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ABSTRACT Dietzia sp. strain WMMA184 was isolated from the marine coral Montas-
traea faveolata as part of ongoing drug discovery efforts. Analysis of the 4.16-Mb ge-
nome provides information regarding interspecies interactions as it pertains to the
regulation of secondary metabolism and natural product biosynthesis potential.

Over the last decade, initiatives to identify and develop new chemotypes as tools in
the fight against drug resistance have focused, in large part, on devising ways to

activate otherwise dormant or “cryptic” biosynthetic gene clusters (BGCs) within mi-
crobial organisms (1–3). One means by which this has been accomplished involves the
coculturing of two or more microbes within the same vessel; such fermentations often
trigger the production of natural products that would otherwise not be produced by
virtue of their BGC dormancy (4, 5). It is now clear, as reflected both in the lab and in
naturally occurring microbiome systems (6), that microbial cross-communications (both
competitive and collaborative in nature) enable the production of small-molecule
secondary metabolites that are otherwise unattainable; BGCs for such compounds in
the absence of other microbial stimuli remain silent and nonproductive. Coculturing
approaches to new chemotypes dictate the importance of genomic data for cocultured
organisms; the diversities attainable by such new chemotypes/structures stem, in large
part, from the diversity of cocultured organisms (7, 8). In light of these considerations,
it is noteworthy that mycolic acid-producing bacteria inclusive of, but not limited to,
the genera Nocardia, Mycobacterium, and Dietzia are known to effectively activate
actinorhodin and undecylprodigiosin BGCs in Streptomyces lividans (9).

To date, there have been only 14 Dietzia assemblies deposited in GenBank that are
representative of organisms isolated from widely varied environments (10–20); some of
these represent significant human pathogens or candidate pathogens (10, 13, 15–18).
Marine-derived Dietzia representatives are well-known, although only two, Dietzia
alimentaria 72T from the Korean seafood jeotgal (19), and Dietzia sp. strain 111N12-1
from seawater samples from the South China Sea (20), have been rigorously sequenced
and deposited to GenBank thus far. This report, as part of our coculture initiatives to
identify new antimicrobial chemotypes, signals the GenBank deposition of the third
marine-derived Dietzia genome sequence.

Dietzia sp. strain WMMA184 was isolated in 2011 from coral mucus of Montastraea
faveolata collected off the coast of the Florida Keys. WMMA184 was isolated from a
plate prepared using M1 medium (21) supplemented with 50% artificial seawater (ASW).

The complete genome of Dietzia sp. WMMA184 was sequenced at the Duke Center
for Genomic and Computational Biology (GCB) using PacBio RS II (Pacific Biosciences)
technology. Reads were assembled using the HGAP assembler (22) into six contigs.
Open reading frames were predicted by Prodigal (23) and annotated using the Rapid
Annotation using Subsystems Technology (RAST) software (24). The genome was found

Received 22 December 2017 Accepted 2
January 2018 Published 1 February 2018

Citation Braun DR, Chevrette MG, Acharya D,
Currie CR, Rajski SR, Ritchie KB, Bugni TS. 2018.
Complete genome sequence of Dietzia sp.
strain WMMA184, a marine coral-associated
bacterium. Genome Announc 6:e01582-17.
https://doi.org/10.1128/genomeA.01582-17.

Copyright © 2018 Braun et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Tim S. Bugni,
tim.bugni@wisc.edu.

PROKARYOTES

crossm

Volume 6 Issue 5 e01582-17 genomea.asm.org 1

https://doi.org/10.1128/genomeA.01582-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:tim.bugni@wisc.edu
http://crossmark.crossref.org/dialog/?doi=10.1128/genomeA.01582-17&domain=pdf&date_stamp=2018-2-1
http://genomea.asm.org


to be 4.16 Mb in length, with a GC content of 69.9%. The biosynthetic potential of the
organism was assessed using antiSMASH 4.0 (25) and PRediction Informatics for Sec-
ondary Metabolomes (PRISM) (26). Out of 48 putative gene clusters identified, there are
2 terpene clusters, one type I polyketide/saccharide hybrid cluster, and one siderophore
BGC housed in the WMMA184 genome.

Accession number(s). The complete genome sequence of Dietzia sp. WMMA184
has been deposited at DDBJ/EMBL/GenBank under the project accession number
NXEI00000000, which correlates to BioProject PRJNA400578.
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