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Abstract 

Subcellular localization of RNA is a crucial mechanism for regulating diverse biological processes within cells. Dynamic RNA subcellular localiza- 
tions are essential for maintaining cellular homeostasis; ho w e v er, their distribution and changes during de v elopment and differentiation remain 
largely unexplored. To elucidate the dynamic patterns of RNA distribution within cells, we have upgraded RNALocate to version 3.0, a repository 
for RNA-subcellular localization ( http:// www.rnalocate.org/ or http://www .rna-society .org/rnalocate/). RNALocate v3.0 incorporates and analyzes 
RNA subcellular localization sequencing data from o v er 850 samples, with a specific focus on the dynamic changes in subcellular localizations 
under v arious conditions. T he species co v erage has also been expanded to encompass mammals, non-mammals, plants and microbes. Addition- 
ally, w e pro vide an integrated prediction algorithm for the subcellular localization of se v en RNA types across ele v en subcellular compartments, 
utilizing con v olutional neural netw orks (CNNs) and transf ormer models. Ov erall, RNAL ocate v3.0 cont ains a tot al of 1 844 013 RNA-localization 
entries co v ering 26 RNA types, 242 species and 177 subcellular localizations. It serves as a comprehensive and readily accessible data resource 
for RNA-subcellular localization, facilitating the elucidation of cellular function and disease pathogenesis. 
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Introduction 

RNA, a highly complex molecule universally involved in var-
ious cellular biological processes, has increasingly garnered
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ubcellular , cellular , tissue and organismal levels ( 2–6 ). This
idespread biological phenomenon occurs across different

ell types and species, observed under conditions of homeosta-
is, stimulation or cellular stress ( 2 , 4 , 7 ). Despite the increasing
ecognition of the close relationship between RNA subcellular
ocalization and function, there remains a significant limita-
ion in the comprehensive integration of dynamic subcellular
NA localization data. Zhou et al. mapped the dynamic sub-
ellular localization of RNA during human embryonic stem
ells (hESCs) differentiation, revealing various RNA localiza-
ion patterns that provided new insights into hESCs pluripo-
ency maintenance and differentiation ( 8 ). Similarly, Hwang
t al. demonstrated the crucial role of dynamic RNA sub-
ellular localization in regulating Xenopus oocytes matura-
ion ( 9 ). Fonseca et al. investigated Arabidopsis thaliana roots
nd found that nitrate treatments induce dynamic changes
n messenger RNA (mRNA) nucleocytoplasmic distribution,
ighlighting the critical role of RNA localization dynamics in
ne-tuning gene expression during the nitrate response and
dentifying a key adaptive mechanism in plants ( 10 ). During
arly Drosophila embryogenesis, 70% of mRNAs exhibited
ubcellular localization and dynamic movement, which were
rucial for establishing anterior-posterior polarity ( 11 ). These
ndings collectively underscore the critical importance of dy-
amic RNA subcellular localization in regulating cell differen-
iation fate and influencing developmental processes. More-
ver, a recent study also proposed a comprehensive frame-
ork to provide a dynamic overview of RNA and protein

ubcellular localization ( 12 ). To further elucidate the dynamic
nd specific localization of RNA at subcellular resolution and
ts association with complex biological processes, it is imper-
tive to integrate, analyze and summarize RNA dynamic sub-
ellular localization data under various conditions and cell
tages. 

Hence, we have now upgraded RNALocate from version
.0 to version 3.0 ( http:// www.rnalocate.org/ or http://www.
na-society.org/ rnalocate/ ). RNALocate v3.0 integrates man-
al curation of numerous literature, other experimentally val-
dated databases, prediction algorithms and RNA sequenc-
ng data from 40 datasets under a unified framework (Fig-
re 1 ). Meanwhile, leveraging experimental validation data,
e have developed a new multi-label RNA localization pre-
iction tool covering seven RNA types and eleven subcellular
ocalizations. Additionally, the website framework has been
edesigned to facilitate faster retrieval and browsing of en-
ries through an enhanced, user-friendly interface. These im-
rovements significantly enhance the operation of this sys-
em, enabling users to quickly and accurately access RNA-
ssociated subcellular localizations deposited in the database.
t provides a reliable and comprehensive data resource, assist-
ng researchers in better understanding transcriptome dynam-
cs at subcellular resolution. 

aterials and methods 

ata collection and organization 

NALocate v3.0 comprises three types of data: experimen-
ally validated data, computationally predicted data, and
NA sequencing data pertaining to subcellular localizations.
e have identified and added 191 803 RNA subcellular lo-

alization entries by manually reviewing the published lit-
rature, and integrated nine other related experimentally
validated databases ( Supplementary Table S1 ) ( 13–19 ). Be-
sides, RNALocate utilizes both single-label and multi-label
prediction algorithms that have become available in recent
years. The focus is particularly on those developed within
the last five years, including DeepLncLoc ( 20 ), DM3Loc ( 21 ),
GraphLncLoc ( 22 ), iLoc-lncRNA ( 23 ), iLoc-LncRNA (2.0)
( 24 ), iLoc-mRNA ( 25 ), lncLocator ( 26 ), Locate-R ( 27 ), mR-
NALoc ( 28 ), mRNALocater ( 29 ), RNAlight ( 30 ), Clarion
( 31 ), EL-RMLocNet ( 32 ), LncLocFormer ( 33 ), miRNALoc
( 34 ), DeepLocRNA ( 35 ) to predict the subcellular localiza-
tion of mRNA, long noncoding RNA (lncRNA), microRNA
(miRNA) and small nucleolar RNA (snoRNA). Furthermore,
RNALocate v3.0 integrates and comprehensively analyzes
RNA sequencing data related to subcellular localizations un-
der different conditions from the Gene Expression Omnibus
(GEO), Sequence Read Archive (SRA), ArrayExpress and Eu-
ropean Nucleotide Archive (ENA) ( 36–38 ). 

To standardize the data and enhance its reference value, we
meticulously linked data from disparate sources to authori-
tative reference databases, providing detailed annotations in
RNALocate v3.0. Major types of RNA symbols were uti-
lized in the study: (i) miRNA symbols from miRBase ( 39 ) and
NCBI Gene database ( 40 ); (ii) circular RNA (circRNA) sym-
bols from circBase ( 41 ), circBank ( 42 ) and exoRBase ( 18 ); (iii)
lncRNA symbols from NCBI Gene and LncBook ( 43 ); (iv)
piwi-interacting RNA (piRNA) symbols from piRBase ( 44 )
and RNAcentral ( 45 ); and (v) other RNAs from NCBI Gene,
Ensembl ( 46 ), EnsemblRapid ( 46 ) and RNAcentral. Subcellu-
lar localization terms were derived from the cellular compo-
nent annotations curated in the Gene Ontology . Additionally ,
RNA homology information was obtained from the NCBI
Gene, RNA-related diseases from RNADisease v4.0 ( 47 ), and
RNA interactions from RNAInter v4.0 ( 48 ). For the conve-
nience of users, the RNA-associated information also contains
RNA names and RNA-related functions extracted from the
literature, as well as aliases, sequences and genome positions
for miRNAs, circRNAs and lncRNAs from LncBook, among
others. 

RNA-seq analysis 

We screened, processed, and analyzed 858 samples from 40
RNA-seq datasets annotated with the subcellular locations
across 44 tissues and cell lines to visualize the dynamic RNA
expression patterns within different subcellular compartments
under various conditions. All datasets included 32 subcellu-
lar locations, and some also encompassed the RNA content
of the entire cell ( Supplementary Table S2 ). Raw data were
subjected to quality control using FastQC v0.12.1 ( https://
github.com/ s-andrews/ FastQC ) after download. Adapter con-
taminants and low-quality bases were subsequently removed
using Cutadapt v1.18 ( 49 ) and Trimmomatic v0.39 ( 50 ). The
processed clean reads were aligned to the reference genomes of
Homo sapiens , Mus musculus , Rattus norvegicus and Xeno-
pus laevis (GENCODE GRCh38.p14 (v45) ( 51 ), GENCODE
GRCm39 (vM34), Ensembl mRatBN7.2 (release-112) and
Xenbase XENLA_10.1 ( 52 )) using HISAT2 v2.2.1 ( 53 ). Only
uniquely mapped reads were extracted for further analysis.
Aligned bam files underwent sorting and indexing using SAM-
tools v1.5 ( 54 ). Gene expression of each sample was estimated
using featureCounts v2.0.1 ( 55 ). 

The RNA expression levels were normalized by transcripts
per million (TPM). Each subcellular location in every dataset

http://www.rnalocate.org/
http://www.rna-society.org/rnalocate/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872#supplementary-data
https://github.com/s-andrews/FastQC
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Figure 1. Ov ervie w of the RNAL ocate v3.0 repository. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

included a minimum of two independent biological replicates
under each condition. Genes with TPM > 1 in at least two
samples per dataset were retained for further analysis. For
each gene, if at least two biological replicates demonstrated
TPM > 0 in a specific subcellular location under a given
condition within a dataset, the median or mean TPM was
employed as its expression value; otherwise, the expression
value was set to 0. Differential expression analysis of vari-
ous subcellular localizations under a single condition (with
at least two independent biological replicates) was conducted
using DESeq2 ( 56 ) and edgeR ( 57 ). Genes exhibiting signifi-
cant up-regulation with a false discovery rate (FDR) < 0.05
and a fold change (FC) > 1.2 were classified as being en-
riched in specific subcellular localizations, and the subcellular-
specific RNAs represent the intersection of differentially up-
regulated RNAs between a given subcellular localization and
all other subcellular localizations. We performed comprehen-
sive analyses of RNAs with compartment-specific localization,
focusing on their secondary structures, RNA-binding protein
(RBP) binding preferences, conservation and functional en-
richment, which were conducted on datasets for Homo Sapi-
ens and Mus musculus . For each RNA, the longest transcript
was used to predict secondary structures and minimum free
energy (MFE) using RNAfold ( 58 ), and then the normalized 

MFE (NMFE) was computed. Potential RBPs were identi- 
fied with RBPmap ( 59 ) using high stringency settings. Phast- 
Cons element annotations (hg38.phastCons100way.bw and 

mm39.phastCons35way.bw) were downloaded from UCSC 

Table Browser ( 60 ). Functional annotation was performed on 

differentially expressed mRNAs and the target genes of dif- 
ferentially expressed miRNAs predicted by miRWalk ( 61 ), in- 
cluding GO ( 62 ) and KEGG ( 63 ) analyses. Typically, the top 

20 most significantly related pathways or functions are high- 
lighted (Figure 2 ). 

Meanwhile, we provided the relative ratios among differ- 
ent subcellular localizations under the same or multiple con- 
ditions, including various tissues and cell lines. Ratio 1 repre- 
sents the TPM of a specific RNA localization divided by the 
total TPM in the cell. Ratio 2 compares the TPM of an RNA 

localization to the average TPM across all localizations in the 
same condition, highlighting its relative abundance. Ratio 3 

compares the TPM of an RNA localization under a specific 
condition to the overall average TPM across all conditions.
Ratio 4 compares the TPM of an RNA localization with that 
of a reference compartment (e.g., nucleus or cytoplasm), as- 
sessing the RNA’s enrichment in the specific compartment. 
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Figure 2. Introduction and usage of the RNA-seq Analysis page. 
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rediction tool 

NALocate provides an integrated prediction algorithm for
he subcellular localization of seven RNA types across eleven
ifferent subcellular compartments. This algorithm employs
onvolutional neural networks (CNNs) and a multi-head
elf-attention mechanism, validated through our experimen-
al data. The seven RNA types include mRNA, lncRNA,
iRNA, piRNA, snoRNA, small nuclear RNA (snRNA) and

ircRNA, and the eleven subcellular localizations are extracel-
ular region, nucleoplasm (nucleus), nucleolus (nucleus), chro-
atin (nucleus), cytosol (cytoplasm), mitochondrion (cyto-
lasm), ribosome (cytoplasm), endoplasmic reticulum (cyto-
lasm), membrane, nucleus, and cytoplasm. 
The prediction tool comprises four major modules: (i)

oogLeNet Blocks with a pooling layer, (ii) sixteen ResNet
locks with pooling layers, (iii) a six-layer multi-head self-
ttention Block, and (iv) cropping and linear layers. The
ool applies one-hot encoding for DNA / RNA sequences (A
 [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 0, 1, 0], T / U =

0, 0, 0, 1], O = [0, 0, 0, 0]) as the model’s input feature, with
 maximum sequence length of 8192 bp, and ultimately pre-
icts the subcellular localization of RNA. The tool employs a
oogLeNet Block to simulate various sequence K-mer frag-
ents (1-mer , 3-mer , 5-mer , and 7-mer) by configuring convo-

utional kernels of varying sizes, thereby capturing sequence
eatures. The feature space is expanded to 64 dimensions, and
 pooling mechanism condenses the sequence length to 4096
p. Next, the ResNet Block, based on the ResNet-50 architec-
ure, is integrated with pooling layers to further learn sequence
eatures. This stage expands the feature space dimension to
048 and aggregates the sequence length into 256 bins, with
ach bin encapsulating 32 bp of sequence information. The
tool then incorporates a multi-head self-attention Block de-
signed to model interactions between these bins. Within this
Block, positional information is enriched with Relative Posi-
tional Encoding (RoPE), enhancing the model’s sensitivity to
the sequence’s context. Subsequently, a cropping layer is im-
plemented to eliminate potentially unreliable or erroneous in-
formation from the extremities of the sequence, which may
be less reliable than the central regions. Finally, a multi-layer
linear neural network predicts the outputs of RNA localiza-
tion. Notably, the pooling layer uses attention-based pooling,
as opposed to traditional max pooling, for enhanced perfor-
mance. The training and testing datasets for our predictive
tool were derived from the experimental data of RNALocate
v3.0, specifically those with a score of 0.3 or higher, with a
total of 559 651 entries. The model was trained and validated
using a 5-fold cross-validation approach to ensure robustness
and reliability. Additional algorithmic details are provided in
the Supplementary Data . The framework of our prediction
tool is illustrated in Supplementary Figure S1 . 

Results 

RNALocate statistics 

RNALocate v3.0 contains a total of 1 258 724 experimen-
tally validated entries, with 191 803 entries manually curated
(marked by * in RNALocate) and 1 066 921 entries obtained
from other databases, covering 242 species, 26 RNA types and
177 subcellular locations (Figure 3 A–C and Supplementary 
Table S3 ). Additionally, the database includes 319 625 pre-
dicted entries associated with mRNAs, 245 999 predicted en-
tries associated with lncRNAs, 18 129 predicted entries asso-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872#supplementary-data
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A B

C

Figure 3. Statistics of RNALocate v3.0. ( A ) Features and development across RNALocate versions. ( B ) The distribution of experimentally validated 
RNA-localization associations for 26 types of RNA in 177 subcellular localizations. ( C ) Number of entries in the top 12 species with experimentally 
validated entries exceeding 500. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ciated with miRNAs and 1 536 predicted entries associated
with snoRNAs for human. 

Database usage 

RNALocate v3.0 provides a user-friendly platform tailored
to meet diverse research needs. In addition to offering essen-
tial information such as RNA information, subcellular local-
izations, references and official annotations, it also includes
experimental validation methods and classifications of strong
and weak evidence, which can be accessed on the ‘Detail’ page.
Notably, users can access data in three ways: (i) a quick search
on the ‘Home’ page based on the RNA symbol, RNA ID, sub-
cellular localization or Gene Ontology term; (ii) a search on
the ‘Search’ page utilizing ‘Exact Search’, ‘Fuzzy Search’ or
‘Batch Search’ options; and (iii) browsing data on the ‘Browse’
page by RNA category, subcellular localization, prediction
algorithm or species. The search results page displays basic
information for all entries, including RNA symbols, RNA
categories, species, tissue / cell lines, localizations and scores.
Users can further refine search results by employing filter op-
tions (score, species, RNA category, and localization) available
on the left side. The experimental validation data, prediction
data, and RNA sequence information in the database are ac-
cessible on the ‘Download & API’ page. 

To illustrate the RNA sequencing data of different subcel-
lular localizations, the ‘RNA-seq Analysis’ page provides two
methods for searching the analysis results related to RNA ex-
pression in different localizations, as well as dynamic changes
of RNA localization under various conditions. In addition,
RNALocate v3.0 provides a prediction tool on the ‘Tool’ page,
which allows users to input the sequence of a specific type of
RNA (in FASTA format) and receive the top three predicted
subcellular localizations along with corresponding scores. We
comprehensively evaluated our predictive model using a five-
fold cross-validation approach, and compared it to six estab-
lished multi-label algorithms (DeepLocRNA, DM3Loc, miR- 
NALoc, LncLocFormer, EL-RMLocNet and Clarion). Key 
metrics, including accuracy, precision, F1 score and recall were 
assessed. While some algorithms outperformed in specific 
RNA types or subcellular localizations (e.g. EL-RMLocNet 
for miRNA, and DeepLocRNA for snoRNA), our model con- 
sistently achieved an accuracy exceeding 0.75 across all RNA 

types. It also demonstrated superior performance across all 
subcellular localizations, excelling in overall predictive reli- 
ability and coverage. In instances where true positives were 
absent, metrics such as F1 score, precision, or recall may 
have been reported as NA or zero. These findings under- 
score the robust accuracy and stability of our model across 
diverse scenarios, as detailed in Supplementary Figure S2 and 

Supplementary Table S4 . 

Dynamic subcellular localization analysis 

In this section, we have analyzed 40 datasets and provided 

detailed visualization results, including data from our pre- 
vious study GSE206328, which investigated the subcellular 
RNA distribution in hESCs and its changes during hESC dif- 
ferentiation. On the ‘RNA-seq Analysis from Dataset’ page,
the enrichment locations of each RNA type under various 
conditions are intuitively visualized (‘Subcellular Localization 

Number’). Using the GSE206328 dataset as a case study, we 
analyzed the localization patterns of RNAs across five subcel- 
lular components and identified the number of RNA-enriched 

locations on day 5 (Figure 4 A). Overall, more than half of 
the RNAs were found in multiple subcellular components.
While the majority of RNAs exhibited overlapping distribu- 
tions among multiple components, some RNAs showed site- 
specific distributions, suggesting their association with specific 
locations (Figure 4 B). Subsequently, we conducted differential 
localization analyses of various types of RNAs under the same 
conditions to determine their subcellular-specific localization,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae872supplementary-data
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evealing the dynamic changes in RNA localization during cel-
ular development. We also provide GO / KEGG enrichment
nalyses of the differentially expressed RNAs for each subcel-
ular localization. There are 1 710 cytoplasmic extract (CE)-
pecific localization of RNAs on day 5 using DEseq2, includ-
ng 1702 mRNAs and 8 lncRNAs, obtained from the inter-
ection of 2907 upregulated RNAs for CE versus chromatin-
ound nuclear extract (CBNE), 6717 upregulated RNAs for
E versus soluble nuclear extract (SNE), 4800 upregulated
NAs for CE versus pellet extract (PE) and 4839 upregulated
NAs for CE versus membrane extract (ME) (Figure 4 C).
hese CE-specific RNAs were enriched in various universal bi-
logical processes, such as translation and energy metabolism.
urthermore, the top 20 RBPs identified by RBPmap are pri-
arily engaged in RNA processing, splicing, transport and

egulation of gene expression, including key RBPs such as
RSF2, HNRNPL and PUF60. Additionally, histograms were
onstructed to evaluate the NMFE and phastCons conser-
ation scores of these RNAs. The majority of RNAs exhib-
ted low conservation, with NMFE values predominantly cen-
ered around −0.3. We further observed the dynamic localiza-
ion of subcellular-specific RNAs during hESC differentiation.
rom day 0 to day 3 of differentiation, the number of spe-
ific RNAs for all four subcellular components except SNE
ncreased, especially for CBNE; however, on day 5, the num-
er of all specific RNAs decreased (Figure 4 D and E ). Addi-
ionally, we demonstrated changes in the levels of subcellular
omponents for a single RNA during differentiation. On the
RNA-seq Analysis from RNA’ page, the expression of RNAs
n subcellular localization across different datasets and the rel-
ative expression (ratio) of subcellular-specific RNAs are vi-
sualized, allowing users to customize these visualizations by
RNA symbol / ID and species. 

Service optimization 

Due to the vast number of entries, efficient and thorough data
searching is crucial. RNALocate v3.0 has been redesigned us-
ing the Django Model-Template-View (MTV) framework, re-
sulting in significant improvements in search and browsing
speeds while markedly enhancing user experience. Key en-
hancements include (i) optimizing the browsing module to
address previous limitations in displaying localized entries
caused by large data volumes and (ii) adding filtering options
to allow users to refine results by score, species, RNA category
and localization, facilitating easier access to desired entries. 

Conclusion and future perspectives 

Explaining the diversity and complexity of RNA localiza-
tion is essential to fully understand cellular architecture. We
present a comprehensive RNA subcellular localization re-
source, RNALocate v3.0, which comprises over 1.8 million
entries for RNA-subcellular localization associations, more
than eight times that in the previous version. Nearly 1 260 000
entries are derived from experimental data, covering 26 RNA
types and 177 subcellular localizations, with species coverage
increasing from 104 to 242. Furthermore, RNALocate v3.0
provides comprehensive analyses of RNA subcellular local-
izations derived from high-throughput sequencing data, in-
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corporating over 850 subcellular localization-associated sam-
ples among various cell lines and tissues. In addition, it
introduces a predictive tool for mRNA, lncRNA, miRNA,
piRNA, snoRNA, snRNA and circRNA localization, devel-
oped using experimentally validated data from various cell
lines and tissues, which has significantly enhanced the model’s
performance. 

We have focused on the field of RNA dynamic subcellular
localization and integrated substantial relevant data. Moving
forward, we plan to delve deeper into this area of study. Based
on a significant amount of experimentally validated RNA sub-
cellular localization data and DNA and protein subcellular
data from other databases, we would further explore RNA–
DNA, RNA–RNA, and RNA–protein interactions at subcellu-
lar resolution, helping researchers better understand biologi-
cal processes and disease mechanisms. Furthermore, RNALo-
cate currently focuses exclusively on sequencing data analy-
sis for subcellular localization in four species. Next, we plan
to expand this dataset to contain subcellular localization se-
quencing data from a broader spectrum of species, incorpo-
rating diverse environmental conditions, tissues and cell lines.
This effort aims to uncover the potential roles and mecha-
nisms of RNA localization in influencing biological processes
and regulating cell fate. In addition, our prediction tool is
based on RNA sequences and does not account for factors
such as cell lines, cellular state, gene expression and other vari-
ables. To achieve more accurate prediction of RNA subcellu-
lar localization, we will incorporate these factors to improve
our algorithm. We are committed to continuously maintain-
ing and updating RNALocate, making RNALocate v3.0 the
most comprehensive RNA-subcellular localization resource
and a robust platform for RNA-subcellular localization anal-
ysis, thereby meeting diverse research needs. 

Data availability 
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