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Abstract

Roasting nuts may alter their chemical composition leading to changes in their health bene-

fits. However, the presence of testa may alleviate the negative effects of thermal treatments.

Hence, this study aimed to explore the effects of roasting on kernel chemical quality and col-

our development of Canarium indicum and examine to what extent testa would protect ker-

nels against damage from roasting. Roasting decreased peroxide value but increased free

fatty acid, probably due to increased cell destruction and lack of enzyme inactivation,

respectively. Protein content of kernels significantly decreased after roasting compared to

raw kernels. However, testa-on kernels contained significantly higher protein content com-

pared to testa-off kernels. Whilst colour development and mottling were observed in temper-

atures beyond 120˚C, roasting did not alter fatty acid compositions of kernels. The mild

roasting and presence of testa in kernels can be used to enhance health benefits of kernels.

Introduction

Both growing population and global climate change bring challenges for food security [1–3].

Exploring new source of food in forests may provide a safety net when there is a food shortage

[4]. Edible tropical nuts can be explored and commercialised to address food shortage in the

world [5–7] because nuts are an important source of nutrients, unsaturated fats and proteins,

and when consumed both roasted and raw have benefits for human health [8]. However, heat

treatment and duration may alter texture, colour, and chemical content of the kernels includ-

ing proteins and lipids [9–15]. Factors such as nut freshness, moisture content and post-har-

vest processing, including whether nuts are whole, ground, and testa-on or testa-off may

influence kernel quality under different roasting conditions [16–19]. For example, testa-on

almonds were less damaged by roasting compared to peeled almond due to having additional

protection from the testa against oxidation under roasting conditions [16] and yet it has not
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been extensively studied. It is important that post-harvest processing of nuts does not nega-

tively affect nut nutritional values to ensure their health benefits.

Roasting may alter peroxide value (PV) and free fatty acids (FFA) of nuts, which are indica-

tive of nut rancidity. PV and FFA are evidence of autoxidation (free radical reaction) and

hydrolytic rancidity, respectively [7, 10]. Hydro-peroxides produced from autoxidation react

with other nut components (e.g. amino acids and proteins) leading to nut rancidity [7, 10].

The reaction of lipids with water is facilitated by different enzymes including esterases and

lipases, is called hydrolytic rancidity producing FFA [20]. Acceptable FFA values vary for dif-

ferent nuts. For example, FFA of less than 1.5% and 1.0% are acceptable for walnuts and

almonds, respectively [20]. Both PV and FFA can be influenced by roasting conditions but

through different mechanisms [10, 13]. For example, PV is decomposed to highly unstable sec-

ondary oxidation products under heat, whereas FFA is influenced by heating due to decreased

water content of the kernels and/or enzyme activity alteration [10, 21]. However, the changes

of chemical content in kernels caused by roasting may differ in kernels collected from different

species or even varieties of one species [10].

Nuts and vegetables are usually rich in unsaturated fats and are beneficial for human health

[8]. Unsaturated fats decrease heart disease, diabetes and blood cholesterol [8]. Unsaturated

fats however are more prone to rancidity than saturated fats when heated [13]. The oleic:lino-

leic (both unsaturated fats) ratio is also considered an important factor to assess nut quality

and a decreased ratio indicates decreased oil oxidative stability [22, 23]. Consequently, it is

important to explore to what extent roasting alters fatty acid composition of nuts.

Canarium indicum L. (Burseraceae) is an indigenous forest tree that occurs in East Indone-

sia, Papua New Guinea, the Solomon Islands and Vanuatu and is valued as a traditional food

source [6]. Burseraceae contains 18 genera with over 700 species and many of these species

have both economic and medicinal values [24]. The genus canarium comprises over 100 spe-

cies [5]. The commercialization of nuts from C. indicum has commenced and the tree is also

used as a valuable shade tree in cocoa plantations [25]. C. indicum nuts are nutritionally valu-

able for consumers as they are rich in oil (above 70%) and contain protein and vitamin E [17,

26]. C. indicum kernels are also traditionally consumed fresh, dried and roasted [6]. Roasting

may alter colour or quality of the kernels affecting their marketability [12, 27]. Hence, this

study aimed to (a) explore the effects of roasting on kernel PV, FFA and fatty acid composition

as well as kernel colour development; (b) examine to what extent the presence of testa on ker-

nels protects kernels during roasting and (c) determines what roasting conditions affect kernel

colour and mottling.

Materials and methods

Sample collection and preparation

National Agriculture Research Institute (NARI) staff had purchased the purple fruits from dif-

ferent villages in Kerevat (4˚210S 152˚20E), East New Britain, Papua New Guinea (PNG) in

December 2015. The fruits were mixed in the factory prior to sample collection for this study.

It was impossible to identify landholders and therefore, no permission from private landhold-

ers was required. This study was permitted to be undertaken by NARI and did not involve

endangered or protected species. NARI staff have also contributed in this research and are co-

authored in this paper. The fruits were soaked in boiling water for 5 min to soften the pulp and

the pulp was removed by squeezing (Fig 1A). After de-pulping, the nuts were dried and stored

under ambient conditions at the Canarium processing factory located in NARI Kerevat, PNG

for 12 weeks before further processing under ambient room temperature (on average 26.5˚C)

[7]. The nut in-shells are stored to be cracked when the nuts are out of season [7]. In February
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2016, the shells were manually cracked and the kernels were blanched in hot water (100˚C) for

90 seconds to soften the testa. The testa was then manually removed by squeezing [17, 28, 29].

The kernels were placed in zip-lock plastic bags and kept at 4˚C before further analysis. A sum-

mary of kernel proximate chemical content has been presented in S1 and S2 Tables. In experi-

ment 1, all the measurements taken from each treatment were replicated 5 times and 5 kernels

were used for each replicate. All kernels were analysed within two weeks.

In experiment 2, another batch of purple C. indicum fruits was used to examine the effects

of roasting on kernels with and without testa (called testa-on and testa-off, respectively) (Fig

1B and 1C). This batch of fruits was sampled in March 2016 and processed as described above.

Since the time of fruit collection differed in this experiment compared to the roasting experi-

ment, we have also provided a summary of kernel proximate chemical content for this batch of

kernels in Supplementary Table 1. All measurements for each treatment were replicated 7

times and 5 kernels were used for each replicate. All kernels were analysed within two weeks.

Roasting condition and experimental design

In experiment 1, the kernels were placed in aluminium trays and were air roasted in a labora-

tory oven, Memmert Gmbh and Co. KG, Schwabach, Germany. The roasting temperature

were 110˚C, 120˚C and 150˚C. The kernels were roasted for 5 min, 10 min and 20 min at each

temperature. The kernels roasted at 150˚C for 20 min turned dark brown which is not com-

mercially acceptable and hence was not further analysed. The moisture content of kernels for

each treatment was determined by placing kernels in oven at 105˚C for 24 h [30]. In experi-

ment 2 (testa-off vs. testa-on), testa-off and testa-on samples were roasted at two temperatures,

110˚C and 120˚C, for 10 min. The testa of the kernels were removed by hand before oil extrac-

tion and protein analyses.

Oil extraction

The 5 kernels of each replicate (approximately 10 g) were crushed three times using a garlic

crusher. The crushed kernels were added to 80 ml of pentane. The mixture was then stirred for

20 min and the pentane was removed from the oil using an air-tight vacuum rotator, (BÜCHI

Labortechnik AG, Switzerland), for 15 min. The extracted oil was transferred to 5 ml glass

vials and stored at 4˚C before further analyses.

Fig 1. Canarium indicum—Nut and removed pulp (A), testa-on kernels (B) and testa-off kernels (C).

https://doi.org/10.1371/journal.pone.0184279.g001
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Determination of peroxide values (PV) and free fatty acids (FFA)

The peroxide value (PV) of the oils was determined using a titration method according to

AOAC Official Method 965.33 [31] with slight modification for micro-titration. In brief, 1 g of

oil was placed into a 50 mL conical flask. Afterwards, 5 mL CH3COOH/CHCl3 was added to

the oil and agitated gently to dissolve. Saturated KI solution (0.1 mL) was added followed by 1

min shaking and adding 6 mL deionised water to the mixture. The mixture was then slowly

titrated using 0.01 M Na2S203. The PV expressed as milliequivalents of O2 kg-1 oil was calcu-

lated according to the following equation:

PV ¼
ðS � BÞ � N � 1000

sample wt ðgÞ � 1000
ð1Þ

Where:

S = sample titration (μL)

B = blank titration

N = normality of Na2S2O3

The FFA content (as oleic) of the crude oil was determined using a titration method

described in AOAC method 940.28 [32] with a slight modification for micro-titration. Briefly,

1 g of oil was added to 7 mL ethanol previously neutralised to phenolphthalein. The titration

was undertaken by adding 0.1 M NaOH to the mixture. The FFA was calculated using the fol-

lowing equation:

% FFA ðas oleicÞ ¼
ðmLÞalkali � N of alkali � 28:2 mg

sample wt ðgÞ � 1000
ð2Þ

Determination of protein and nutrient content of the kernels

Kernel total nitrogen (N) was obtained by combustion using a LECO TruSpec analyser. A con-

version factor of 6.25 was used to convert the kernel N content to crude protein [33]. The

nutrient content of the kernels were obtained on a Varian Vista Pro ICPOES instrument on

samples open-vessel digested with a 5:1 mixture of nitric and perchloric acids as described for

nutrient analysis of plant parts [34].

Determination of fatty acid composition

To measure fatty acid composition, 1 μl oil was transferred into a 2 ml vial and 0.7 ml dry

methanol solution containing butylated hydroxytoluene (BHT) and 25μl of 32% HCl were

added to the vial. Afterwards, the mixture was incubated overnight (20 h) at 65˚C. After incu-

bation, 0.5 ml of hexane and 0.5 ml of MilliQ water were added and then the solution was

shaken for 30 seconds followed by another wash with 0.5 ml of MilliQ water to further clean

the oil. Afterwards, the upper layer was collected and was mixed with Na2SO4 to remove water

from the oil in hexane. The fatty acid composition was then assessed using Gas Chromatogra-

phy–Mass Spectrometry (GCMS) [35]. Total saturated fatty acid (TSFA) was a sum of palmitic

acid and stearic acid; and total unsaturated fatty acid (TUSFA) was calculated as the sum of

oleic acid (cis), oleic acid (trans) and linoleic acid.

Kernel colour development

Kernels were assessed for colour development and mottling after roasting. As a standard for

colour evaluation, a Taubmans Paints (Regents Park, Sydney, Australia) Colour Concepts1
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colour swatch No.44 was employed. Kernels were ranked from 1 to 4 according to the four

darkest colours on the swatch with 4 for the darkest colour: 1, pale; 2, lightly coloured; 3, mod-

erately dark; 4, very dark. Mottled colour was ranked as 1 for slightly mottled, 2 for moderately

mottled and 3 for severely mottled. Mottled colour was classified severe if approximately 20%

or more of the surface examined had a mottled, brown appearance. Numbers of kernels in col-

our and mottled colour categories were calculated as percentages of total kernel number. The

colour development was performed in temperatures of 110˚C, 115˚C, 120˚C and 125˚C at 10

min, 15 min and 20 min roasting time. At 150˚C, we only examined 10 min roasting time.

Statistical analysis

A two-way analysis of variance (ANOVA) was performed with temperature and roasting time

as the main factors in Experiment 1. When interactions between temperature and exposure

time was significant, a one-way analysis of variance (ANOVA) was performed to detect signifi-

cant differences among each temperature and time combination followed by Tukey test where

significant differences were observed. In the experiment 2, a two-way ANOVA was performed

with roasting temperature and presence or absence of testa as main factors followed by a

Tukey test. All data were tested for normality using Shapiro Wilk normality test and for homo-

geneity of variance using Levene’s test. SPSS 21 software was used for all statistical analyses.

Results

The effects of different roasting conditions on kernel quality

The PV was influenced by both roasting temperature and exposure time (Table 1). Interaction

between roasting temperature and exposure time was also significant (Table 1). Kernel PV sig-

nificantly decreased only at 150˚C for 10 min compared to other treatments including the raw

kernels (Fig 2A). PV varied between 1.30 (millieq. O2 kg-1 oil) and 0.26 (millieq. O2 kg-1 oil) in

this experiment.

The FFA was also influenced by roasting temperature and there was a significant interac-

tion between roasting temperature and exposure time (Table 1). Roasting at 110˚C at all expo-

sure times did not change FFA compared to FFA of the raw kernels (Fig 2B). At 120˚C, FFA

was significantly greater in 120˚C/5min and 120˚C/10 min than that of all other treatments

with an exception observed at 150˚C/10 min (Fig 2B). At 150˚C, FFA was significantly higher

in 150˚C/10 min that that of raw kernels but not at 150˚C/5 min (Fig 2B).

Protein content of kernels was influenced by both roasting temperature and exposure time

and there was a significant interaction between roasting temperature and exposure time

(Table 1). Roasting significantly decreased protein content of kernels in all roasting conditions

regardless of roasting temperature or duration of the exposure compared to raw kernels

(Fig 3A). At 110˚C, protein content of kernels roasted at 110˚C/20 min was significantly lower

than that of 110˚C/5 min (Fig 3A). At both 120˚C and 150˚C, duration of exposure did not

change protein content of the kernels (Fig 3A).

In general roasting did not affect fatty acid composition of the kernels with an exception

observed in oleic acid trans where values were lower at 150˚C for both 5 and 10 min (Tables 1

and 2). Oleic acid (cis) was the dominant fatty acid followed by palmitic acid and stearic acid

(Table 2). The proportion of linoleic acid varied between 5.5% and 7.1% (Table 2). The

detected oleic acid (trans) was the least of all fatty acids varied between 0.82% and 1.90%

(Table 2). No influence of roasting was observed on the oleic:linoleic (O/L) ratio of the kernels.

The O/L ratio of the kernels varied between 6.82 and 9.26 (Table 2).
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Fig 2. Peroxide values (A) and free fatty acid (FFA) (B) of the roasted Canarium indicum kernels at 110˚C,

120˚C and 150˚C temperatures for 5 min (hatched column), 10 min (grey column) and 20 min (black column)

compared to raw kernel (white column). FFA of the testa-off and testa-on kernels at 110˚C (white and black

columns, respectively) and at 120˚C (grey and hatched columns, respectively) (C). Different lower case letters

indicate significant differences at P<0.05.

https://doi.org/10.1371/journal.pone.0184279.g002
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Effects of roasting on testa-off and testa-on kernels

FFA was influenced by both roasting temperature and exposure time but no significant

interaction between roasting temperature and exposure time was observed (Table 1). FFA of

testa-on kernels was significantly lower than that of testa-off kernels at both 110˚C and 120˚C

roasting temperatures (P<0.05; Fig 2C). Protein content of kernels was only influenced by the

presence or absence of testa rather than roasting temperature (Table 1). Testa-on kernels

Fig 3. Protein content of the roasted Canarium indicum kernels at 110˚C, 120˚C and 150˚C temperatures for

5 min (hatched column), 10 min (grey column) and 20 min (black column) compared to raw kernel (white

column) (A). Protein content of the testa-off and testa-on kernels at 110˚C (white and black columns,

respectively) and at 120˚C (grey and hatched columns, respectively) (B). Different lower case letters indicate

significant differences at P<0.05.

https://doi.org/10.1371/journal.pone.0184279.g003
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contained higher protein content compared to testa-off kernels only at 120˚C temperatures

(P<0.05; Fig 3B).

Only stearic acid and oleic acid were influenced by the presence of the testa but in general

the presence of testa did not alter TSFA, TUSFA and oleic:linoleic ratio compared to those

without testa (Tables 1 and 2). In the testa-off vs. testa-on roasting trial, stearic acid was signifi-

cantly higher in testa-on kernels than those of testa-off kernels (Table 2). In contrast, oleic acid

(trans) significantly decreased in testa-on kernels compared to those of testa-off kernels

(Table 2).

Effects of roasting on kernel colour development

Dark kernels (rank 4) were not found until temperatures of 125˚C were used (Table 3). All

dark kernels in the experiment were found in the treatments roasted at 125˚C. Dark kernels

were few (from 3% to 6%). Severe mottled colour occurred in all the roasting treatments, but

did not begin to increase markedly until the 120˚C treatments, when it rose from 11% of the

10 minute treatment to 31% of the 15 minute treatment (Table 3).

Discussion

Roasting decreased kernel PV and crude protein contents but slightly increased FFA. The pres-

ence of the testa reduced the effects of roasting on FFA and protein in kernels when compared

Table 2. Fatty acid composition (percentages) of Canarium indicum under different roasting regimes. Paired bold cases represent a significant differ-

ence at P<0.05.

Testa-off kernels under different roasting condition

Raw 110˚C 120˚C 150˚C

5 min 10 min 20 min 5 min 10 min 20 min 5 min 10 min

Palmitic acid 29.9(0.3) 29.3(0.3) 30.0(0.6) 29.1(0.6) 29.7(0.3) 28.2(0.5) 30.0(0.3) 28.9(0.6) 29.4(0.2)

Stearic acid 15.3(0.5) 14.8(0.3) 15.4(0.5) 14.6(0.5) 15.0(0.5) 16.9(0.6) 15.0(0.3) 15.8(0.7) 14.9(0.4)

Oleic acid (cis) 48.0(0.7) 49.0(1.2) 46.7(0.9) 49.7(0.9) 46.1(0.7) 47.2(1.2) 47.1(0.4) 48.0(0.3) 49.1(1.0)

Oleic acid (trans) 1.12(0.2)ab 0.83(0.3)ab 1.82(0.3)ab 0.90(0.3)ab 1.90(0.1)a 1.80(0.7)a 1.84(0.07)a 0.82(0.4)b 0.41(0.2)b

Linoleic acid 5.6(0.2) 5.8(0.7) 5.9(0.4) 5.5(0.4) 7.1(0.2) 5.7(0.2) 5.8(0.3) 6.3(0.2) 6.0(0.4)

TSFA 45.2(0.8) 44.2(0.4) 45.4(0.4) 43.8(0.5) 44.7(0.6) 45.2(0.5) 45.1(0.3) 44.8(0.3) 44.3(0.5)

TUSFA 54.7(0.8) 55.7(0.4) 54.5(0.4) 56.1(0.5) 55.2(0.6) 54.7(0.5) 54.8(0.3) 55.2(0.3) 55.6(0.5)

O/L 8.81(0.3) 8.99(0.9) 8.40(0.6) 9.26(0.4) 6.78(0.2) 6.82(1) 8.44(0.6) 7.82(0.3) 8.36(0.6)

Testa-off vs. Testa-on kernels

110˚C 120˚C

10 min 10 min 10 min 10 min

Testa-off Testa-on Testa-off Testa-on

Palmitic acid 31.1(0.5) 30.3(0.8) 27.0(0.9) 29.7(0.7)

Stearic acid 15.9(0.3) 17.5(0.3) 17.7(0.5) 18.2(0.3)

Oleic acid (cis) 45.0(1) 45.8(1.5) 48.0(1.5) 45.2(1)

Oleic acid (trans) 0.97(0.2) 0.23(0.1) 0.71(0.3) 0.19(0.1)

Linoleic acid 6.8(0.2) 5.9(0.6) 6.4(0.9) 6.6(0.6)

TSFA 47.0(0.8) 47.9(1) 44.8(0.8) 47.9(0.7)

TUSFA 52.9(0.8) 52.0(1) 55.1(0.8) 52.0(0.7)

O/L 6.78(0.4) 8.16(0.9) 8.23(1.2) 7.15(0.7)

TSFA–Total saturated fatty acid; TUSFA–Total un-saturated fatty acid; O/L–oleic:linoleic ratio

https://doi.org/10.1371/journal.pone.0184279.t002
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to those without testa. There were no significant differences between raw and roasted kernels

in fatty acid composition of the kernels.

The PV decreased significantly compared to raw kernels when roasting temperature

reached 150˚C with exposure duration of 10 min. Increased PV after roasting has been

reported in walnuts [36]. A decrease of water activity due to roasting would lead to increased

oxidation [37]. However, peroxides are not stable during heating and may start decomposing

when the temperature increases [10]. Hence, decreased PV reported after roasting is in fact

associated with its further conversion to carbonyl compounds with low molecular mass [38].

Hence, reported decreased PV after roasting does not indicate a lower PV production com-

pared to not-roasted kernels but it may indicate a greater PV break down to secondary oxida-

tion compounds [10, 21, 39].

In our experiment FFA increased after roasting with the highest FFA recorded at 120˚C.

Increased or decreased FFA after roasting has been observed in other nuts and attributed to

hydrolytic enzyme inactivation, deterioration or no effect [10, 36]. Heat may reduce the activ-

ity of some enzymes involved in hydrolytic rancidity but some enzymes (e.g. esterase) remain

active after heating leading to increased FFA values of the nuts [40]. Lipase activity may also be

reduced in temperatures higher than 60˚C but still could be detected [41]. It has been shown

that lipase inactivation may require high temperature and long exposure time (e.g. 140˚C for

42 min and 31 min in hazelnut and almond respectively) [42]. Nut cells and structures are also

physically damaged after roasting as shown by electron microscopy technique [43]. Hence,

damaged cells in the presence of hydrolytic enzymes can contribute to increased FFA after

roasting. Although our study does not indicate what enzymes remained active after roasting

leading to increased FFA, it suggests that some of the enzymes found in C. indicum kernels are

heat resistant and remain active even at 150˚C/10 min.

Our results showed that roasting C. indicum kernels in-testa may slow down development

of kernel rancidity components, which is consistent with studies that revealed testa provides

additional protection for kernels against heating and slowing down the rancidity processes

[16, 38]. In our experiment, testa-on kernels contained lower FFA than those of the testa- off

kernels. Increased FFA after roasting could be attributed to heat resistance of the enzymes as

well as tissue disruption [36]. In our experiment, the testa may have decreased damage to the

cells of the kernels leading to lower FFA production compared to testa-off kernels.

Table 3. Canarium indicum kernels (%) in each colour category and mottled colour category for differ-

ent roasting regimes.

Treatment Colour_1 Colour_2 Colour_3 Colour_4 Mottling_1 Mottling_2 Mottling_3

110˚C/10 min 60.83 38.83 - - 69.00 27.67 3.33

110˚C/15 min 69.17 30.50 - - 55.33 38.83 5.84

110˚C/20 min 44.17 49.67 - - 49.83 38.67 11.50

115˚C/10 min 27.50 71.83 - - 38.67 55.33 6.00

115˚C/15 min 5.50 77.33 16.67 - 25.00 63.50 11.50

115˚C/20 min 44.17 55.33 - - 72.00 27.83 0.17

120˚C/10 min 16.50 63.50 19.33 - 24.83 63.50 11.67

120˚C/15 min - 68.83 30.33 - - 69.00 31.00

120˚C/20 min - 58.17 41.50 - - 74.50 25.50

125˚C/10 min - 47.00 49.83 3.17 5.67 66.33 28.00

125˚C/15 min - 47.00 49.67 3.33 - 58.00 42.00

125˚C/ 20 min - 30.50 63.50 6.00 - 47.17 53.83

150˚C/ 10 min 2.77 27.77 63.88 5.55 5.55 72.22 22.23

https://doi.org/10.1371/journal.pone.0184279.t003
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In our study roasting decreased protein content of roasted kernels compared to raw kernels,

as indicated by reduced nitrogen content. Our finding is consistent with Özdemir et al., (2001)

[10] who found nitrogen content of hazelnuts decreased with increased roasting temperature.

Decreased nitrogen content after thermal treatments might be associated with increased

amino acid concentration per unit of nitrogen due to loss of amides and amines [44]. Addi-

tionally, thermal treatments may generate amino acids in food [45] which further increases the

concentration of amino acids per unit of nitrogen. We did not determine the amino acid

changes in the C. indicum kernels. However, our results indicated that testa-on samples at

higher temperatures retained higher nitrogen, probably due to an additional protection against

heat when kernels were roasted at 110˚C and 120˚C.

Roasting regimes used did not alter fatty acid composition of the testa-off kernels. Our

results were consistent with roasting studies on almond and hazelnut where no or negligible

effects of roasting were observed on fatty acid composition [11, 22, 46]. In contrast, hazelnut

roasting resulted in alteration of fatty acid composition with decreased linoleic acid and

increased oleic and saturated fatty acids after roasting [13]. The alteration of fatty acid compo-

sition may occur at elevated temperatures. For example, fatty acid composition in hazelnut

was altered when roasting at 165˚C and 185˚C with 15 min exposure time [13]. However,

hazelnut was also roasted at 180˚C for 21 min without any effect on fatty acid composition

[11]. While it is difficult to explain these contradictory findings, we could suggest that the

highest temperature (150˚C) used in our experiment was not high enough to alter fatty acid

composition.

In our experiment, oil oxidative stability was also not influenced by roasting conditions

since oleic:linoleic ratio was not altered by roasting. Oleic acid of C. indicum was comparable

to macadamia (51%) [47]. Linoleic acid content of C. indicum (5.5%–7%) was lower than pista-

chio (14%) and cashew (17%) but higher than that of macadamia (1.3%-2.4%) but was compa-

rable to cashew and hazelnuts (approximately 7.5%) [47–49]. Both oleic and linoleic acids are

unsaturated fats which are prone to autoxidation and hence are not heat resistant [38]. Hence,

it is important that roasting does not alter unsaturated fats. Both oleic and linoleic acids are

also important for health [50]. For example, oleic acid, also abundant in olive oil, contains phe-

nols and has been shown to contribute many health benefits [48]. Linoleic acid is essential for

health but nuts are not rich in linoleic acid with the exception of walnut [48]. Hence, the

roasted nuts in this experiment were of similar fatty acid composition to raw kernels, which

may suggest both roasted and raw kernels may have the same health benefits when consumed.

A greater colour development and mottling commenced in the temperatures beyond

120˚C. Colour development under roasting can be associated with kernel quality [27, 43, 51].

Usually very dark and brown kernels are unacceptable [51]. Nonetheless, in the current trial,

the kernel colour was not brown at the highest temperature. Hence, the kernel colour devel-

oped under roasting at 150˚C should not affect the marketability of the kernels.

Conclusion

This study evaluated the changes of chemical composition and oxidative stability of C. indicum
kernels under different roasting regimes. Roasting regimes decreased kernel PV and increased

FFA content which may have implication for the shelf-life of the roasted kernels. Roasting in

general decreased protein content of the kernels but did not alter fatty acid composition of the

kernels even at the highest temperature (150˚C). The oxidative stability of the oil was also not

influenced by roasting in this experiment as shown by an unchanged ratio of oleic:linoleic.

Roasting also did not alter fatty acid composition of the kernels which may suggest both

roasted and raw kernels have beneficial health effects. The testa provided additional protection
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against thermal treatments. Currently, the Galip (C. indicum) factory at NARI roasts the ker-

nels at 150˚C for 10 min and our study suggests that this roasting regime would not affect ker-

nel chemical composition and oil oxidative stability nor excessive colour development

affecting its marketability.
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