rate 
he total number of COVID-19 related Tweets, are subsequently leveraged as unique model input 
ures to train, validate, and test DNNs to model and forecast the growth rate in the total number of 
VID-19 cases globally, via a G parameter, for the period between 22 Jan 2020 and 10 May 2020 
multiple scenarios of data selections and fusions. By far, the best possible model configuration of 
h-size hyperparameter value of 4 and multi-time steps of 1 day can train a prediction DNN model 
ch produces an average mean absolute percentage error (MAPE) score of around 17.0% on the 
ing dataset for forecasting the proposed G parameter.  

The limitations of this study are stated as follows. Firstly, on the technical issues of multi-class 
 sentiment classification, this study does not access the quality of the Tweets where in reality users 
y in the capability and willingness to express their emotions in text. Secondly, this study proposes 
gically complete sentiment valence classification system but remains limited in identifying the rich 
timent Tweets called “ambivalent” due to the lack of labeled Tweets. Finally, this study provides 
ssessment of the public sentiments towards COVID-19 but does not aggregate the sentiments by 

ics or geography. Accordingly, future work can add filters in the Tweets retrieval process to gain 
ghts into specific contexts. Besides, unifying the labeling process (e.g., text sentiment labels) will 
efit the identification of human sentiment expressed in text format. In summary, the proposed 
ework can be incorporated into pandemic monitoring and control for providing quantified 

icators of public sentiments and pandemic situations. 
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