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Objective: Non-alcoholic fatty liver disease (NAFLD) is a serious health threat
worldwide. The aim of this study was to comprehensively describe the metabolic and
immunologic characteristics of NAFLD, and to explore potential therapeutic drug targets
for NAFLD.

Methods: Six NAFLD datasets were downloaded from the Gene Expression Omnibus
(GEO) database, including GSE48452, GSE63067, GSE66676, GSE89632, GSE24807,
and GSE37031. The datasets we then used to identify and analyze genes that were
differentially expressed in samples from patients with NAFLD and normal subjects,
followed by analysis of the metabolic and immunologic characteristics of patients with
NAFLD. We also identified potential therapeutic drugs for NAFLD using the Connectivity
Map (CMAP) database. Moreover, we constructed a prediction model using minimum
depth random forest analysis and screened for potential therapeutic targets. Finally,
therapeutic targets were verified in a fatty liver model stimulated by palmitic acid (PA).

Results: A total of 1,358 differentially expressed genes (DEGs) were obtained,
which were mainly enriched in carbohydrate metabolism, lipid metabolism, and other
metabolic pathways. Immune infiltration analysis showed that memory B cells, regulatory
T cells and M1 macrophage were significantly up-regulated, while T cells follicular
helper were down regulated in NAFLD. These may provide a reference for the immune-
metabolism interaction in the pathogenesis of NAFLD. Digoxin and helveticoside were
identified as potential therapeutic drugs for NAFLD via the CMAP database. In addition,
a five-gene prediction model based on minimum depth random forest analysis was
constructed, and the receiver operating characteristic (ROC) curves of both training and
validation set reached 1. The five candidate therapeutic targets were ENO3, CXCL10,
INHBE, LRRC31, and OPTN. Moreover, the efficiency of hepatocyte adipogenesis
decreased after OPTN knockout, confirming the potential use of OPTN as a new
therapeutic target for NAFLD.

Conclusion: This study provides a deeper insight into the molecular pathogenesis of
NAFLD. We used five key genes to construct a diagnostic model with a strong predictive
effect. Therefore, these five key genes may play an important role in the diagnosis and
treatment of NAFLD, particularly those with increased OPTN expression.

Keywords: NAFLD, metabolic pathway, immune infiltration, prediction model, therapeutic target, integrated
analysis
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is one of the most
common liver diseases in the world (Chen and Yeh, 2021).
NAFLD refers to liver disease without secondary causes, such
as drugs, excessive drinking, or genetic diseases, and includes
simple fatty liver disease, non-alcoholic steatohepatitis (NASH),
and cirrhosis with NASH (Chalasani et al., 2018). The prevalence
of NAFLD is increasing worldwide. A recent meta-analysis
estimated that the global prevalence of NAFLD is about 25%
(Younossi et al., 2016). Another study found that the prevalence
of NAFLD in the Asian population was 27% (Younossi et al.,
2016). Because of its high prevalence, NAFLD is now the fastest
growing cause of liver related mortality worldwide.

Long-term studies have shown that patients with NAFLD
have higher overall mortality and liver-specific mortality than
that of the general population (Ong et al., 2008). The increase
in prevalence of NAFLD will likely be accompanied by a large
number of patients with liver cirrhosis and end-stage liver disease
requiring liver transplantation (Wong et al., 2015; Goldberg
et al., 2017), as well as an increased prevalence of hepatocellular
carcinoma (HCC) (Mittal et al., 2016). One study reported
that heart-related death is one of the main causes of mortality
in NAFLD patients (Ekstedt et al., 2015). These patients are
often obese, a comorbidity that is often accompanied by insulin
resistance, dyslipidemia, hypertriglyceridemia, and hypertension,
which are all risk factors for cardiovascular disease (CVD)
(Vernon et al., 2011; Li et al., 2014). Accumulating evidence has
shown that the prevalence of NAFLD in patients with metabolic
syndrome is relatively high (Liangpunsakul and Chalasani, 2005;
Chan et al., 2013). For example, obesity is the cause of a large
proportion of NAFLD cases. Recently, experts have reached a
consensus that the term “NAFLD” does not reflect the current
knowledge, and thus the term metabolic (dysfunction)-related
fatty liver “MAFLD” is a more appropriate term (Eslam et al.,
2020). Therefore, understanding the role of metabolic regulation
in NAFLD is crucial for the development of targeted therapies.

The use of drug combination as treatment for NAFLD is
increasing because clinicians worry that the effectiveness of a
single agent is not sufficient (Friedman et al., 2018). However,
there is no data from long-term controlled trials to confirm the
effectiveness of combination therapy. In addition, though the
current clinical investigation of therapies for NAFLD is evolving
rapidly due to the emergence of new targets and diagnostic
techniques, our understanding of NAFLD remains insufficient
(Friedman et al., 2018). Therefore, further elucidation of the
molecular pathogenesis of NAFLD with an overarching goal of
better NAFLD management is warranted.

To address these issues, we developed diagnostic markers
for NAFLD and explored the metabolic status of NAFLD
patients as well as potential therapeutic targets. We also
developed a random forest (RF) prediction model for estimating
the status of patients with NAFLD, which had a better
performance for predicting NAFLD. In addition, five therapeutic
targets for NAFLD (CXCL10, ENO3, INHBE, LRRC31, and
OPTN) and several potential therapeutics, including digoxin,
were identified.

MATERIALS AND METHODS

Data Acquisition
We downloaded six transcriptome datasets from the National
Center for Biotechnology Information (NCBI) GEO public
database: GSE24807 (GPL2895, control = 5, NAFLD = 12),
GSE37031 (GPL14877, control = 7, NAFLD = 8), gse48452
(GPL11532, control = 41, NAFLD = 32), GSE63067 (GPL570,
control = 7, NAFLD = 11), GSE66676 (GPL6244, control = 34,
NAFLD = 33), and GSE89632 (GPL14951, control = 24,
NAFLD = 39). A PCA plot was used to illustrate the batch effect
among the datasets after normalization. Moreover, the Limma
package was used for differential analysis to identify differentially
expressed genes (DEGs).

Immune Infiltration
We used the CIBERSORT algorithm (Chen et al., 2018) to
analyze the corrected gene expression data and to assess for the
presence of invasive immune cells. Notably, CIBERSORT is an
important deconvolution algorithm that uses gene expression
data and a predefined immune characteristic matrix to estimate
the proportion of 22 human immune cells in a given sample.
For each sample, the sum of all estimated immune cell
types is equal to 1, which reflects the enrichment degree
of immune cell infiltration. Furthermore, we compared the
difference in immune cell infiltration between NAFLD patients
and normal subjects.

Functional Enrichment Analysis
R package “clusterprofiler” (Yu et al., 2012) was used to
annotate the Gene Ontology (GO) and Kyoto Encyclopedia
for Genes and Genomes (KEGG) enrichment function of
differential genes, with the goal of comprehensively exploring
differential gene expression involved in disease progression.
GO and KEGG pathways with P-value and Q-value less than
0.05 were considered as significant categories. In addition,
we utilized gene set variation analysis (GSVA) (Hanzelmann
et al., 2013), a non-parametric and unsupervised gene set
enrichment method, which can be used to calculate the score of
pathways or characteristics related to transcriptomic data, then
identify the biological function of samples. The metabolic related
gene characteristics in this study were obtained from previous
published studies (Desert et al., 2017; Yang et al., 2020b). To
evaluate the potential metabolic activity between samples, we
used the GSVA R package to obtain the corresponding metabolic
pathway scores for each sample.

Drug Sensitivity Analysis
The Connectivity Map (CMAP) database1 contains 6100
instances of 1309 small molecule drugs, with each instance
containing gene expression profiles for specific drugs and
corresponding treatments. In this study, we used gene expression
profiles to predict potential molecular compounds for NAFLD
therapy based on the CMAP database. Firstly, we analyzed

1https://portals.broadinstitute.org/cmap/
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differential expression between NAFLD and normal tissues.
Next, 300 genes with the most significant folding changes (150
up-regulated and 150 down-regulated) were submitted to the
CMAP website and used to search for small molecule drugs
that may improve NAFLD prognosis. The correlation between
drugs and DEGs was represented by scores ranging from –1 to 1.
Notably, a negative score represents the gene expression pattern
of corresponding interference, which is contrary to the specific
expression pattern of the disease, indicating that this interference
has a potential therapeutic effect.

Feature Selection and Model
Construction
To estimate NAFLD patients in both cohorts, we developed
a prediction model based on random forest (RF) analysis.
Firstly, the six GEO datasets (GSE48452, GSE63067, GSE666676,
GSE89632, GSE2807, and GSE37031) were combined into a
queue, and the batch effect was removed using the combat
functions in the SVA package. Next, GSE48452, GSE63067,
GSE666676, and GSE89632 were combined into a training
cohort and used to build a prediction model, while the external
verification of model performance was evaluated using GSE2807
and GSE37031 datasets. Secondly, we analyzed the differences
in the expression of control and NAFLD samples, and the
information gene was selected as input for the RF model
(P < 0.05). This backward elimination method was then used to
find the best biomarkers for random forest analysis. Specifically,
we used out of band (OOB) errors as the minimum criteria to
eliminate variables by setting the descent score of each iteration
to 0.2, which means that 20% of the genes are removed from
the bottom of the gene importance ranking list in each iteration
until the OOB error rate reaches its minimum (Yang et al.,
2020a). When RF reaches the minimum OOB error rate, a set of
genes are selected as the best biomarkers and used to establish
the final RF prediction model (Yang et al., 2020a). Finally, the
predictive performance of the model in training and validation
cohorts was evaluated using receiver operating characteristic
(ROC) curves.

Single-Cell RNA-Seq Analysis
Single-cell RNA-seq analysis of GSE158241 was performed
by using Seurat package. Low quality cells were excluded
according to the following quality control criteria: (1) genes
identified in < 3 cells were excluded; (2) cells with total
detection gene < 50 were excluded; and (3) cells with more
than 5% mitochondria genes were excluded. PCA analysis was
used to identify available dimensions. Subsequently, T-SNE
algorithm was applied to perform non-linear dimensional
reduction and cluster classification across cells. Afterward,
the Celldex software package was used to annotate cell
clusters, and further cell subpopulations quantification was
performed according to GSVA method. The corresponding
genes of cell surface markers used for cell cluster annotation
were retrieved from Cellmarker and Panglaodb database,
and the detailed information of cell markers was listed in
Supplementary Table 1.

RT-PCR, siRNA Transfection, and NAFLD
Model Establishment Using Palmitic Acid
HepG2 human hepatoma cells were purchased from the Chinese
Academy of Sciences (Shanghai Institute of cell biology, China).
The cells were cultured in DMEM medium (GIBCO) containing
10% fetal bovine serum (GIBCO) and 1% antibody (GIBCO),
then incubated in 5% CO2 at 37◦C. When the cell density
reached 60% confluence, the cells were transfected with human
OPTN siRNA or a negative control siRNA (RiboBio, Guangzhou,
China), using Lipofectamine 3000 (Invitrogen, United States) per
manufacturer’s instructions. After 24 h of transfection, the cells
were cultured with palmitic acid (PA) (Solarbio, Beijing, China) at
the concentration of 0.3 nM, while the vehicle control group were
treated with PA-free bovine serum albumin (Solarbio, Beijing,
China) at the concentration of 1%(w/v) for 24 h. Next, total RNA
was extracted using Trizol (Invitrogen, United States), and cDNA
was synthesized by reverse transcription using PrimeScript RT
Master Mix (Takara, Japan) per manufacturer’s instructions. A TB
green premix ex Taq Kit (Takara, Japan) was used for real-
time quantitative PCR (RT-PCR) with gene-specific primers;
the sequences of the primers is shown in Supplementary
Table 2. Each sample was replicated three times, and the relative
abundance of transcripts was normalized using β-actin as a
control. Finally, the 2−11CT method was used to calculate the
relative change in gene expression.

Enzyme-Linked Immunosorbent Assay
(ELISA) and Intracellular TG
Measurement
HepG2 cells transfected with OPTN siRNA or negative control
siRNA were continuously incubated and cultured in medium
with 0.3 nM PA for 24 h. Then, culture supernatants from HepG2
were collected and analyzed for detection of IL-6, IL-8, ICAM-1,
MCP-1, and TNF-α using ELISA kits (MultiSciences, Hangzhou,
China) following the manufacturer’s instructions. Intracellular
TG concentrations were normalized to protein concentrations.
TG levels were determined using a Triglyceride assay kit (Nanjing
Jiancheng, Nanjing, China) and protein concentrations were
measured using the Pierce BCA protein quantitative assay kit
(Thermo-Fisher Scientific, Massachusetts, America).

Statistical Analysis
All statistical analyses were performed in R (version 3.6), and
all statistical tests were bilateral. P < 0.05 was considered to be
statistically significant.

RESULTS

Differential Gene Expression Analysis in
NAFLD
The study design is shown in Figure 1A. We downloaded
GSE24807, GSE37031, GSE48452, GSE63067, GSE66676, and
GSE89632 data sets from the GEO database. A total of 118
normal patients and 135 NAFLD patients were included.
Microarray data with batch effect were normalized using scale
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method, and the PCA plot shows that the batch effect was
eliminated among the datasets (Figure 1B). We then analyzed
the differentially expressed genes (DEGs) between NAFLD and
control samples to identify NAFLD-specific gene expression
patterns. The GSE48452, GSE63067, GSE66676, and GSE89632
data sets were used as the training set, followed by differential
analysis using the limma package. The screening condition was:
adj P < 0.05. In total, 1,358 DEGs were obtained, of which, 826
were up-regulated and 532 were down-regulated (Figure 1C and
Supplementary Table 3).

Pathway Analysis of NAFLD
Pathogenesis
We annotated the functions of obtained DEGs to further
analyze their significance in NAFLD pathogenesis. Up-regulated
DEGs were mainly enriched in carbohydrate metabolism,
lipid metabolism, and other metabolic processes, while down-
regulated genes were mainly enriched in TGF-β signaling,
TNF signaling, and cytokine receptor interactions, among
other pathways (Figure 2A). Because metabolic dysregulation
is involved in NAFLD pathogenesis, we further explored
whether the control and NAFLD groups had differing metabolic
characteristics. Firstly, we quantified 41 metabolic processes
using the GSVA R package, then conducted differential analysis
to determine the subclass of specific metabolic characteristics.
We found that 11 metabolic characteristics were enhanced in
NAFLD, including primary bile acid biosynthesis, and cholesterol
biosynthesis (Figures 2B–E).

Immune Infiltration in NAFLD
Immunologic dysregulation is a major driver of NAFLD
progression and other metabolic diseases. To determine whether
the immune landscape of NAFLD differed from that of
healthy subjects, we used CIBERSORT, a non-negative matrix
factorization algorithm, to calculate the proportion of different
types of immune cells in the tissue according to the LM22
signature matrix. The immune infiltration in each patient’s tissue
is shown in Figure 3A. There was a significant difference in
the content of immune infiltration between normal liver tissue
and that of NAFLD patients (Figure 3B). Moreover, memory
B cells, regulatory T cells, resting NK cells, resting dendritic
cells, macrophages, and resting mast cells were significantly
increased in liver tissues of NAFLD patients, while naïve
B cells, plasma cells, T follicular helper cells, activated NK
cells, activated mast cells, and neutrophils were significantly
decreased. To further verify the above results, we analyzed
the scRNA-seq dataset of GSE158241 to infer the difference
of immune cell subpopulations between the control group and
NAFLD group. By integrated analysis of scRNA-seq and bulk-
seq, we can more comprehensively understand the difference
of immune infiltration in NAFLD. By using T-SNE algorithm,
the cells are successfully divided into 16 clusters (Figure 3C).
Subsequently, a total of 9 types of cells are annotated by Celldex
package, including T cells, B cells, Macrophages, Monocytes,
NK cells, Granulocytes, Endothelial cells, Fibroblasts, and
Hepatocytes (Figure 3D). According to the Cellmarker and

Panglaodb database, we retrieved the corresponding markers
of immune cell subpopulations and used GSVA method to
quantified the specific immune cell types. The results showed that
memory B cells, regulatory T cells, M1 macrophages cells were
significantly increased in NAFLD, while T cells follicular helper
significantly decreased (Figures 3E–G), which was consistent
with the results of bulk-seq analysis. These findings reveal more
accurate characteristic changes of immune infiltration in the
development of NAFLD.

Screening for Potential NAFLD
Therapeutic Agents
To screen small molecule drugs targeting NAFLD, we used
CMAP analysis to assess gene expression that was increased
in NAFLD but was decreased after treatment with a variety of
compounds. We uploaded 300 genes with the most significant
changes (150 up-regulated genes and 150 down-regulated
genes) to the CMAP database, and the top 10 relevant drugs
associated with NAFLD treatment were identified (Figure 4A and
Supplementary Table 4). Among them, digoxin, helveticoside,
anisomycin, and digoxigenin were highly negatively correlated
with NAFLD progression, indicating that these compounds
may have potential therapeutic effectiveness. Next, we further
evaluated the molecular action of these compounds to explore
their potential in the treatment of NAFLD. The mechanism of
actions (MOA) and drug target of these drugs were analyzed by
Clue database2 to explore their potential mechanism for treating
NAFLD (Figure 4B). the expression of these drugs target in
HepG2 cell after palmitic acid stimulation was tested (Figure 4C).
The fold-change differences of the expression levels of candidates
drug targets between NAFLD and normal status were calculated,
and a higher fold change value indicated a greater potential of
candidate agent for NAFLD treatment. The tomograms of the top
four potential molecular drugs were provided by PubChem, as
shown in Supplementary Figure 1.

Construction of a NAFLD Prediction
Model and Target Gene Validation
We selected differential genes for further screening through
minimum depth random forest analysis. In total, five key genes
were screened:CXCL10, ENO3, INHBE, LRRC31, and OPTN.
These genes were significantly up-regulated in NAFLD patients
compared to controls (Figure 5A). Therefore, we established a
prediction model of a five-gene signature based on these key
genes. After training the model, we found that the prediction
efficiency of ROC in the training set was 1 (Figure 5B).
Furthermore, we selected GSE24807 and GSE37031 as external
validation sets to explore the predictive stability of the model. The
ROC of the external validation set also reached 1 (Figure 5C),
suggesting that this model can accurately predict the occurrence
of NAFLD. On the other hand, we used a palmitic acid-
induced fatty liver model to explore the expression pattern of
these five core genes in fatty liver. The results showed that
CXCL10, ENO3, INHBE, OPTN were differentially expressed

2https://clue.io/
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FIGURE 1 | Differentially expressed genes. (A) Schematic diagram of the study design. (B) Two-dimensional PCA plot of the combined expression profile.
(C) Volcano of differentially expressed genes. The red dots represent up-regulated genes while the green dots represent down-regulated genes.

FIGURE 2 | Pathway analysis of NAFLD pathogenesis. (A) Pathway analysis of differentially expressed genes. The red bar represents the functional pathway
enriched by up-regulated genes, while the green bar represents the functional pathway enriched by down-regulated genes. (B) Heatmap of the specific
metabolism-associated pathways. (C) Boxplot of the signature score for differentially amino acid metabolism-associated pathways. (D) Boxplot of the signature
score for differentially lipid metabolism-associated pathways. (E) Boxplot of the signature score for differentially other metabolism-associated pathways. *p < 0.05,
**p < 0.01 and ***p < 0.001.
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FIGURE 3 | Immune landscape of NAFLD. (A) The percentage of 22 types of immune cells in the NAFLD and control groups. (B) The difference of immune cells
between NAFLD and control group. (C) The TSNE algorithm was used for dimensionality reduction and finally 16 cell clusters were successfully classified. (D) All 16
clusters of cells were annotated by Celldex package according to the composition of the marker genes. (E) Enrichment scores of B cells subpopulations at the
single-cell level. (F) Enrichment scores of T cells subpopulations at the single-cell level. (G) Enrichment scores of Macrophages subpopulations at the single-cell
level. ****p < 0.0001.

(Figure 6A). As is known to all, NAFLD can develop into liver
cancer, which is a high risk factor for liver cancer. According
to AJCC staging system, we included data from both TCGA
and GEO datasets (GSE36376, GSE84005, and GSE101685) of
patients with early stage hepatocellular carcinoma. The results
showed that only OPTN was up-regulated in multiple datasets
of early hepatocellular carcinoma (Supplementary Figure 2A),
which was consistent with the high expression pattern of
OPTN in NAFLD, suggesting that OPTN was also a diagnostic
marker of early hepatocellular carcinoma and may be involved
in the development of NAFLD to hepatocellular carcinoma.
In addition, high expression of OPTN is associated with
poor prognosis of hepatocellular carcinoma (Supplementary
Figure 2B). Therefore, OPTN might have the potential to prevent
NAFLD patients from developing hepatocellular carcinoma or
a biomarker of early hepatocellular carcinoma. Further study
of OPTN in NAFLD has more important clinical significance.
OPTN plays an important role in different tissues by regulating
endoplasmic reticulum stress (Ali et al., 2019), cell death

(Ali et al., 2019), inflammatory responses (Slowicka et al., 2016),
and autophagy (Korac et al., 2013; Heo et al., 2015). These
pathways are closely related to the occurrence and development
of NAFLD. Therefore, we used siRNA to knock down the
expression of OPTN in HepG2 cells. We found that the
efficiency of adipogenesis and the levels of proinflammatory
cytokines (IL-6, MCP-1, TNF-α) were decreased after OPTN
knockdown (Figures 6B–F), suggesting that OPTN could delay
the adipogenesis in fatty liver. The metabolic and immunologic
regulation of OPTN is shown in Figure 6G.

DISCUSSION

NAFLD is the main cause of fatty liver disease, which is
characterized by diffuse alveolar fat within the liver (Chalasani
et al., 2018). It is worth noting that NAFLD has become
an important cause of chronic liver disease in developed
countries due to the globalization of obesity and its related
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FIGURE 4 | CMap analysis of potential therapeutic drugs for NAFLD. (A) Results of CMap analysis for differentially expressed genes. (B) Molecular action of
potential therapeutic drugs. (C) Expression of 17 drugs target genes in HepG2 cell after stimulated by palmitic acid. *p < 0.05, **p < 0.01 and ***p < 0.001.

metabolic syndrome. Currently, the identification of NAFLD
and its high-risk population is not accurate, and there is lack
of sufficient knowledge on its natural history and the key
pathogenic factors that stimulate the disease. Therefore, this
warrants a further elucidation of NAFLD pathogenesis to provide
better treatment strategies. In this study, we used the GEO
database to explore diagnostic markers for disease progression
and potential NAFLD drug targets. Our results describe a
comprehensive immunologic landscape in patients with NAFLD.

We also identified several potentially effective drugs, providing an
important theoretical basis for the prevention and treatment of
NAFLD. In addition, we identified five key genes associated with
poor prognosis (CXCL10, ENO3, INHBE, LRRC31, and OPTN)
using a minimum depth random forest algorithm and established
a prediction model based on these key genes. The predictive
efficiency of our model reached 100% in both the training and test
sets. These findings may strongly support further comprehensive
study of NAFLD precision treatment.
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FIGURE 5 | Construction of NAFLD prediction model. (A) Expression pattern of the identified hub genes. (B) ROC of the training set. (C) ROC of the validation set.

Previous studies have shown that the more components of
metabolic disorders coexist in patients with NAFLD, the more
likely they are to develop NASH and cirrhosis (Liangpunsakul
and Chalasani, 2005; Chan et al., 2013). The role of NAFLD
in promoting metabolic syndrome may be associated with the
accumulation of liver fat and excess visceral adipose tissues;
however, the specific mechanisms are still unclear. In this
study, functional enrichment analysis showed that carbohydrate
metabolism, lipid metabolism, and other metabolic processes
were up-regulated in NAFLD patients. Our ssGSEA results
also showed that the up-regulation of differential metabolic
pathways was a primary feature of NAFLD, including primary
bile acid biosynthesis, cholesterol biosynthesis, and other lipid
metabolism-related pathways. Notably, bile acid synthesis is
the main pathway for cholesterol and lipid metabolism, whose
dysregulation is associated with obesity, diabetes, non-alcoholic
fatty liver disease, and other metabolic diseases (Jia et al., 2021).
In addition, cholesterol is considered to be the main lipotoxic
molecule in the development of NASH, which can promote lipid
accumulation and hepatocyte proliferation, thereby leading to the
development of NAFLD and even HCC (Ioannou, 2016).

Immunologic dysfunction is one of the main driving factors
of NAFLD progression and other obesity related diseases, of

which both innate and adaptive immune systems are involved
(Van Herck et al., 2019). We used the CIBERSORT algorithm to
quantify the immune infiltration of patients to explore whether
targeting the regulatory mechanisms of the immune system in
NAFLD could be helpful in alleviating intrahepatic inflammatory
responses and reducing hepatocyte damage, fibrosis, and even
hepatocarcinogenesis. We found that the levels of resting dendric
cells, resting NK cells, memory B cells, and regulatory T cells
were significantly increased in liver tissues of NAFLD patients.
We further performed the scRNA-seq analysis of GSE158241
dataset. The results showed that memory B cells, regulatory
T cells, M1 macrophages cells were significantly increased in
NAFLD, while T cells follicular helper significantly decreased,
which was consistent with the results of above analysis. Some
studies have shown an increase number of Treg cells in liver
of NAFLD (Bertola et al., 2010; Soderberg et al., 2011), which
is consistent with our analysis. The role of Treg cells is related
to the regulation of immune system, and the increase of Treg
cells subpopulations may indicate the immune disorder leading
to liver inflammation in NAFLD. In High fat diet fed mice,
the adaptive cell transfer of Treg cells did not cause metabolic
disorder rather than aggravated the degree of hepatic steatosis
(Van Herck et al., 2020). In addition, hepatic macrophages
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FIGURE 6 | Target gene validation in HepG2 cell. (A) Expression of 5 hub genes in HepG2 cell after stimulated by palmitic acid. (B) Efficacy of OPTN knockout in
HepG2 cell. (C) Expression of adipogenesis related genes after OPTN knockdown. (D) Expression of other hub genes after OPTN knockdown. (E) Effect of OPTN
knockdown on the intracellular triglyceride content in HepG2 cell. (F) Effect of OPTN knockdown on the release of proinflammatory cytokines in HepG2 cell.
(G) Metabolic and immune regulation of OPTN. *p < 0.05, **p < 0.01 and ***p < 0.001.

play an important role in regulating innate immune responses
(Kong et al., 2019). Macrophage are a highly heterogeneous
immune cell, which shows pleiotropic and coordinated response
to the immune environment. The proinflammatory phenotype,
M1 macrophage, involved in the pathogenesis of inflammation
disorders, including NAFLD (Zhang Y. Y. et al., 2017). LPS or
free fatty acid could activate a M1 phenotype and release of
inflammation cytokines through TLR4 signal pathway (Koyama
and Brenner, 2017). Inhibition of M1 polarization attenuates

diet-induced NASH (Zhang Y. Y. et al., 2017). Collectively, our
results suggest a more accurate characteristic changes of immune
infiltration in the development of NAFLD.

Currently, there are no drugs associated with the treatment
of NASH (Friedman et al., 2018). The reuse of known drugs
is a feasible drug development strategy. In the past decade,
several studies have been conducted with the goal of identifying
the genetic features that predict the development of NAFLD.
We used the CMAP database to identify potential drugs for
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NAFLD treatment based on the DEGs identified in our study.
The connectivity scores of digoxin, helveticoside, anisomycin,
and digoxigenin were relatively low, which suggests that these
drugs are highly negatively correlated with NAFLD-specific
DEGs. Digoxin and helveticosite are ATPase inhibitors. Recent
studies reported that ATPase inhibitors are closely related to fatty
oxidation and liver fibrosis (Cortez-Pinto et al., 1999; Orlov et al.,
2019), which are the pathological basis of NAFLD development.
Digoxin, for example, has been reported to inhibit the secretion
of IL-17A, reduce the levels of liver steatosis, and block the
infiltration of liver immune cells, thus preventing liver injury. In
high-risk patients infected with HBV or HCV, digoxin provide an
effective and cheap method of prevention for the development
of NASH and HCC (Gomes et al., 2016). In addition, digoxin
can effectively maintain the redox homeostasis of hepatocytes,
inhibit the activation of the HIF-1α pathway, and protect the
liver from inflammation and injury in NASH and ASH (Ouyang
et al., 2018). We found that digoxin may have the potential
to reverse NAFLD. Anisomycin is a kind of DNA synthesis
inhibitor. The results of MOA suggest that it is involved in the
regulation of RPL3 expression. Studies have shown that high
levels of RPL3 can be found in both polygenic and monogenic
obese mouse (Allan et al., 2001). Also, the expression of RPL3
was related to the heat expenditure of brown adipose tissue (Allan
et al., 2000; Wesolowski et al., 2003), suggesting that RPL3 was
a regulatory factor of energy balance and had the potential to
alleviate the progression of NAFLD. Taken together, the reuse of
these three drugs is a feasible drug development strategy, which
may provides new insights therapeutic options for the treatment
of patients with NAFLD.

In the past decade, high-throughput analysis has enabled
scientists to restate key events that occur in NAFLD (Gorden
et al., 2015; Gjorgjieva et al., 2019). We developed an effective
method for predicting NAFLD and identified potential drugs
for NAFLD treatment. We obtained a five-gene characteristic
using a minimum depth random forest algorithm and identified
CXCL10, ENO3, INHBE, LRRC31, and OPTN as key genes in
NAFLD progression. In addition, the AUCs of the prediction
model were verified in the training and verification sets (both
100%), indicating that these genes are potential diagnostic
markers of NAFLD. Previous studies have reported that CXCL10
is a chemotactic ligand derived from hepatocytes (Ibrahim
et al., 2016), and initiates an inflammatory cascade through its
homologous receptor CXCR3 (Tomita et al., 2016). Another
study showed that the expression of CXCL10 is increased in
steatohepatitis (Zhang et al., 2014). In contrast, knockout of
CXCL10 expression has a protective effect on in vitro hepatocyte
damage and mouse steatohepatitis (Zhang X. et al., 2017).
A previous study reported that mice deficient in CXCL10 or
its homologous receptor CXCR3 gene were protected from
diet-induced NASH (Tomita et al., 2016). Therefore, CXCL10
may be used as an early indicator or as a target to inhibit
inflammatory responses in NAFLD. LRRC31 belongs to the
LRRC superfamily, which plays an important role in cell cycle
regulation, chromosome stability, apoptosis, and DNA repair
(Codd et al., 2010). One study reported that LRRC1 may be
an oncogenic gene, and overexpression of LRRC1 accelerated

the growth and colony formation of hepatoma cells (Li et al.,
2013). In addition, the LRRC31 mRNA was positively correlated
with eosinophilia and IL13 and IL5 expression, and was related
to cellular immune regulation as well as inflammatory response
(D’Mello et al., 2016). These molecular events may be involved
in the pathogenesis of NAFLD. Enolase 3 (ENO3), an enzyme
that mediates the synthesis of cholesterol esters, is distributed
in various tissues, such as the liver, lungs, bone, and heart (Wu
et al., 2008). Moreover, it may participate in the regulation of
liver lipid transport and energy homeostasis, and is important
for the accumulation of cholesterol esters in the liver of obese
patients (Stahlberg et al., 1997). A previous study reported that
the level of ENO3 was significantly higher in the livers of
morbidly obese subjects compared to those who had experienced
a great quantity of weight loss (Elam et al., 2009). INHBE
belongs to the transforming growth factor-β (TGF-β) family. It
is mainly expressed in the liver, where it regulates the growth
and differentiation of hepatocytes (Chabicovsky et al., 2003;
Vejda et al., 2003). INHBE mRNA has been positively correlated
with HOMA-IR and body mass index. Studies have shown
that it is a possible insulin resistance-related hepatocyte factor
(Sugiyama et al., 2018), and its expression was up-regulated
in the liver of obese mice after insulin stimulation (Roberts
et al., 1990). In addition, the subunit activin E, encoded by
INHBE, can stimulate energy consumption by activating brown
and beige adipocytes, suggesting that it may be a target for
obesity prevention or treatment (Hashimoto et al., 2018). OPTN
is a multifunctional protein involved in signal transduction,
vesicular transport, immune response, autophagy and various
signaling pathways, including nuclear factor-kappa B (NF-kB)
Mutations or deletions of the OPTN gene are associated with
severe neurodegenerative diseases, such as amyotrophic lateral
sclerosis, and glaucoma, inflammation, and elevated cancer risk.
However, the specific role of OPTN in NAFLD is still unknown.
In this study, we used PA-stimulated hepatocytes to develop a
fatty liver model. Using this model, we found that the expression
of CXCL10, ENO3, INHBE, and OPTN was up-regulated in
PA-treated hepatocytes. In addition, analysis of immune cell
infiltration showed that OPTN was negatively correlated with T
cell and B cell infiltration, and positively correlated with dendritic
cells and mast cell infiltration. This was consistent with our
analysis of immune infiltration differentiation between normal
and NAFLD liver tissues. According to our GSVA analysis,
several pathways are associated with OPTN, including the NF-
kB-mediated TNF-α pathway and the interferon α pathway, both
of which regulate immunity and inflammation (Vidal, 2020; Jang
et al., 2021). TNF-α has become a major inducer of nutrient
and obesity related NAFLD (Perseghin et al., 2003; Shoelson
et al., 2006), and the level of serum TNF-α in patients with
NAFLD increased significantly (Assuncao et al., 2018). Recent
study have reported that TNF-α can promote the activation
of NLRC4 inflammasome and thus increase the production of
IL-18 and IL-1 β (Chen and Ma, 2019), which can aggravate
inflammation and promote disease development. Anti TNF-α
agents are also used to reduce the inflammation, necrosis and
fibrosis in NAFLD (Li et al., 2011). IFN-α can affect the activation
of memory CD8 cells and cytotoxic CD8 cells, as well as the
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recruitment of macrophages, leading to chronic inflammation
characterized by abnormal activation of some pro-inflammatory
pathways (Nishimura et al., 2009). Additionally, IFN-α increased
hepatic adipogenesis and VLDL secretion, which was obvious
in cultured hepatocytes and in patients with IFN-αtherapy
(Shinohara et al., 1997; Feingold et al., 1992). Therefore, OPTN
might act in the inflammatory mechanisms of NASH as it is
involved in TNF and IFNalfa pathways (Quiroga et al., 2019). Our
results also suggest that OPTN expression is closely associated
with adipogenesis. We speculate that increased OPTN expression
might be accompanied by the activation of DCs in adipose tissues
and increased adipogenesis. To the best of our knowledge, this
is the first study that has associated OPTN expression with
liver adipogenesis. Moreover, we found that the expression of
lipogenic genes (SCD1, ACC, and FASN) and lipid accumulation
in PA-stimulated hepatocytes were reduced in cells with knocked
down OPTN expression, further supporting the idea of OPTN
as a therapeutic target that can delay the progression of fatty
liver disease. In spite of these findings, our research should be
cautiously interpreted due to the limitations of our study. Firstly,
although this study have performed multiple perspective analyses
to investigate the therapeutic potential of these compounds in
NAFLD, the more detailed preclinical assay is needed to support
conclusion. Secondly, the biological effect of OPTN has been
functionally verified in HepG2 cell line, and further animal
studies are warranted to validate the role of OPTN in NAFLD.

CONCLUSION

In conclusion, we have successfully provided a more in-depth
insight into the overall molecular changes that occur during the
pathogenesis of NAFLD, including key events such as metabolic
landscape modification and abnormal immune infiltration. Our
results provided a reference for the immunologic-metabolic
crosstalk that may drive NAFLD progression. In addition, we
identified several drugs for the treatment of NAFLD along
with five potential therapeutic targets (ENO3, CXCL10, INHBE,
LRRC31, and OPTN). We also verified the potential of using
OPTN as a new therapeutic target for NAFLD. Collectively,
these findings will help provide a better understanding of the
occurrence and development of NAFLD.
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