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Antigen specificT regulatory cells (Treg) are often CD4+CD25+FoxP3+T cells, with a pheno-
type similar to natural Treg (nTreg). It is assumed that nTreg cannot develop into an antigen
specific Treg as repeated culture with IL-2 and a specific antigen does not increase the
capacity or potency of nTreg to promote immune tolerance or suppress in vitro. This has
led to an assumption that antigen specificTreg mainly develop from CD4+CD25−FoxP3− T
cells, by activation with antigen and TGF-β in the absence of inflammatory cytokines such
as IL-6 and IL-1β. Our studies on antigen specific CD4+CD25+ T cells from animals with
tolerance to an allograft, identified that the antigen specific and Treg are dividing, and need
continuous stimulation with specific antigen T cell derived cytokines. We identified that
a variety of cytokines, especially IL-5 and IFN-γ but not IL-2 or IL-4 promoted survival of
antigen specific CD4+CD25+FoxP3+Treg.To examine if nTreg could be activated to antigen
specific Treg, we activated nTreg in culture with either IL-2 or IL-4. Within 3 days, antigen
specific Treg are activated and there is induction of new cytokine receptors on these cells.
Specifically nTreg activated by IL-2 and antigen express the interferon-γ receptor (IFNGR)
and IL-12p70 (IL-12Rβ2) receptor but not the IL-5 receptor (IL-5Rα).These cells were respon-
sive to IFN-γ or IL-12p70. nTreg activated by IL-4 and alloantigen express IL-5Rα not IFNGR
or IL-12p70Rβ2 and become responsive to IL-5. These early activated antigen specific Treg,
were respectively named Ts1 and Ts2 cells, as they depend on Th1 or Th2 responses. Fur-
ther culture of Ts1 cells with IL-12p70 induced Th1-like Treg, expressing IFN-γ, and T-bet
as well as FoxP3. Our studies suggest that activation of nTreg with Th1 or Th2 responses
induced separate lineages of antigen specific Treg, that are dependent on late Th1 and Th2
cytokines, not the early cytokines IL-2 and IL-4.
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HISTORICAL PERSPECTIVE
Immune tolerance results from a combination of deletion of anti-
gen specific T and B cell clones, anergy, and suppression. Like
all biological systems, immunity has in built self-regulation that
prevents induction of destructive autoimmunity and controls or
limits all immune effector responses against any antigen. While a
variety of leukocytes can regulate, this review will focus only on
CD4+ T regulatory cells (Treg).

Since the first description of suppressor T cells, the difference
between non-antigen specific Treg that reside in thymus, bone mar-
row, and peripheral lymphoid tissues, and antigen specific Treg that
are present mainly in spleen and tissues, has been appreciated (1–
3). This division is consistent with natural Treg (nTreg) and antigen
specific Treg. Early studies characterized CD8+ T suppressor cells,
reviewed (4) but this work was discredited (5) and a common view
was suppressor T cells did not exist, until the recognition of CD4+

Treg.

ANTIGEN SPECIFIC CD4+CD25+ Treg

Alloantigen specific transplant tolerance was found in the mid
1980s to be mediated by CD4+ T cells not CD8+ T or B cells

(6–8). In the early 1990s Waldman’s group found CD4+ T cells
from host transplant tolerant animals infect adoptive hosts’ T cells
to maintain alloantigen specific tolerance (9).

At that time, we observed that the CD4+ T cells that transferred
antigen specific tolerance rapidly died in vitro (10–12). Death of
antigen specific tolerance transferring CD4+ T cells could be pre-
vented by both stimulation with specific antigen and cytokines
provided at that time by supernatant from Concanavalin A stim-
ulated spleen cells. This supernatant was a crude source of IL-2
(12), but is now known to contain a number of cytokines, as well
as IL-2. This suggested that the CD4+ T cells that transfer trans-
plant tolerance were activated cells that may depend on IL-2. We
thus examined and found they expressed the IL-2 alpha receptor
(CD25) (11). In 1990 we identified alloantigen specific tolerance
transferring cells as CD25+ Class II MHC+CD45RC+CD4+ T
cells (11). At that time CD25 was expressed by CD4+ T cells
activated to effect rejection (13), thus we assumed the suppres-
sor cells were derived from specific alloantigen activated CD4+ T
cells. As IL-2 alone only partially sustained the capacity of tolerant
CD4+ T cells to transfer antigen specific tolerance, we concluded
other cytokines were required (12). Since we have systematically
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examined which cytokines are involved in the maintenance of anti-
gen specific CD4+CD25+FoxP3+ Treg, and this is the focus of this
review.

NATURAL Treg

We also found that normal animals have cells, particularly in thy-
mus and bone marrow, that suppress immune responses in a
non-antigen specific manner, and that adult thymectomy depletes
these cells, leading to heightened immune responses (14) and
greater susceptibility to autoimmunity (15). Alloantigen specific
CD4+ T suppressor cells have a different tissue distribution, being
greatest in spleen, less in lymph nodes, and not in thymus or bone
marrow (7). Further, they do not re-circulate rapidly from blood to
lymph, suggesting they re-circulated through peripheral somatic
tissue not through lymphoid tissues (7), similar to memory T cells
(16), and not like naïve T cells that re-circulate from blood through
lymphoid tissues (17). These basic differences in the migration of
antigen specific and nTreg can be used to distinguish these cell
populations by cell surface markers that direct their migration
pathways, reviewed (18).

Later, activated CD4+ T cell in normal animals that expressed
CD25 and prevented autoimmunity in neonatal thymectomized
mice were described (19). These CD4+CD25+ Treg suppressed in
a non-antigen specific manner, and are known as nTreg. nTreg are
thymus derived and express FoxP3 (20) that prevents IL-2 induc-
tion and induces CD25 expression. FoxP3 expression in mice is
a marker of Treg, but in man activated CD4+ and CD8+ T cells
transiently express FoxP3 (21) and can be induced to have pro-
longed expression of FoxP3 (22). IL-2 is essential for survival of
nTreg in peripheral lymphoid tissues (23, 24). CD4+ T cell with

high expression of CD25, are regulatory, whereas CD4+CD25lo T
cells are not regulatory (25).

Natural Treg have low expression of CD127, the IL-7 receptor,
which is highly expressed by effector lineage CD4+CD25− T cells
(26), albeit activated CD4+ T cells (27), and T follicular helper
cells (Tfh) also have low expression of CD127 (28). The survival
of nTreg without an immune response is dependent on low levels
of IL-2, whereas CD4+CD25− T cells depend upon IL-7 (29) not
IL-2 for their survival without antigen activation. In the thymus
IL-2 (30), not IL-7 (31) is critical for production of nTreg, although
IL-7 plays a separate role in induction of nTreg in the thymus (32).

The CD4+CD25+FoxP3+ T cells are a heterogeneous group,
and include naïve nTreg produced by the thymus, that have TCRs
with increased affinity for self either due to thymic selection for
self or expansion of self reactive clones in the periphery (33, 34).
These naïve nTreg are polyclonal, with a wide repertoire of TCR.
In normal immunological naïve hosts, some naïve nTreg, with
TCR specific for autoantigens, may have contacted antigen and
been activated or expanded, to increase the repertoire of autoreac-
tive nTreg. In addition, especially in hosts with acquired immune
tolerance, there may be CD4+CD25+ Treg reactive to foreign or
alloantigens, that have been expanded and function as antigen spe-
cific Treg. These are no longer naïve nTreg. Hosts with established
antigen specific tolerance may have a large population of activated
Treg with TCR specific for the tolerated antigen that mediate this
tolerance, as well as the normal naïve nTreg with a TCR repertoire
for self as well as a limited repertoire for other foreign antigens.

INDUCTION OF Treg FROM CD4+CD25− T CELLS
CD4+CD25− T cells can be activated by antigen in the absence of
inflammatory cytokines, to antigen specific Treg. The first induced
Treg (iTreg) described by Weiner are Th3 cells induced by TGF-β in
oral tolerance, reviewed (35). Groux et al. described induction of
antigen specific Treg by repeated culture of CD4+ T cells with anti-
gen and IL-10, producing Tr1 cells that suppress via production of
IL-10 and TGF-β (36). Tr1 and Th3 cell do not express CD25 or
FoxP3 (35, 37).

Induced Treg are derived from peripheral CD4+ T cells that
are stimulated by antigen and TGF-β in the absence of inflam-
mation and inflammatory cytokines. These iTreg are induced to
express FoxP3, albeit its expression is not stable as the Treg specific
demethylation region (TSDR or CBS2) for FoxP3 is not demethy-
lated (38). Both TGF-β which down regulates many genes, and
FoxP3 expression which down regulates other genes, are required
to induce iTreg from CD4+ T cells (39).

Most attempts to describe Treg oversimplify the complex nature
of these cells in vivo, by describing all Treg as one type of cells, or
dividing their description into nTreg and iTreg. nTreg remain non-
antigen specific polyclonal Treg when cultured with IL-2 alone,
whereas antigen specific nTreg are not expanded by IL-2. This and
the small frequency of nTreg reactive to a specific antigen has led
some to conclude that some, if not the majority, of antigen spe-
cific Treg reactive to foreign antigens may be derived from iTreg and
not from activation of nTreg (40–43). The lack of a distinct sur-
face marker to distinguish antigen specific Treg produced as iTreg

from those derived from nTreg, makes determination of the pre-
cise contribution of nTreg and iTreg to states of induced tolerance
difficult (44, 45).

This review will focus on antigen specific Treg induced from
nTreg, not on iTreg. Most of the material presented is derived from
murine models. In each section, murine results will be presented
first, then any human data will be discussed. At the end of each
section, any information on similar cells derived from iTreg will be
briefly mentioned.

Our work on Treg has shown that differential cytokine receptor
expression is key to the identification of different T cell sub-
types, including nTreg (46). This differential expression of cytokine
receptors can be used to identify and distinguish a large number
of functionally distinct Treg populations and is the major focus of
this review.

ARE THERE ANTIGEN SPECIFIC Treg?
Acquired or induced immune tolerance is antigen specific, as
shown in allograft (6–8, 11) and autoimmune tolerance (47, 48).
In autoimmunity induced tolerance is epitope specific (47, 48).
The CD4+ T cells that transfer transplant tolerance are alloanti-
gen specific (6–8, 11). Antigen specific Treg, not polyclonal nTreg,
are needed to prevent autoimmunity including myelin basic pro-
tein induced EAE (49), type I diabetes (50–52), gastritis (53), and
peptide specific Treg control EAE induced by that peptide (54).

Animals with tolerance to an antigen or allograft do not have
a major increase in CD4+CD25+ T cells, which remain at ratios
of approximately 1:10 to CD4+CD25− T cells (55, 56). As these
antigen specific Treg represent a fraction of the CD4+CD25+ T
cells, they suppress the immune response at ratios well below 1:10,
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whereas nTreg are required at non-physiological ratios of 1:1 to
suppress in vivo (57) and in vitro (58, 59). Ratios of 1:1 have only
transiently been achieved with IL-2/IL-2 mAb complexes where
they can suppress pancreatic islet allograft rejection and autoim-
munity (60). It has recently been appreciated that the number of
nTreg that need to be produced for transfer to induce tolerance
is impossibly large (61). Thus generation of antigen specific Treg

from nTreg that suppress at ratios of <1:10 in an antigen specific
manner would be highly desirable. We have described how such
antigen specific Treg can be generated from naïve nTreg in vitro
with 3–4 days of culture (46).

IS THERE MORE THAN ONE ANTIGEN SPECIFIC SUBSET
OF Treg?
There is ample evidence that the pathways for activation of nTreg

and iTreg are multiple and complex, producing antigen specific
Treg that control different subpopulations of effector CD4+ T
cells, including Th1, Th2, Th17, and Tfh cells. The generation
of antigen specific Treg from either naïve nTreg or effector lineage
CD4+CD25− T cells, is complex involving activation of antigen
specific T cells with antigen in an environment of cytokines that
promotes maturation and clonal expansion of these antigen spe-
cific Treg. The cytokines that induce these lineages differ and relate
to the environment present at the location of activation.

Our hypotheses are that: (i) every phase of the immune
response is regulated to some degree, and that Treg are inte-
gral to control of all immune responses. (ii) All normal immune
response, both in vivo and in vitro, are associated with activa-
tion of a CD4+ Treg response. (iii) Treg activation is driven by the
cytokines present, including those produced by activated effector T
cells. (iv) The more advanced or aggressive the immune response,
the more potent the Treg that are generated by the cytokines
produced, to control the response. We propose there are several
levels of regulation by different functional subclasses of CD4+

Treg that are induced and activated by the ambient cytokines.
Some of these separate Treg lineages and types are described in
Table 1.

WHY ARE ANTIGEN SPECIFIC Treg HARD TO IDENTIFY?
A key unanswered question is the relationship of naïve non-
antigen specific Treg generally described as nTreg, to antigen
specific Treg. In particular whether antigen specific Treg are
derived from nTreg or a product of activation of effector lineage
CD4+CD25− T cells, now known as iTreg (62). Whilst some con-
clude that antigen specific Treg are mainly iTreg, this review will
examine the pathways by which nTreg can be activated to antigen
specific Treg, raising the possibility that activation of nTreg may be
the dominant source of antigen specific Treg.

Our thesis is based on our findings that antigen specific Treg

die in vitro and in vivo, unless stimulated by specific antigen
and cytokines produced by activated effector cells during immune
response to the antigen (10–12). This makes identification of anti-
gen specific Treg very difficult, unless they are re-exposed to specific
antigen and the cytokines they depend upon. Further, antigen spe-
cific Treg do not require IL-2, and in fact may be killed by IL-2 (12).
Thus most current protocols for the ex vivo expansion of nTreg will
not promote antigen specific Treg.

ANTIGEN SPECIFIC Treg EXPRESS CELL SURFACE MARKERS
OF ACTIVATED T CELLS
Activated Treg express different cells surface markers to nTreg. As

examples nTreg express CD45RA and are CD44lo, whereas acti-
vated Treg express markers of memory cells, being CD45RO+ and

CD44hi. CD45RC is a marker of an activated Treg (11). Class II
MHC is only expressed by activated Treg, and is a marker of these
cells in man (63) and rats (11) but not in mice. nTreg express
CD62L and re-circulate from blood to lymph, whereas activated
Treg lose expression of CD62L and migrate through peripheral tis-
sue not through lymphoid tissues in murine (64, 65) and humans
(66). In naïve CD4+CD25+ Treg, CD62L+ not CD62L− Treg sup-
press GVHD (67, 68). Expression of CCR4 and CCR7, which
facilitate migration to lymphoid tissues are expressed by nTreg

but not antigen activated Treg (69). Activated Treg migrate to sites
of inflammation and express E/P selection (70) and chemokine
receptors (65, 71) that will direct them to the site of inflamma-
tion that they are programed to control (18). Thus, Treg effective
against Th1 responses express CXCR3 (72), those effective against
Th2 express CCR8 (73), those for Th17 express CCR6 (74), and
those for Tfh express CXCR5 (75).

ACTIVATION OF Treg TO EXPRESS TRANSCRIPTION FACTORS AND
CYTOKINES OF Th LINEAGES, MAKING Th-LIKE Treg THAT SUPPRESS
THE RELEVANT Th RESPONSE
Cytokines normally associated with induction and function of
Th1, Th2, Th17, and Tfh CD4+ T cells are now found to play a key
role in the induction, maintenance, and function of activated Treg.
Transcription factors that were considered the master regulators
of Th responses, play an essential role in activated Treg function,
including T-bet the Th1 transcription factor (76), GATA3 the Th2
transcription factor (77), and RORγt the Th17 transcription factor
(78). There is plasticity in Th cell lineages, in that various lineages
can at time express transcription factors and cytokines not classi-
cal for the lineage (79). Epigenetic modification of transcription
factor genes and miRNA expression contribute to stability of a
lineage, but this can be broken, discussed by O’Shea and Paul
(79). CD4+CD25+FoxP3+ Treg can express Th effector lineage
transcription factors, together with FoxP3, thereby retaining Treg

capacity.

ACTIVATION OF Treg IN ASSOCIATION WITH Th1 RESPONSES
In our studies, culture of nTreg with a specific alloantigen and
either IL-2 or IL-4 induce antigen specific Treg within 3–4 days of
culture (46). They suppress the capacity of naïve CD4+ T cells to
proliferate in vitro to specific donor at 1:32–64 and to effect rejec-
tion of specific donor grafts at 1:10 (46), whereas nTreg only fully
suppress at 1:1, both in vivo and in vitro (46, 57, 59). In an autoim-
mune model, antigen specific Treg were also induced in vitro by
culture with specific autoantigen and IL-2 that prevented disease
in vivo (unpublished results). No other Th1 or Th2 cytokines pro-
mote proliferation of nTreg, including IFN-γ, IL-12p70, IL-12p40,
IL-5, IL-13, nor did TGF-β, and IL-10 (46).

With CD4+CD25+ T cells from animals with tolerance to a fully
allogeneic graft, we found that IL-2 or IL-4 induces proliferation
to self, specific donor, and third party alloantigen. Proliferation
of these Treg to specific donor, and not to self or third party, is
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Table 1 | Subclasses of CD4+ T cells with regulatory function.

(A) PRESENTTO CONTROL AUTOIMMUNITY IN NORMAL HOSTS

nTreg produced in thymus and released into periphery, prevent activation of destructive autoimmune responses. Absence of nTreg due to neonatal

thymectomy (19), lack of IL-2, CD25, or FoxP3 (223) leads to widespread autoimmunity. Expression of CTLA4 is required for function of nTreg (224).

These cells will control low level immune responses, and suppress at a ratio of 1:1 with more aggressive immune responses (58) including fully

allogeneic responses (57, 59). They inhibit antigen presenting cells by direct contact and act in peripheral lymphoid tissues not at sites of inflammation

InducedTreg generated when antigen is presented in a non-inflammatory environment, when TGF-β is present in the absence of activated antigen

presenting cells and inflammatory cytokines such as IL-1β and IL-6. This produces additional Treg, that are antigen specific to prevent induction of

autoimmune response, in situations where self antigen is released due to non-inflammatory tissue injury such as trauma, ischemia, or chemical injury of

tissue as well as in normal tissue re-modeling and failed or incomplete apoptosis, reviewed (225). In these circumstances TGF-β produced to promote

repair of tissue also induces iTreg to prevent unwanted and unnecessary autoimmune responses. Their survival is ephemeral if there is repair of tissue,

but they may be further activated if inflammation supervenes

Th3 andTr1 cells produced in mucosal sites, in response to antigens that penetrate the mucosa. There is abundant IL-10 and IL-10 family of cytokines, as

well as TGF-β at these sites, that promotes tolerance induction to normal mucosal flora and oral antigens to prevent local and unwanted immune

responses and inflammation that would disrupt the mucosal integrity. They are essential to the preservation of mucosal integrity and act by production of

TGF-β and IL-10 that in turn promotes induction of more Th1 and Tr1

(B) PRESENT AFTER ACTIVATION OF AN IMMUNE RESPONSETO A SPECIFIC ANTIGEN

Antigen Activation of nTreg by inflammatory immune responses with cytokines produced early after activation of effector CD4+ T cells. The best

described is the effects of high concentrations of IL-2, inducing expansion of nTreg in the presence of a specific antigen. IL-4 also can induce activation of

antigen specific Treg from nTreg. Th1 and Th2 responses induce expansion of antigen specific Treg, respectively called Ts1 and Ts2 cells, that control

responses other that that of the inducing response. This contributes to polarization to one response, for example Th2 cytokine activated nTreg inhibit Th1

and Th17 responses

Activation of antigen specific activated nTreg by cytokines produced late in an ongoing immune response. This induces the Treg to express cytokines

and transcription factors of the activated Th cells, so the Treg become Th-like and express the transcription factor and late cytokines of that Th lineage

Conversion of activated effector cells to regulatory cells

(i) Activated Treg infecting activated T cells, via IL-35/IL-10 (226) or surface TGF-β (227) to a regulatory T cell phenotype and function

(ii) Persistent activation of effector lineage induces them to produce IL-10 and dampen their own response as was described some 20 years ago (228–230)

promoted by IFN-γ, IL-12p70, and IL-5, but not TGF-β, IL-12p40,
IL-10, or IL-13 (Hall et al., unpublished data). These cytokines
became candidates for the promotion of survival of alloantigen
specific CD4+ Treg in vitro, where we had not yet identified the spe-
cific cytokines involved (12). We had shown that antibody blocking
IFN-γ (12) IL-5 and TGF-β (55) does not prevent transfer and
maintenance of tolerance by CD4+ T cells from tolerant animals,
however. Polyclonal activation of nTreg was induced by self anti-
gen and IL-2 or IL-4, and with an antigen proliferation of nTreg

induced by IL-2 or IL-4 was further increased (46).
This led us to examine if there are two pathways for activation of

antigen specific Treg, one promoted by Th1 cytokines and the other
by Th2 cytokines (46). We identified separate pathways for Th1
and Th2, and called the early Th1 activated Treg, Ts1 cells, and the
early Th2 activated Treg, Ts2. The characteristics of these cells are
summarized in Table 2, which also shows that Ts1 and Ts2 cells are
an intermediate step in the activation of antigen specific Treg, and
that they can be further activated by late Th1 and Th2 cytokines to
more potent Th1-like Treg (Figure 1) or Th2-like Treg (Figure 2).

IL-2 AND ANTIGEN ACTIVATION OF nTreg

In cultures of naïve CD4+CD25+FoxP3+ Treg with allo or
autoantigen and IL-2, we found that within 2–4 days there was
a change in phenotype of the cells, see Table 2. Their expression of
mRNA for interferon-γ receptor (IFNGR) increases (46) and the

receptor for IL-12p70 (IL-12Rβ2) is induced, whereas the receptor
for IL-5 (IL-5Rα) is not induced. There is also enhanced expres-
sion of mRNA for IL-5 and reduced expression of IFN-γ. Other
cytokine expression remains unchanged, with no IL-2, and sim-
ilar expression of IL-4, IL-10, and TGF-β to that of fresh naïve
nTreg. Foxp3 expression is maintained in the majority of cells, and
there is no induction of T-bet or GATA3. These changes are not
observed when nTreg are cultured with IL-2 and self antigen, sug-
gesting these changes occur related to activation of antigen specific
Treg. We called these cells Ts1 (46).

Ts1 cells are more potent than nTreg in suppression in vitro,
as they fully suppress naïve CD4+ T cells proliferation in MLC
at 1:32–1:64 (46), whereas nTreg only fully suppress MLC at 1:1
or greater (59). Evidence that antigen specific Treg are activated
is that Ts1 cells suppress specific donor allograft rejection medi-
ated by naïve CD4+ T cells at a ratio of 1:10 (46), whereas naïve
nTreg only suppress rejection at 1:1 (57), and Ts1 cells do not sup-
press third party rejection at 1:10 (46). The animals where Ts1
suppressed rejection, develop tolerance to the allograft and after
150 days have CD4+CD25+FoxP3+ T cells that expressed IFNGR
and IL-5, consistent with these Ts1 cells retaining their phenotype
over a long period and being key to the maintenance of tolerance.

In other hosts with transplant tolerance, we identified
CD4+CD25+FoxP3+ T cells that expressed IFNGR and IL-5, that
in vitro respond to specific donor and not third party when IFN-γ
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Table 2 | Summarizes the differences inTh1 andTh2 activated Ag

specificTreg and nTreg.

Gene expression nTreg Subclasses of Ag specific

CD4+CD25+ T regulatory cells

Th1 induced Th2 induced

Ts1 Th1-likeTreg Ts2 Th2-likeTreg

IFNGR + +++ ++ − ?

IL-12Rβ2 − ++ +++ − ?

IL-5Rα − − − +++ ?

IL-4Rα − ++ ? ++ ?

IL-2 − − − − −

IFN-γ +/++ − +++ +++ ?

IL-4 ++ ++ ? ++ ++

IL-5 − ++ ++ − ++

IL-10 ++ ++ ? ++ +

TGF-β ++ ++ ++ ++ ?

FoxP3 +++ +++ +++ +++ +++

T-bet − − ++ − ?

GATA3 − − − − ?

IRF4 ? ? ? ? +++

STAT1 − ? ++ ? ?

Chemokine ligand CCR4 ? CXCR3 ? CCR8

Receptors CCR7

is present (Hall et al., unpublished data). Further the capacity of
tolerant CD4+ T cells to transfer tolerance is maintained in vitro
by culture with specific donor and IFN-γ not IL-2 (Nomura et al.,
unpublished data). We suggest that these Ts1 maintain alloantigen
specific tolerance but are dependent on production of IFN-γ by
Th1 cells.

In an autoimmune model we have also generated antigen spe-
cific Ts1 cells in vitro by culture of nTreg with IL-2 and autoantigen.
These Ts1 are induced to express IFNGR and IL-5, and suppressed
the autoimmunity in an antigen specific manner (Tran et al.,
unpublished data).

We suggest induction of Ts1 cells is a key step in induction of
antigen specific tolerance to Th1 responses. Ts1 would be pro-
moted by the IFN-γ produced by an ongoing Th1 response, after
they stop producing IL-2, which is an early Th1 cytokine. Ts1 cells
may in part account for the paradoxical anti-inflammatory effects
of IFN-γ, reviewed (80, 81).

IFN-γ AND ACTIVATION OF ANTIGEN SPECIFIC Treg

IFN-γ is better known as a pro-inflammatory cytokine, but also
has well described effects that control immune responses. IFN-γ
directly inhibits Th2 and Th17 cell development, but promotes
Th1 responses, including B cell isotype switching, macrophage
activation, and cytotoxic T cell development. Activation of the Th1
lineage depends upon IFN-γ activating STAT1, which induces the
Th1 transcription factor T-bet, which in turn regulates IFN-γ pro-
duction by Th1 cells. Once CD4+ T cells are activated to a Th1
lineage, they cannot be converted to a Treg lineage (82). IFN-γ is

key to CD8+ T cell mediated rejection (83, 84) and to allograft
vasculopathy (85–87). IFN-γ also activates macrophages to M1
cells and promotes Ig switching to a complement fixing isotypes.
IFN-γ promotes MHC class I and II expression on inflamed tissues
such a during rejection (88). By induction of MHC class I, IFN-
γ protects allografts from CD8+ T perforin/granzyme mediated
rejection (84, 89–91).

IFN-γ can limit inflammation (92). IFNGR deficient mice have
increased severity and reduced recovery from EAE (93, 94). IFN-γ
induces iNOS to produce NO, which limits inflammation (95–98).
IFN-γ treatment inhibits GVHD (99). CD8+ T cells deficient in
IFN-γ mediate more severe GVHD, indicating IFN-γ produced by
these cells inhibits the CD8+ T cell response by inhibiting prolif-
eration and promoting cell death. CD8+CD45Rlo T cells induced
to express IFN-γ, in turn induced indoleamine 2,3-dioxygenase
(IDO), and accounts for promotion of indefinite allograft survival
after blocking the CD40–CD40L interaction (100).

IFN-γ is also important in the generation and function of
CD4+CD25+ Treg that mediate allograft tolerance (101) and
prevents immune destruction of tumors (102). In vitro, IFN-γ
promotes induction of alloantigen specific CD4+CD25+FoxP3+

Treg that prevent rejection (103). This work by Wood’s group in
Oxford identifies that naïve CD4+ T cell cultured over a period
of time in MLC supplemented with IFN-γ, produces antigen
specific Treg that can prevent rejection (41, 103–107). Whether
IFN-γ induces iTreg or expands nTreg or a combination of both
is unclear. One possibility is that nTreg are initially activated by
IL-2 produced by the activated CD4+CD25− T cells to induce
antigen specific Ts1 cells, that in turn are activated by IFN-γ
to expand and maintain the antigen specific Treg (as shown in
Figure 1), while a variety of factors such as IFN-γ induction of
NO or IDO by antigen presenting cells or IFN-γ promotion of
antigen specific Treg may reduce the growth of the effector lin-
eage. IFN-γ inhibits induction of iTreg from CD4+ T cells (82),
whereas other report IFN-γ is key to induction of CD4+CD25−

T cells to iTreg that suppress autoimmunity in IFN-γ deficient
mice (108).

Th1-LIKE Treg

Th1-like Treg were first described in 2004 associated with a polar-
izing Th1 response to ovalbumin (109). Ovalbumin specific Treg

are induced from CD4+CD25− T cells by mature CD8α+ DC that
produced both IL-12 and IL-10 that are required to induce Th1-
like Treg (109). These Th1-like Treg express both FoxP3 and the
Th1 transcription factor T-bet, as well as ICOS, IFN-γ, and IL-
10. The Th1-like Treg suppressed Th1 inflammation in vivo (109).
In cancer, Th1-like Treg expressing FoxP3, helios, T-bet, IFN-γ,
CXCR3 suppress Th1 responses and are associated with infiltrat-
ing Th1 effector cells, probably impairing tumor immunity (110).
T-bet expression is required for full Treg function, as T-bet defi-
cient nTreg do not fully control autoimmunity in FoxP3 deficient
scurfy mice (72).

Treg induced by activation with a specific alloantigen become
FoxP3+IFN-γ+ and suppress in an antigen specific manner
(111). Human iTreg that express T-bet, IFN-γ, and CXCR3 are
CD4+CD25+FoxP3+ T cells and suppress (112). Th1-like IFN-
γ producing CD4+CD25+FoxP3+ Treg are present in the blood
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FIGURE 1 | Shows how IL-2 withoutTCR engagement with specific Ag induces polyclonal expansion of nTreg. If antigen is present a minority
population of nTreg that have TCR specific for antigen are activated to Ts1 by IL-2 and their specific antigen. Ts1 cells express IFNGR, IL-12Rβ2, IL-5, and
FoxP3 but not IFN-γ, T-bet, or IL-2. The second step of activation of nTreg converts Ag specific Ts1 to Th1-like Treg and requires specific antigen and either IL-12
or IFN-γ in the absence of IL-2. The Ts1 are antigen specific Treg that continue to express FoxP3, CD25, and CD4, but also express IFNGR, IL-12Rβ2, T-bet,
and IFN-γ. Ts1 cells have increased potency over nTreg of at least 10-fold that is antigen specific. Th1-like Treg have 100- to 1000-fold increased suppressor
potency over nTreg.

FIGURE 2 | Shows how IL-4 withoutTCR engagement with specific Ag induces polyclonal expansion of nTreg. If antigen is present a minority population
of nTreg that have TCR specific for antigen are activated to Ts2 by IL-4. Ts2 cells express IL-5Rα, IFN-γ, and FoxP3 but not IL-5, IFNGR, IL-12Rβ2, GATA3, T-bet,
or IL-2. Ts2 cells have increased potency over nTreg of at least 10-fold that is antigen specific. The second step of activation of nTreg converts antigen specific
Ts2 to Th2-like Treg and requires specific antigen and Th2 cytokines, probably IL-5. Th2-like Treg express IRF4 with FoxP3 and Th2 cytokines IL-4 and IL-5.

of multiple sclerosis and renal transplant patients during active
immune responses (113, 114). Th1-like Treg can be induced by
IFN-γ, IL-12, or IL-27 and each may be a separate lineage, albeit
they all express FoxP3, T-bet, STAT1, IFN-γ but not IL-2.

IFN-γ PROMOTES Th1-LIKE Treg

Thymus derived nTreg activated in a Th1 environment initially by
IL-2, can be further activated by IFN-γ inducing STAT1 to promote
expression of the Th1 transcription factor T-bet (115). Absence
of STAT1 results in impaired CD4+CD25+ Treg development
and increases host susceptibility to autoimmunity (115). These
STAT1/T-bet/FoxP3+ Treg control Th1 responses and express
CXCR3, which promotes their migration to sites of Th1 inflam-
mation (72). IFN-γ induces T-bet+CXCR3+ Treg that inhibit
Th1 responses in the periphery (116). Collectively these studies

confirm IFN-γ can act on Treg to increase their effectiveness in
controlling Th1 responses, albeit excessive activation by IFN-γ
can reduce their suppressive capacity and may convert them to
effector Th1 cells.

IL-12 PROMOTES Th1-LIKE Treg

IL-12p70 is a hetero-dimer composed of p35 and p40 that is pro-
duced by APC not T cells (117). IL-12 is a pro-inflammatory
cytokine that enhances Th1 (76, 118), cytotoxic CD8+T (119),
and NK (120) cell responses by increasing IFN-γ (121).

IL-12p70 acts by binding to a high affinity receptor, which is
a hetero-dimer of IL-12Rβ1 and IL-12Rβ2 (122), which when
activated by IL-12p70 induces STAT4 and T-bet to stabilize the
Th1 phenotype and IFN-γ production (123, 124). Resting T cells
do not express high affinity IL-12Rβ2 (117), but both chains are
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up-regulated by TCR and CD28 stimulation, as well as by IL-2 and
IFN-γ. IL-4 and IL-10 decrease expression of IL-12Rβ2.

Because IL-12p70 promotes induction of Th1 and cytotoxic T
cell responses, it was predicted to amplify rejection and GVHD
(125). Paradoxically, treatment with one dose of IL-12p70 at the
time of bone marrow transfer inhibits fully allogeneic GVHD
(126). Prevention of GVHD by IL-12p70 is dependent on donor
IFN-γ (127) acting via Fas to inhibit donor T cell expansion (128).
IL-12p70 treatment delays allograft rejection (98) and inhibits
autoimmunity including uveitis (129) and EAE (130). The pro-
tective effects of IL-12p70 are associated with induction of IFN-γ
and iNOS (129). Blocking IFN-γ or iNOS with L-NIL prevents
IL-12p70 prolonging graft rejection (98). In other models IL-12
promotes autoimmunity (131–133).

IL-12p35−/− (134), IL-12Rβ2−/− (135), IFN-γ−/− (136), and
IFNGR−/− (94) mice are more prone to type I diabetes and have
reduced numbers of CD4+CD25+FoxP3+ Treg that are less sup-
pressive in vitro (137). Some Treg express the IL-12Rβ2 (137). In
a situation of an uncontrolled Th1 response, IL-12p70 induces
Treg to express T-bet and with high IL-12p70 levels these Treg pro-
duce IFN-γ (138). These changes only occur when there is limited
IL-2 (138).

In our studies, nTreg cultured with IL-2 and alloantigen (Ts1)
expressed IL-12Rβ2 and proliferated with IL-12p70. Ts1 cells acti-
vated by specific antigen and IL-12p70 in the absence of IL-2
had greater capacity to suppress alloimmune responses in vitro
at 1:1000 and in vivo at 1:100 (Verma et al., unpublished data).
Further, these Ts1 cells cultured with IL-12p70 in the absence
of IL-2, expressed mRNA for T-bet and IFN-γ. They contin-
ued to express CD25, FoxP3, and mRNA for IFNGR and IL-
12Rβ2. Ts1 cultured with IL-2 and IL-12p70 did not express
mRNA for T-bet or IFN-γ. The concept of how Th1 cytokines
induce Ts1 cells that are activated to a specific antigen to express
IFNGR and IL-12Rβ2, and the effects of IFN-γ and IL-12p70 on
their further expansion of Ts1 to Th1-like Treg is illustrated in
Figure 1.

Many of the anti-inflammatory effects of IL-12p70 are attrib-
uted to increased production of IFN-γ that in turn induces iNOS
to produce NO (98) but this was not required for Th1-like Treg

development in vitro. Our results suggested that Ts1 cells, express
IL-12Rβ2, and that IL-12p70 directly promotes Treg proliferation
and maturation of Ts1 to more potent Th1-like Treg similar to that
described by others (72, 138).

IL-27 PROMOTES Th1-LIKE Treg

IL-27 is a member of the IL-12 family of hetero-dimers, that
was thought to promote Th1 responses (139). A subset of
CD4+CD25+ Treg express IL-27Rα (140) a receptor required to
control excess inflammation during infection (141). IL-27 inhibits
Th1, Th2, and Th17 by direct inhibition of cells and induction of
T effectors to produce IL-10 (142, 143). IL-27 promotes T-bet and
CXCR3 expression in Treg at mucosa sites (116). IL-27 produces
specialized Treg that control immunity at sites of inflammation
and these Treg appear to express IL-27 as well as IL-27Rα (116).
For IL-27 iTreg to function, they must express IFNGR1 and IL-10
(116). The IL-27 induced Th1-like Treg express different genes to
Th1-like Treg induced by IFN-γ (116).

IL-27 via the STAT1 pathway, promotes FoxP3 expression by
STAT1 binding to the FoxP3 promoter region in iTreg (144).

ACTIVATION OF Treg IN ASSOCIATION WITH Th2 RESPONSES
Dominance of Th2 responses (145–148) and Th2 cytokines IL-
4 (148–150), IL-10 (151), and IL-13 (152), can protect against
autoimmunity, but their effects are variable. Th2 cytokine expres-
sion is associated with prolongation of allograft survival in some
models (153–158), including neonatal (159–161), and irradiation
(162, 163) induced tolerance, but not in all models (164). Th2
cells transfer protection against chronic rejection (165) but do not
directly mediate tolerance (166).

IL-4 EFFECTS ON nTreg AND iTreg

IL-4 is key to the induction of Th2 responses by binding to the
IL-4Rα and common gamma chain and inducing STAT6 signaling
(167) which is required for GATA3 and Th2 cell induction (168).
IL-4 makes Th2 cells resistant to Treg (169).

IL-4 also induces STAT6 in Treg and stabilizes expression of
FoxP3 (169). GATA3 is essential for full expression of FoxP3
by nTreg and binds to a conserved element of the FoxP3 locus
to enhance transcription of FoxP3 (170). GATA3 expression is
required to maintain FoxP3 expression in nTreg (77). GATA3 binds
to the CNS2 site of the Foxp3 promoter site as well as the Th2
locus, whereas in Th2 cells it only binds to the Th2 locus (77). This
induction of GATA3 in nTreg is not via the IL-4/STAT6 pathway
(171), whereas induction of GATA3 via the IL-4/STAT6 pathway
in nTreg and iTreg (172) suppresses FoxP3 expression by binding
to the FoxP3 promoter region (172).

GATA3 is induced in nTreg during inflammation, and sustains
FoxP3 expression (171) especially in Treg at sites of low grade
inflammation such as mucosa and skin. Absence of GATA3 in
Treg results in a spontaneous inflammatory disorder and defective
nTreg that gain a Th17 phenotype (77). Th1 polarizing conditions
down regulate GATA3 in Th2 and Treg cells (77). GATA3 induced
in nTreg in early inflammation inhibits induction of polarizing
factors and generation of effector T cells from nTreg (171). This
early induction of GATA3, is dependent upon IL-2 as it is enhanced
by IL-2/anti-IL-2 mAb complexes and is absent in IL-2 deficient
mice (171).

TGF-β inhibits T-bet expression (173) and GATA3 expression
(174) in CD4+ T cells reducing Th1 and Th2 cell expansion,
thereby favoring FoxP3 expression and iTreg development. On the
other hand GATA3 inhibits FoxP3 expression in iTreg activated
from CD4+ T cells by TGF-β (77) and diverts the cells to an IL-9
producing effector CD4+ T cell (175, 176). Thus IL-4 may pro-
mote nTreg, but inhibit induction of iTreg by promoting GATA3
induction, that down regulates FoxP3 expression. GATA3 is not
expressed by RORγt or T-bet expressing Treg, nor by Th17 and
Th1 cells (171).

IL-4 in culture prevents apoptosis of mice nTreg (177), but IL-4
does not induce proliferation of nTreg only inducing proliferation

of CD4+CD45RBhiCD25− T cells (177). IL-4 enhances the capac-
ity of nTreg to suppress IFN-γ induction in CD4+CD25− T cells
(177). Others found IL-4 induces nTreg proliferation (178) and
expression of CD25, FoxP3, and IL-4Rα (169, 177). In cultures, IL-
4 induces proliferation of both CD4+CD25+ and CD4+CD25−
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T cells but promotes survival of CD4+CD25− T cells countering
inhibition by nTreg (179).

IL-4 AND ANTIGEN ACTIVATION OF nTreg

We found IL-4 and antigen in culture induced nTreg to antigen
specific Treg (46, 56). This activation induces expression of the
specific receptor for IL-5 (IL-5Rα) as well as for IL-4 (IL-4Rα)
but not IFNGR or IL-12Rβ2, that we observe in cultures with IL-2
and an antigen (46). We call these antigen and Il-4 activated Treg,
Ts2 cells (46). They continue to express FoxP3, but do not express
GATA3, T-bet, or IL-2 (46). Ts2 cells features are summarized in
Table 2. Ts2 cells have less expression of IL-5, enhanced expression
of IFN-γ, and no change in expression of IL-4, IL-13, TGF-β, or
IL-10 (46) (Table 2). These changes are not observed when nTreg

were cultured with IL-4 and self antigen, suggesting they are due
to activation of antigen specific Treg (see Figure 2).

Ts2 cells have increased potency of suppression in vitro as they
fully suppressed naïve CD4+ T cells proliferation in MLC at 1:32
(46), whereas nTreg only fully suppress MLC at 1:1 or greater (59).
Evidence that Ts2 cells are antigen specific Treg is that Ts2 cells sup-
press specific donor allograft rejection mediated by naïve CD4+

T cells at a ratio of 1:10 (46), whereas naïve nTreg only suppress
rejection at 1:1 (57). Ts2 cells do not suppress third party rejection
at 1:10 demonstrating the Ts2 cells are antigen specific (46). The
animals restored with Ts2 cells to suppress rejection develop toler-
ance to the allograft and after 150 days have CD4+CD25+FoxP3+

T cells that expressed IL-5Rα and IFN-γ. These tolerant Treg

proliferate in culture to specific donor, but not to self or third
party alloantigen, if IL-5 is present (46). This is consistent with
these alloantigen specific Treg retaining their phenotype over a
long period and IL-5 being key to the maintenance of tolerance
mediated by antigen specific CD4+CD25+FoxP3+ Treg.

In other hosts with transplant tolerance, we have identified
CD4+CD25+FoxP3+ Ts2 cells that expressed IL-5Rα and IFN-γ,
that in vitro responded to specific donor and not third party when
IL-5 was present (unpublished). Alloantigen with IL-5, but not IL-
4, promoted in vitro survival of transplant tolerance transferring
alloantigen specific CD4+ T cells (Plain et al., unpublished data).
We suggest that these Ts2 cells maintain alloantigen specific toler-
ance, albeit animals with tolerance can have both antigen specific
Ts1 and Ts2 cells.

In an autoimmune model, we have also generated antigen spe-
cific Ts2 cells in vitro by culture of nTreg with IL-4 and autoantigen.
These Ts2 cells are induced to express IL-5Rα and IFN-γ, not
IFNGR, and IL-12Rβ2 (56).

Human CD4+CD25+CD127loFoxp3+ T cells cultured with
antigen and IL-4 express IL-5Rα consistent with a human Ts2
cell (56).

We concluded that induction of Ts2 cells is a key step in induc-
tion of antigen specific tolerance to Th2 responses. Ts2 would be
promoted by the IL-5 produced by an ongoing Th2 response, after
the Th2 cells stop producing IL-4, an early Th2 cytokine.

IL-5 AND ANTIGEN ACTIVATION OF nTreg

As IL-5Rα is not expressed by any other T cells subtype, and is
mainly expressed by eosinophils and mast cells, and in rodents B
cells, we proposed that IL-5 may be a therapy that could promote

immune tolerance by activation and expansion of antigen spe-
cific Ts2 (56). Treatment with IL-5 delays neonatal heart allograft
rejection and inhibit Th1 cytokine induction (180).

In an autoimmune demyelination model, IL-5 therapy given
before disease onset prevents clinical disease and nerve demyeli-
nation. IL-5 therapy given after onset of disease, reduces clinical
severity of disease and the number of demyelination nerves (56).
This is associated with an increase in CD4+CD25+ Treg and these
Treg express IL-5Rα. Further responses of these hosts Treg to the
immunizing antigen are enhanced by adding IL-5 to cultures (56).
The effect of IL-5 are abrogated by treatment with monoclonal
antibodies to deplete CD25+ cells or to block IL-4, confirming that
the nTreg of the host are activated by antigen and exposure to IL-
4 produced in the immune response to the autoantigen (56). The
IL-5 therapy promotes expansion of the IL-5Rα expressing antigen
specific Ts2 cells (56). IL-5 therapy markedly reduces tissue inflam-
mation and expression of mRNA for the Th1 cytokines IL-2 and
TNF-α as well as the Th17 associated cytokine IL-17A. The Th2
cytokines IL-4 and IL-5 are not suppressed (56). This suggests that
Ts2 cells may selectively suppress Th1 and Th17 responses, while
sparing the Th2 response that produces the IL-4 and IL-5 required
for the induction and expansion of Ts2 cells. Thus these Ts2 cells
contribute to polarization of Th2 responses by suppressing Th1
and Th17 cells.

Human CD4+CD25+CD127loFoxP3+ Treg cultured with anti-
gen and IL-4, but not IL-2, express IL-5Rα, suggesting IL-5 may
promote these antigen specific Treg (56).

Th2-LIKE Treg

Th2-like Treg express the transcription factor Interferon regulatory
factor-4 (IFR4) to control Th2 responses (73). IRF4 also promotes
Th2 and Th17 (181) responses. IRF4 binds to the promoter region
of FoxP3 and induces Treg to express IL-4 and IL-5 (73). Thus
induction of IRF4 results in a Th2-like Treg. Antigen specific Th2-
like Treg are induced in Th2 responses by IL-10 and ICOS/ICOS
ligand interaction and secrete IL-10 and some IL-4 but not IL-13
(182). ICOS expressed on Treg promotes their expansion in sites
of inflammation during parasitic infestation, whereas in lymphoid
tissues ICOS promotes Th2 responses not Treg expansion (183).

During parasitic infestations, CD4+CD25+ Treg develop in
parallel with the Th2 polarization and regulate the size of the
immune response (184). These Th2 iTreg inhibit Th1 responses,
thereby facilitating Th2 polarization (185, 186). The early immune
response to parasites is markedly controlled by Treg (187). Persis-
tence of parasitic infestation is due to CD4+CD25+ Treg (188,
189) and these hosts have expanded CD4+CD25+FoxP3+ Treg

populations (190).
Chronic infestation with parasites is associated with domi-

nance of Treg, which suppress Th1 and Th2 responses against
the parasite (191, 192). Animals who fail to eliminate para-
sites have protective CCR8+CD4+CD25+ Treg producing IL-10
that regulates Th2 response (193). Transfer of CD4+CD25− T
cells confer some protection against infestation, while transfer
of activated CD4+CD25+FoxP3+CD103+ Treg impairs parasite
clearance with greater effect than nTreg (194).

Animals with parasitic infections and an active Th2 response are
resistant to the induction of autoimmunity (195, 196) through the
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effects of TGF-β (197) and have delayed allograft rejection (198–
200). This suggests the Th2 milieu and possibly Th2 activated Treg

protect these animal from Th1 and Th17 responses (201).
Multiple sclerosis patients with eosinophilia from parasitic

infestation have markedly reduced episodes of relapses and new
MRI lesions in brain associated with increased CD4+CD25+

Treg (202). Treatment of parasitic infestations leads to increased
relapses and progression of multiple sclerosis with a reduction in
Treg (203). Trials of therapeutic parasitic infestation are underway
in inflammatory bowel disease (204) and MS (205). As parasitic
infestation is associated with Th2 responses and production of
IL-5, that induces eosinophilia, one possibility is that this IL-5
promotes antigen specific Ts2 cells to control autoimmunity.

A plausible hypothesis is that the evolution of the immune sys-
tem was with persistent parasitic infestations and Th2 responses
that inhibit innate and Th1/Th17 immunity (206). There is an
increasing incidence of autoimmunity in the Western World where
the parasitic infestation rate has markedly declined (206). Para-
sites induction of immune responses that promote Treg, possibly
by production of IL-5, may also explain the reduced incidence of
autoimmunity in populations that live closer to the equator and
have poorer hygiene (206).

Our hypothesis is that persistent Th2 responses releasing IL-5
may through a by-stander effect promote expansion of activated
antigen specific IL-5Rα+ Treg generated to new non-parasite anti-
gens. We demonstrated that IL-5 was an essential growth factor
for nTreg activated by IL-4 and these Ts2 cell reduce autoim-
mune injury (56). We propose that one of the beneficial effects
of parasites may be the high IL-5 level produced by a chronic Th2
response, promotes IL-5Rα expressing antigen specific Ts2 cells to
control autoimmunity and allograft rejection.

ACTIVATION OF Treg IN ASSOCIATION WITH Th17
RESPONSES
Th17-LIKE Treg

T regulatory cells expressing both FoxP3 and IL-17 occur in mice
and man (78, 207). IL-17 producing Treg are produced in the
periphery not the thymus (78). STAT3, a transcription factor
required for Th17 induction, is also required in Treg for induc-
tion and maintenance of FoxP3 expression induced by CD28
co-stimulation to produce iTreg (208). Specific deletion of STAT3
in Treg results in a fatal Th17 meditated colitis (209). It is proposed
that STAT3 and FoxP3 together coordinate expression of a set of
genes that specifically regulate Th17 effector T cells (209). STAT3
induces the receptors for IL-10, and for the pro-inflammatory
cytokines IL-6 and IL-23 on Th17 cells and presumably on Treg

associated with Th17 responses. IL-27 inhibits Treg via STAT3
(210). IL-10 at the site of inflammation can promote activated
FoxP3+ Treg and FoxP3− Tr1 (211) and can directly inhibit Th17
and Th17/Th1 cells at the site of inflammation in colitis (212).
This suggests that IL-10R is expressed by Th17, Th1/Th17 cells, as
well as Th17-like Treg that suppress Th17.

Human peripheral blood and lymphoid tissue contain
CD4+FoxP3+ Treg that express CCR6 and when activated pro-
duce IL-17. They express both FoxP3 and RORγt (78). These
CD4+CD25+FoxP3+ cells, that produce IL-17, strongly inhibit
CD4+ T cell proliferation, and could be cloned (78). Naïve

CD4+FoxP3+CCR6− Treg that have their TCR stimulated in the
presence of IL-1β, IL-2, IL-21, and IL-23 differentiate into IL-17
producing Treg (78). Human Treg that secrete IL-17A express the
Th17 transcription factor RORγt (213). Both naive and memory
Treg suppress Th17 cells and inhibit their production of IL-17 and
IL-22, as well as their expression of CXCL8 (214).

CD4+CD25+FoxP3+ Treg expressing IL-17, that acquire IL-
1R1 can be converted to Th17 cells by IL-1β (215). This group
suggested the preferred route of induction of Th17 in man may be
via activation of nTreg with lineage differentiating factors, such as
activated APC, IL-1β, TGF-β, and IL-23 as well as IL-2 (74). They
propose a new role for nTreg as precursors of Th17 effector cells.
IL-2 therapy triggers conversion of Th17 producing FoxP3+ Treg

to Th17 cells that do not express FoxP3 (216). The Th17 effec-
tors, that no longer suppress, do not express FoxP3 or IL-1R1, but
express CCR6; similar to a smaller population of Treg that express
FoxP3 and IL-17 (74).

IL-21 synergizes with IL-2 to promote activation of effector
CD4+ and CD8+ T cells but inhibits induction of iTreg when
combined with IL-2 and TGF-β (217). Thus, there is evidence for
activated Treg and iTreg being induced to suppress Th17 responses
that use induction pathways, in part, shared with Th17 cells.

ACTIVATION OF Treg IN ASSOCIATION WITH Tfh RESPONSES
Tfh-like Treg are specialized Treg that control germinal center
expansion and autoimmune responses that are found in primary B
cell follicles. These CD4+CD25+FoxP3+ T cells migrate to the T-B
border areas of secondary lymphoid tissues, where they suppress
Tfh dependent antibody responses by inhibiting both B cells and
T cells (218, 219) These cells are CD4+CD25+FoxP3+ T cells that
share transcription factors and cell surface phenotype with Tfh
cells, including expression of the Tfh chemokine receptor CXCR5
(75, 219) and PD1 which is expressed by Tfh (75). The devel-
opment of Tfh-like Treg is similar to Tfh cell development as it
depends upon expression of the transcription factor Bcl-6 (75).
Bcl-6 is a transcription factor that promotes Tfh and represses
other Th lineages. They also express Blimp-1, which is repressed
in B cells and Tfh that express Bcl-6 (75). Bcl-6 is a transcriptional
repressor that promotes Tfh but represses other Th lineages. Bcl-
6−/− Treg are selectively impaired at controlling Th2 responses,
but not Th1 and Th17 responses, as Bcl-6 suppresses GATA3 and
Th2 (220).

Both Tfh and Tfh-like Treg depend upon SAP, CD28, and B cells
for their activation (75). Similar to Tfh cell induction, the Tfh-like
Treg are induced by IL-21 and IL-6 and produce IL-21 with STAT3
expression. Tfh-like Treg are derived from nTreg and are not iTreg

(75). Tfh-like Treg prevent over expansion of germinal centers and
mediate tolerance in B cell responses.

CONCLUSION
This review sets out the evidence that nTreg are activated by
cytokines released by the activation of CD4+CD25− T cells in
all immune responses. It describes how the responsiveness of anti-
gen activated nTreg changes during the immune response. Initially
nTreg are activated by early cytokines such as IL-2 in Th1 and
IL-4 in Th2 responses. With persistent active immune responses,
the cytokines produced change. In late Th1 responses IFN-γ and
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IL-12p70, not IL-2 is produced, and these late Th1 cytokines fur-
ther expand and activate IL-2 and antigen activated Ts1 cells.
In late Th2 responses IL-5 and IL-13 are produced not IL-4. In
late Th2 response IL-5 promotes IL-4 and antigen activated Ts2
cells.

Excessive amounts of these cytokines can further induce anti-
gen specific Treg to express the transcription factor of the dominant
inflammatory response, so that in Th1 responses T-bet and STAT1
are induced to Th1-like Treg that produce IFN-γ. In Th2 responses
Treg express IRF4 and produce IL-5 and IL-4 to become Th2-like
Treg. In Th17 responses activated Treg express RORγt and IL-17A
to become Th17-like Treg, whereas in Tfh responses, Treg express
Bcl-6, and IL-21 to become Tfh-like Treg. Each step of activation is
associated with an increase in potency to suppress of the activated
Treg, so that they can suppress at ratios of 1:10–1:1000, whereas
nTreg only fully suppress at 1:1. These subsets are identifiable by
expression of chemokine ligands, CXCR3 in Th1 responses, CCR8
in Th2 responses, CCR6 in Th17 responses, and CXCR5 in Tfh
responses. Highly potent antigen specific Treg, with the potential
to migrate to sites of tissue inflammation to control active destruc-
tive immune responses, has far reaching potential in therapy for
allograft rejection, control of GVHD, and autoimmunity.

These activated Treg include antigen specific Treg and require
specific antigenic stimulation and the relevant cytokines to pro-
mote their survival. The requirement for specific antigen and

a restricted cytokine milieu makes study of these cells in vitro
very difficult, unless the correct environment is created to pro-
mote their survival. Further, the expansion of enriched nTreg by
repeated culture with IL-2 over more than a week, only expands
nTreg and probably selects against antigen specific Treg as the
cytokines required to sustain antigen specific Treg are absent and
IL-2 prevents induction of Th1-like Treg.

It is now appreciated that the number of nTreg to control
GVHD, graft rejection, or autoimmunity is impossibly large, as
they need to be present at ratios of 1:1 or greater (221). Under-
standing the pathways for selective activation of antigen specific
Treg from nTreg will allow growth of more potent Treg that sup-
press in a specific manner with smaller numbers of cells. This
may be achieved by first culturing nTreg with IL-2 or IL-4, then
with other cytokines, respectively IFN-γ or IL-12 and IL-5. The
effector mechanisms of each subset or activated Treg also needs
resolutions, as there are many effector mechanism other than inhi-
bition of APC with CTLA4 and production of IL-10 and TGF-β,
as reviewed (222).
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