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Electromagnetic source imaging (ESI) techniques have become one of the most common alternatives for understanding cognitive
processes in the human brain and for guiding possible therapies for neurological diseases. However, ESI accuracy strongly depends
on the forward model capabilities to accurately describe the subject’s head anatomy from the available structural data. Attempting
to improve the ESI performance, we enhance the brain structure model within the individual-defined forward problem
formulation, combining the head geometry complexity of the modeled tissue compartments and the prior knowledge of the
brain tissue morphology. We validate the proposed methodology using 25 subjects, from which a set of magnetic-resonance
imaging scans is acquired, extracting the anatomical priors and an electroencephalography signal set needed for validating the
ESI scenarios. Obtained results confirm that incorporating patient-specific head models enhances the performed accuracy and
improves the localization of focal and deep sources.

1. Introduction

Electroencephalography (EEG) and Magnetoencephalogra-
phy (MEG) recordings are widely used as noninvasive neuro-
imaging techniques to describe the dynamics of brain activity,
driving to a better understanding of cognitive processes and
neurological diseases in the human brain. Nonetheless,
recorded EEG/MEG signals from each scalp electrode are
affected by the volume-conducted activity coming from
multiple sources spatially dispersed in the brain cortex [1].
Although signals are directly influenced by the conductivity
patterns of each head tissue, many studies concentrated on
the effects of realistic head modeling on the EEG modality
since MEG is assumed to be less affected by uncertainties
inherent to the experimentally determined conductivity
values of the different conductive compartments [2]. To date,
several strategies have been devised to improve the spatial
representation of local interactions between brain sources
generating the recorded scalp potentials. Among others,
the following techniques are worth mentioning in electro-

magnetic studies: removing or minimizing the unwanted
nonbrain signals or artifacts [3, 4], rereferencing of
acquired EEG data [5], and enhancing the source space
analyses or source estimation models (termed electromag-
netic source imaging (ESI)) that are employed to estimate
the synchronously active neural sources, which generate
the electrical potentials measured over the scalp [6]. The
conductivity of brain tissues is not only essential for ESI
tasks but also a fundamental reflector of the brain func-
tional changes like in deep brain stimulation [7] and
transcranial electrical stimulation that is a useful tool for
the neurophysiological characterization and diagnosis of
several neurological disorders, eliciting changes in cortical
excitability [8]. But to increase the precision of estimated
brain sources and to provide target-specific stimulation, a
personalized pipeline is required for an accurate head
model generation as realistic as possible [9], which is
much more complex and must consider tissue conductiv-
ities and the individual shape of the compartments with
different electrical conductivity.
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A baseline approach to constructing realistic head models
is to build approximate representations frommeasures of head
geometry and the electrical conductivity field. This informa-
tion can be extracted from MR scans collected for quantitative
brain analysis [10] or using phase-based conductivity mapping
that relies on the fact that the conductivity of material primar-
ily affects the phase of the magnetic field [11]. So a realistic
conductivity model is built by solving the potential flow equa-
tions (termed the forward problem) employing the segmented
head volume. Using a regular voxelization of head volumes, the
finite difference method (FDM) offers a solution for the for-
ward problem holding a grid partition that directly adapts to
the existence of discrete structural MRI data. Thus, once the
procedures of MRI register and segmentation are carried out,
an accurate head conductivity volume can be obtained, encod-
ing the individual structural characteristics extracted from the
available patient-specific data. Themain reason for conducting
segmentation is that tissue differentiation helps to assign the
appropriate conductivity values, as explained by [12].

Regarding the source space of ESI solutions, a single
mesh of the gray matter typically contains thousands of cur-
rent dipoles (sources), which are to be placed in fixed loca-
tions over the brain [13]. Nonetheless, sources of electrical
activity must be confined to the surface of the cerebral cortex
(i.e., the gray matter) since it is the most representative loca-
tion of cortical activity using a tessellated mesh of the cortical
surface, resulting in a challenging task that commonly needs
manual intervention [14]. Thus, the most common approach
for creating the source space using volumetric head conduc-
tivity solutions like FDM is to warp a standard source tem-
plate into the subject’s brain, creating a subject-specific
model. Still, warping a cortical mesh from a template tends
to produce nonexact correspondences of sulci across the
brain model, yielding important errors of source reconstruc-
tion in cases of low-qualityMRI scans. Another aspect to con-
sider is that head tissue conductivity specificities differently
influence the sensitivity of source reconstruction methods,
depending onwhether they are based on focal (dipole) sources
or those for reconstructing widespread brain activity (based
on goal function scans). This influence is especially strong
for skull and skin compartments, yielding source localization
errors in the range of centimeters, as summarized in [15].

In some situations, however, the structural MRI data col-
lected from individuals may be unavailable for implementing
ESI solutions. Another possible approach to constructing
models is to perform a pattern over a precalculated conductiv-
ity headmodel than can be already segmented. Due to the con-
siderable time required to calculate individual head models,
however, the use of a generalized atlas model is the most desir-
able solution that encodes the normal anatomical variability in
the population under study as accurately as possible. Still, ESI
solutions may benefit from additional information on individ-
ual patient-specific conductivity head models. In this line of
research, we analyze the influence of conductivity headmodels
regarding the dependence between structural MRI data and
demography of populations. To accomplish this goal, we
employ a generalized atlas that can be built by averaging sev-
eral individual head models across a large population. Thus,
we employ the New York head model segmentation that is

generated from 152 subjects, holding a five-layer volumetric
partitioning [16]. Although this approach is inexpensive
because it avoids the acquisition of MRI scans, the resulted
standard model is far from being individually representative
of the wide variety of subjects/populations. A step further is
to construct a head model atlas by averaging the geometry
information of the objective population under examination.
However, despite the level of anatomical detail achieved by
the atlas head models, the wrong geometry approximations
because of the averaging procedure may result in significative
source localization errors [17]. Lastly, head models are calcu-
lated individually for each patient, encoding the particular
information on each subject in the conductivity head model.

Nevertheless, the use of individually defined forward
models can be mandatory in several medical applications
that demand a proper assisted diagnosis and adequate inter-
pretation of patient states from the involved neurophysiolog-
ical data [18–20]. In this regard, the combination of both
approaches to enhance the model of brain structure differ-
ently implies inter- and intraobserver variability, not always
decreasing enough the impact of uncertainty in the inherent
geometrical complexities. Hence, within the forward prob-
lem formulation, there is a need for constructing individually
defined source spaces that enable the EEG source localization
to be more accurate and consistently enhance the interpret-
ability of source reconstruction studies.

Here, we present a methodology for improving the EEG
source localization performance that incorporates tissue
information and prior knowledge, relying on realistic
patient-specific data and endeavoring to enhance the model
of brain structure in the forward problem formulation. The
methodology relies on two well-known ESI methods, namely,
Low-Resolution Tomography (LORETA) andMultiple Sparse
Priors (MSP), both of them implemented under a Bayesian
formulation. For validation purposes, we calculate a realistic
patient-specific head model for the following three structural
complexities: Firstly, we perform the baseline three-layer seg-
mentation holding the scalp, skull, and brain tissues. Then,
we also include CSF, as suggested in [21]. Finally, we accom-
plish a five-layer segmentation, including the scalp, skull,
CSF, gray matter (GM), and white matter (WM). These three
levels of complexity allow analyzing the influence of conduc-
tivity modeling complexity on the performance of EEG source
imaging problems. Obtained results prove that incorporating
patient-specific head models enhances the performed ESI
accuracy, improving the localization of focal and deep sources.
The agenda is as follows: In Section 2, we outline the proposed
methodology for creating individually defined forward
models, and we describe the employed ESI methods under a
Bayesian formulation. Further, Section 3 describes the experi-
mental setup designed for comparing several scenarios of indi-
vidualized forward models with real EEG data. In Section 4,
we discuss the interpretation of the obtained results, remark-
ing our contribution in Section 5.

2. Methods

2.1. EEG Forward Problem and Numerical FDRM Solution.
The EEG forward problem entails calculating the electrical
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potentials of the scalp surface for a single current source,
given the electrical conductivity and geometry of the head
volume. Therefore, as the relevant frequencies of the EEG
spectrum are below 100Hz, the quasistatic approximation
of Maxwell’s equations is used to estimate the potentials over
the scalp. These potentials are generated by an electric cur-
rent in the brain, assuming an inhomogeneous medium with
isotropic conductivity. Thus, the forward problem requires
solving the Poisson equation as follows:

∇· Σ x, y, zð Þ∇Φ x, y, zð Þð Þ = −∇ · J xι f , yι f , zι f
� �

, ð1Þ

where Jðxι f , yι f , zι f Þ ∈ℝ is the electric current density in the

specific location fxι f , yι f , zι f g ∈Ω. Moreover, Φðx, y, zÞ ∈ℝ
is the unknown potentials, Σðx, y, zÞ ∈ℝ+ is the spatially
varying conductivity function, and fx, y, zg is any location
of the head region Ω.

Solution of Equation (1) requires defining the boundary
conditions properly between two compartments (head
layers) with different conductivity values, which are sepa-
rated by the interface Γi,j. Thus, the boundary conditions
state that all charges, leaving one compartment with conduc-
tivity Σi, must be transferred to the other compartment with
conductivity Σj (termed the Neumann statement):

Σi∇Φið Þ · ên = Σj∇Φj

� �
· ên, ð2Þ

where ên is a vector normal to the interface surface Γi,j, and
Σ∇Φ represents the charge. As a special case, because of the
very low conductivity of air, no current flows out of the
human head (homogeneous Neumann statement). There-
fore, the current density at the head surface boundary ΓΩ is
expressed as ðΣ∇ΦÞ · ênjΓΩ

= 0.
Furthermore, solving Equation (1) also requires a numer-

ical framework, allowing a piecewise solution of the partial
differential equations in a volumetric domain that properly
deals with realistic head models with irregular boundaries
[22]. For fulfilling the requirements mentioned above, we
employ the approach developed in [23] that relies on the
method introduced earlier in [24], in which the finite differ-
ence formulation of the Laplace equation (see [25]) is
extended to the Poisson equation equipped with dipole cur-
rent source generators. The proposed solution remains valid
everywhere in a piecewise inhomogeneous isotropic medium
under the assumption that boundaries Γi,j between neigh-
boring compartments are smooth enough. Following the
FDRM approach, Equation (1) is discretized by a 19-point
stencil with 8 voxels that share the same vertex ϕj

0, enabling
a linear formulation for the vertex ϕj

i in the stencil Sj around

ϕj
0, as follows:

〠
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0 = ιf , ð3Þ

where ϕj
i ∈ℝ is the scalar-valued potential at the i-th neigh-

bor vertex of the j-th node in the stencil Sj. ιf ∈ℝ is the dipole

current, and αj
i ∈ℝ is the FDM coefficients depending on the

conductivity value Σ and the internode distance [25].
We propose to solve the system in Equation (3) only

within the Ω domain, holding the interface ΓΩ, that fully
contains the significant potential unknowns represented by
ϕi. Also, Equation (3) yields a linear system that is solved
using the BiCG stabilized solver with iLU preconditioning
[26]. However, every single forward calculation requires a
high computational burden. To overcome this issue, pre-
calculated reciprocity potentials are employed to speed
up the computation of associated inverse solutions. Thus,
we calculate a lead field matrix L ∈ℝC×D for a given elec-
trode disposition at C channels and source space with D
dipoles located on the cortical surface with a fixed orienta-
tion perpendicular to it.

2.2. EEG Source Imaging. Given the lead field matrix L that is
obtained from the forward model, the distributed ESI
methods represent the electromagnetic field measured by
EEG by the following linear model:

Y = LJ + Ξ, ð4Þ

where Y ∈ℝC×T is the EEG data measured on a set of C
sensors at T time points and J ∈ℝD×T is the amplitude
of D current dipoles distributed through the cortical sur-
face with a fixed orientation perpendicular to it. More-
over, we assume that the EEG data is corrupted by
noise Ξ ∈ℝC×T with covariance cov ðΞÞ =QΞ, with
QΞ ∈ℝC×C . Assuming that sources are a zero mean Gauss-
ian process with prior covariance cov ðJÞ =Q, with
Q ∈ℝD×D, brain activity estimation is carried out within a
Bayesian framework by solving the maximum-a-posteriori
problem in the form [27]

Ĵ = argmax
J

p J ∣ Yð Þf g = argmax
J

p Y ∣ Jð Þp Jð Þf g: ð5Þ

The optimization problem in Equation (5) yields the

estimate Ĵ =QLΤðQΞ + LQLΤÞ−1Y that depends on the sen-
sor and source covariance matrices. The sensor noise
covariance is set as QΞ = exp ðλΞÞIC , where IC ∈ℝC×C is
an identity matrix and exp ðλΞÞ ∈ℝ+ is a hyperparameter
modulating the sensor noise variance [28]. Also, we use
two different approaches to build the source covariance
matrix [29]:

(i) Low Resolution Brain Electromagnetic Tomography
(LORETA). The source covariance matrix, holding a
Laplacian operator Δ ∈ℝD×D, that is aimed at repre-
senting the groups of neurons with synchronized
activation, seeking smoothness [30]:

3Computational and Mathematical Methods in Medicine



Q = exp λ1ð Þ LΤΔΤLΔ
� �−1 ð6Þ

(ii) Multiple Sparse Priors (MSP). The source covariance
matrix is built a sum of P patches, each one reflect-
ing a single potentially activated region of cortex
that is weighted by its respective hyperparameter
as follows [31]:

Q =〠
p∈P

exp λp
� �

Qp ð7Þ

Further, we use the so-termed free energy to estimate the
hyperparameter set as follows [32]:

F = T
2 tr Δ−1S

� �
−
T
2 ln Δj j − CT

2 ln 2Π

−
1
2 μ − ηð ÞTΩ−1 μ − ηð Þ + 1

2 ln YΩ−1�� ��,
ð8Þ

where Δ = LQLΤ +QΞ is the estimated model covariance,
with Δ ∈ℝC×C , and S ∈ℝC×C is the measured data covari-
ance. Besides, μ and η ∈ℝP + 1 × 1 are vectors of prior and
posterior hyperparameter means, and Ω and Y ∈ℝP+1×P+1

are the prior and posterior hyperparameter covariance matri-
ces, respectively. Since the free energy estimated in Equation
(8) is a trade-off between the model accuracy (the first two
terms) and model complexity (the last two terms), it is
commonly used to measure the source reconstruction
performance [33].

3. Experimental Framework

We develop an individually defined head modeling process
that includes the computing of the subject-specific cortical
mesh and also the enhancement of the model of the brain
structure, as shown in Figure 1. In the last case, we evaluate
two approaches to enhance the model of the head structure
in the EEG forward problem formulation: (i) Promoting
patient-dependent data by the gradual incorporation of prac-
tical knowledge of the brain tissue morphology, concerning
each patient. For comparison purposes, the anatomical struc-
ture priors are extracted individually for each one of the fol-
lowing cases of image data: a standardized MRI template, a
demographic population atlas, or a set of patient-specific
MRI scans. (ii) Constructing a more precise volumetric tissue
model by augmenting the number of segmented brain
tissues. Namely, we contrast the following configurations of
tissue model complexity: three-layer arrangement (noted
as 3L), including the homogenized brain compartment, skull,
and scalp; 4L, adding CSF to the 3L configuration; and 5L
that divides the 4L brain model into white matter and gray
matter. Thus, for each image data and configuration of tissue
model complexity, a head model is computed. As regards the
differences in head model segmentation, the atlas is parti-
tioned using probabilistic maps available in the averaging
group process. By contrast, the individual segmentation is

performed using the FieldTrip routine. Although both seg-
mentation procedures in Figure 1 are not identical, each
one preserves mainly the brain structure of individuals in
the conductivity volume.

Evaluation of the proposed methodology to enhance the
head tissue model is accomplished within the Bayesian for-
mulation of the EEG inverse problem, where the MSP and
LORETA methods are carried out as the ESI solution.

3.1. Neuroimage Datasets. The brain image data were
acquired from 25 children within an age range between 5
and 16 years old, having two sociocultural levels (high-
medium and low-medium). All patients were randomly
selected from the preschool, elementary, and secondary
courses at a few private and public schools of Manizales
city. For legal purposes, the ethical committee of Universi-
dad Autónoma de Manizales approved the study, and the
children’s parents agreed to participate in the research
through written permission. According to the children’s
historical data, the exclusion criteria were established for
mental retardation, individuals with neurological antecedents
(history of head trauma, epilepsy, and related), or referring
psychiatric disorders (psychiatric hospitalization history,
autism, and similar).

From each child, two brain image datasets were acquired:
an MRI collection supplying the anatomical priors of the
brain tissues and an EEG/ERP set that is employed for valida-
tion of the EEG source imaging performance. Further, we
rely on the fact that the EEG electrode placement of the vol-
umetric forward model has an important role in ESI solu-
tions. Therefore, we perform a fiducial-based similarity
transformation to align the EEG electrodes to the head vol-
ume. Afterward, we project each electrode position towards
the center direction of the head volume to ensure that every
single electrode is surrounded by scalp voxels but guarantee-
ing that the electrode voxel is not surrounded by air.

(i) MRI. A set of T1-MRI scans are acquired from the
same 25 children under study, employing a 1.5T
General Electric OptimaMR360 scanner with the fol-
lowing parameters: 1mm × 1mm pixel size, TR = 6,
TE = 1:8, TI = 450, and sagittal slices of 256 × 256
size and 1mm spacing. For each child, three scans
are performed to be further averaged (using the free
surfer suite), yielding a single representative brain
MRI to provide an enhanced signal-to-noise ratio

(ii) EEG/ERP. The brain activity data were obtained fol-
lowing an oddball experimental paradigm for cogni-
tive evoked potentials with rare visual stimuli, where
each evoked stimulus lasted 130ms, while the time
delay between the onsets of two consecutive stimuli
was 1 s. During each stimulation, the subjects had
to pay attention to the rare stimulus (termed target)
and count their occurrence, ignoring the presence
of remaining stimuli (nontargets). The nontarget
stimuli were displayed on 80% of the trials, whereas
the target stimuli on 20% of the remaining trials,
resulting in approximately 160 nontarget stimuli
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and 40 target stimuli. The EEG recordings were
collected using 19 electrodes symmetrically placed
in the standard positions of the international 10-20
system, operating a single Easy III EEG amplifier
(Cadwell). Data were subsampled at 250Hz and seg-
mented in 1 s epochs, which were averaged separately
over each subject and stimulation condition. As a
result, two ERPs were obtained following the differ-
ent stimulus conditions for each subject, namely,
visual target (V-T) and visual nontarget (V-nT).

3.2. Head Models Integrating Brain Structure Priors. For
incorporating anatomical priors of the brain tissues in the
EEG forward problem, we evaluate the ESI performance indi-
vidually over the following head models:

(i) Template-Based Head Model (NY). As a standard-
ized version of volume conductor models, we use
the New York (NY) head that is frequently used
in neuroimage studies whenever an individual
MRI is not available. NY allows segmentation of
one symmetric head template (ICBM-152 v2009)
into two tissue types (gray matter (GM) and white
matter (WM)) and partition of another symmetric
template (ICBM-152 v6) into nonbrain tissues
(CSF, skull, and scalp). Also, the segmentation of
the lower head part is extracted from an addi-
tional head template averaged over 26 subjects
which provided the data collection. Thus, the seg-
mented head tissues, together with the extracted
lower part, are compounded into the NY head
model

Structural data

(a) (b) (c)

Patient dependent (PD)

Atlas (AT)

Tissue complexity

FDRM

Source space

Source localization

Bayesian model selection

New York (NY)

Individual MRI Volumetric
segmentation

Segmentation

Forward model

Morphological
transformation

Meshing

Quadratic edge
decimation

3L 4L 5L
MSP LORETA

BOR
Segmentation

MRI
population set

MRI set

DARTEL

Figure 1: Schematic methodology representation for enhancing the brain tissue model tested within the EEG forward problem formulation.
The figure shows the proposed individually defined head modeling, including patient-dependent structural MRI, individual MRI
segmentation, FDRM, and individual source space modeling. The middle and bottom boxes of (a) show the comparative structural
information, namely, atlas (AT) and New York (NY). The top middle panel of (b) shows different tissue complexities (3L, 4L, and 5L).
The remaining panels of (c) show the source localization and the performance measure.
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(ii) Atlas (AT) Head Model. An anatomical brain atlas
is built to provide a more precise demographic tis-
sue information about a concrete population sam-
ple. So we build a generic atlas from the obtained
26 representative MRI scans, employing the Dif-
feomorphic Anatomical Registration Through
Exponentiated Lie (DARTEL) algorithm that gener-
ates a set of customized templates for the considered
brain tissues [34]. The use of DARTEL nonlinearly
transforms all individual probabilistic partitions, ini-
tially provided by the Statistical Parametric Mapping
(SPM) MATLAB Toolbox, merging them into a
single template. The registration procedure is con-
ducted during a fixed number of iterations for
increasing the template crispness. To construct the
atlas from all patients, including all tested tissues,
DARTEL is applied using the following default
parameters: linear elastic energy regularization,
Levenberg–Marquardt optimization, and six outer
iterations

(iii) Patient-Dependent (PD) Head Model. This model of
prior information includes patient-dependent struc-
ture data individually and tends to provide more
specific knowledge of the geometry of each child’s
brain, performing an individual MRI segmentation
of all considered brain tissues separately. Neverthe-
less, the resulting segmentation, which is accom-
plished using the FieldTrip pipeline [35], may
contain some anatomic errors, like WM patches sur-
rounded by a skull or skull exposed outside the scalp.
Therefore, the segmentation is corrected to ensure
that the GM tissue covers WM entirely, being con-
tained by CSF at the same time. It is worth noting
that the brain segmentation procedure includes the
neck area extracted for each patient [36]. As regards
the differences in head model segmentation, the atlas
is partitioned using probabilistic maps available in
the averaging group process. By contrast, the
individual segmentation is performed using the
FieldTrip routine. Although both segmentation
procedures are not identical, each one preserves

mainly the brain structure of individuals in the
conductivity volume.

3.3. EEG Source Imaging in Forward Solution. For accurate
localization of very focal sources, we aim to construct indi-
vidually defined cortical meshes. Thus, to obtain realistic
modeling of the sulci and gyrus of the brain, we propose to
apply morphological operators over the WM volumetric seg-
mentation, reproducing better the activity of a cortex layer
that belongs to individual voxels within the volumetric regu-
lar FDM voxelization. This assumption is supported by the
fact that brain activity is mostly characterized by the distrib-
uted current sources and sinks located within the tissue of
evoking source areas (e.g., grey matter) [37].

The schematic representation of the proposed methodol-
ogy for producing the source space is presented in Figure 2.
Thus, we compute a neocortex surface mesh having close to
10:000 vertexes to provide enough resolution (in fact, the
mesh from initial data has more than 2 × 105 vertexes, which
are downsampled using a quadratic edge decimation). Fur-
ther, every single vertex becomes a source position so that
the triangulation procedure results in a connectivity map,
containing the information of the spatial relationship
between the neighbor sources and every single voxel.

Based on the generated source space, then, the lead fields
are calculated from the performed segmentation of brain
tissues for the tested head model configuration (3L, 4L,
and 5L). Besides the geometrical complexity, the volume
conduction model must specify the conductivity distribution
of the modeled tissue compartments. Here, we use the consis-
tent conductivity values reported for the examined brain tis-
sues as follows [12]: scalp = 0:43 S/m, skull = 0:008 S/m,
CSF = 1:79 S/m, GM= 0:33 S/m, andWM= 0:14 S/m. Lastly,
the EEG electrodes are coregistered to the segmented scalp
surface, using the FieldTrip toolbox and allowing to esti-
mate the volumetric forward models over a uniform
volumetric space of 1 × 1 × 1mm. Due to the high compu-
tational burden demanded by FDM techniques, we per-
form a reciprocity precalculation of the lead field matrix
of the EEG channels to speed up the needed forward
computations.

Volumetric
segmentation

Coronal slice

Source surface

Source mesh

Source space

GM
WM

Figure 2: Source space generation trough individually defined cortical meshes using morphological operators.
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Figure 3 displays some examples of the implemented seg-
mentation of the examined head models incorporating prior
information. Note that all evaluated head models in the indi-
vidually defined forward modeling are computed using the
EEG forward solution that we developed in [23].

3.4. Validating Scenarios of EEG Source Imaging. In accor-
dance with the evaluated approaches to enhance the brain tis-
sue model, we explore the following nine scenarios for
evaluating the direct EEG problem: 3L-NY, 4L-NY, 5L-NY,
3L-AT, 4L-AT, 5L-AT, 3L-PD, 4L-PD, and 5L-PD.

In all scenarios, the source reconstruction of visual stim-
uli is validated using two ESI solutions: LORETA and MSP.
In the former case, a Laplacian operator Δ is included to
represent groups of neurons with synchronized activation
(see Equation (6)), modeling spatial coherence. In the case
of MSP, the priors, needed to compute the set of covariance
components, are constructed as a sum of patches, each one
reflecting one potentially activated region of cortex weighted
by the respective hyperparameter (see Equation (7)). For
either ESI solution, priors are implemented by the Statistical
Parametric Mapping software package(SPM12), fixing the
number of covariance components to 1024 for MSP, which
are formed by sampling from evenly spaced columns of the
coherence matrix as to cover the cortical surface entirely.
Besides, the MSP hyperparameters are tuned by maximizing

the free energy through the Restricted Maximum Likelihood
approach under a greedy search algorithm.

During validation, we employ the experimental frame-
work and metrics proposed in [38], developed for solving
problems of group-level Bayesian model selection (BMS) in
tasks that involve neuroimage and behavioral data. This
approach is based on the free energy as an approximation
to the Bayesian log evidence, yielding a reliable measure that
shows which model is more probable to generate the avail-
able data [21]. To this end, we compare the free-energy
values of the inverse solutions performed by subjects, elicited
by each stimulation condition. Then, to measure the statisti-
cal risk of performing group BMS problems, the log group
Bayes factor (ρL ∈ℝ), the expected likelihood (ρK ∈ℝ+),
and the Bayesian omnibus risk (BOR, ρB ∈ℝ

+) are com-
puted. In the log group Bayes factor, one model can be cho-
sen in favor of another whenever there is a difference
higher than the a priori fixed value. Here, if BOR is smaller
than 0:25, the best model selected by the exceedance prob-
ability becomes trustworthy. Of note, the applied metrics
estimate the probability of EEG data generating the sources,
instead of calculating the accuracy as a distance from a
âĂIJtrueâĂİ source to its inverse position.

4. Results

4.1. Performed Source Imaging Using Anatomic Structure
Priors. With the purpose of a better data visualization, all
values of log Bayes factor ψ are represented through radar
charts that display the source imaging performance data in
a radial pattern, as shown in Figure 4. The star chart stacks
the string data performed by each head model, subtracting
the smallest free-energy value (i.e., the worst model) achieved
through the corresponding stimulus condition. Therefore,
the higher this computed factor, the better the model per-
forms the EEG source reconstruction [39]. Note that each
colored string depicts the performance obtained by a single
subject, where the gray circle is drawn for the cases of signif-
icative Bayes factor, having differences that are greater than
three points.

Figure 4(a) displays the achieved performance by
LORETA source imaging solution, showing that the testing
scenarios of NY produce the lowest values of ψ regardless
of the considered stimuli. At the same time, the AT head
models perform the worst. In the case of the MSP solution,
Figure 4(b) shows that all testing scenarios of NY models
produce the lowest values of ψ regardless of the considered
stimuli. Concerning the AT models, the radar charts also
show that the reconstruction accuracy improves, meaning
that the inclusion of structural priors using the study popula-
tion enhances the tissue model. However, the highest values
of ψ are achieved by the PD head models, resulting in the best
model for incorporating information about head tissues in
the EEG forward problem. Another aspect to consider is
the variability provided by each ESI solution for every
patient. Thus, although MSP produces fewer outliers than
the LORETA solution does, it is hard to select the best sce-
nario during validation of the individually defined forward
modeling.

NY

Axial Coronal Sagittal

AT

PD

Scalp
Skull
CSF

GM
WM

Figure 3: Exemplary of five-layered segmentation performed for
the contrasted head models to incorporate prior information into
the EEG forward model formulation.
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4.2. Bayesian Model Selection of EEG Source Imaging Method.
The BMS for group studies is employed, aimed at generaliz-
ing the performance results achieved by the examined ESI
solutions across the whole patient set. Thus, BMS identifies
the best source reconstruction through a random effect
analysis, assuming that each subject is drawn from a large
population of subjects so that his response represents an
independent sample from the overall distribution [40]. We
conduct BMS through the expected posterior probability
and Bayesian omnibus risk (BOR), comparing the log model
evidence for each reconstruction at the group level.

In turn, Figure 5 presents the performed results, compar-
ing together all the testing scenarios of MSP and LORETA

solutions. It is worth noting that the confidence in the
expected posterior probability is adequate for the considered
visual stimulus (BOR lesser than 0:25).

On the other hand, MSP has better results than LORETA
in all stimulus conditions despite the tested scenario of the
head model, making obvious the superiority of the former
solution regarding the achieved reconstruction accuracy.
This effect may be explained by relying on the fact that the
LORETA solution tends to fail in detecting deep sources.
Furthermore, the deeper the actual source, the more blurred
is the current density estimated by LORETA. On the con-
trary, the MSP algorithm embraces the entire cortical sur-
face (both focal and deep), identifying the patches that
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4L-NY
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Visual target Visual nontarget

(a) LORETA
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3L-AT
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4L-NY
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(b) MSP

Figure 4: Radar chart showing the ψ values achieved by both ESI solutions for each scenario and patient. The gray circle is not drawn in the
LORETA chart since the difference of patients for each image data and configuration of tissue model complexity is much lower than 3 points.
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better reproduce the neural source distribution, thus
enabling a more accurate reconstruction of the superficial
and deep sources.

Further, Figure 6 displays the considered ESI solutions
performed for a randomly selected patient, allowing to
explain the above-described effect of different accuracies on
the deep reconstructed sources. Besides, the NY head models
are implemented due to the simplicity of their incorporated
priors, having the lowest influence on source reconstruction.
The obtained source reconstruction reveals that LORETA
spreads the activity over the entire cortical mesh, although
the identified areas that prevail tend to be less scattered as
the number of modeled tissues increases. On the contrary,
MSP focuses the most on the visual-processing-related areas
(like the visual cortex in the posterior brain area), becoming
more evident as the number of tissues increases.

Consequently, due to the shown outstanding superiority,
we further consider the MSP solution in the following proce-
dures. With the purpose of a better data visualization, all

values of the log Bayes factor, ψ, are represented through
the radar charts that display the source imaging performance
data in a radial pattern as shown in Figure 4. The star chart
stacks the string data performed by each head model, sub-
tracting the smallest free-energy value (i.e., the worst model)
achieved through the corresponding stimulus condition.
Therefore, the higher this computed factor, the better the
model performs the EEG source reconstruction [39]. Note
that each colored string depicts the performance obtained
by a single subject, where the gray circle is drawn for the cases
of significative Bayes factor, having differences that are
greater than three points.

4.3. Comparison of Brain Tissue Models. For the MSP source
imaging, we compare the enhancing scenarios of the brain
tissue model through the explained log model evidence at
the group level.

Figure 7 shows that the best brain structure is 5L-PD that
certainly achieves the highest expected posterior probability
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Figure 5: Results of Bayesian model selection shown as the expected posterior probability and Bayesian omnibus risk assessed by each testing
scenario of a brain tissue model. LORETA and MSP are the contrasted ESI solutions.
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(the top bar highlighted with red) with high confidence since
the BOR value is much lower than 0:25. The second-highest
performance is achieved by the 3L-AT testing scenario, out-
performing even the 3L and 4L layer arrangements of the
PD models. Further, there is no apparent benefit in selecting
one of the remaining scenarios of PD or AT models. In fact,
except in the case of the 5L configuration, either model
behaves similarly. Nonetheless, all scenarios that have been
tested for the NY-based brain tissue models reach the low-
est probability of a model generating the observed data,
confirming that this is the worst strategy of incorporating
anatomical priors.

Regarding the used tissue model complexity, the per-
formed Bayesian model selection only infers that the five-
layer arrangement provides the most substantial source
reconstruction performance. Other patterns of complexity

tissues are comparable regardless of the used stimuli and
combined head model to integrate the brain structure priors.

To check the quality achieved by each tested ESI solution,
we provide a visual inspection of the obtained source recon-
struction for a representative subject, using the best-achieved
head model for each tested scenario, i.e., 5L-PD, 3L-AT, and
5L-NY. Thus, Figure 8 shows the sensor space data, namely,
an example of ERP and scalp topography, as well as the
results of the source reconstruction (dipole-wise power).
Both scalp topography and source activity are averaged in
the time range from 100 to 200ms (typically termed the
N200 component), which contains brain-specific responses
related to the processing of visual stimuli [41]. The ERP
waveform shows a prominent temporooccipital negative
peak close to 180ms, which is mostly related to visual
processing.
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Figure 6: Achieved source reconstructions with NY models for both ESI methods. (a) Sensor space: ERP and topographic map. (b)
Reconstructed activity. Views: Or: outside right; Ol: outside left; To: top; Bo: bottom; Ir: inside right; Il: inside left.
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Moreover, the reconstructed activity localizes some
components in the vicinity of the temporal lobe, covering
the visual cortices for all the tested models. However, the
5L-NY model spreads the brain activity, which makes some
activations appear in the nonvisual-related areas. 3L-AT acti-
vates the middle temporal gyrus that has some visual-related
tasks. Additionally, in 5L-PD, an activity patch appears over
the posterior cingulate gyrus, which occurs when a high
demand for visual processing/discrimination is required,
confirming that this kind of prior enhances the reconstruc-
tion of neural activity.

Another aspect to consider is the accuracy of brain
activity source localization achieved by the volumetric brain
segmentation that we model through the number of tissues
incorporated into the head model. From the results per-
formed by MSP, Figure 9 shows that including CSF
segmentation (i.e., 4L) outperforms the conventionally used
three-layer head model just in the case of NY tissue morphol-
ogy. Otherwise, the discrepancy in performance between
both configurations may vary from case to case.

Lastly, we investigate the distinction between the white
matter and the gray matter in the volumetric brain segmen-

tation, proving that the highest model complexity (5L)
performs almost the best for each method which includes
the anatomical priors regardless the elicited stimulus (see
Figure 7).

5. Discussion

To enhance the EEG source localization, we develop an indi-
vidually defined forward modeling that includes a subject-
specific cortical mesh and also enhances the model of the
brain structure, including prior knowledge of the tissue mor-
phology and head segmentation complexity. Through the
above-validated results on real EEG/ERP data, the following
findings are worth mentioning.

5.1. Contribution of Anatomical Structure Priors. For incor-
porating anatomical priors of the brain tissues in the EEG
forward problem, the radar charts show that the patient-
dependent head model is the best-considered head model
that is followed by the AT models, with the NY model being
the worst representation. This result agrees with the com-
monly reported criterion of modeling structure priors,
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Figure 7: Results of group study shown as the expected posterior probability and Bayesian omnibus risk assessed by each testing scenario and
MSP that is employed as ESI solution.
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stating that the more the individual anatomical information,
the smaller the source localization error. However, modeling
of the brain tissues is very sensitive to wrong shape
approximations of the target population (form, size, and
demographics), which lead to significant errors of source
localization. Thus, we are not aware of any demographic
details on the widely used NY head model, and conse-
quently, it is very likely to be far more representative of
any particular target population. For reducing the shape
differences between modeled and actual head tissues, the
AT model builds an averaged atlas extracted from a popula-
tion as similar as possible to the target. Another aspect to
consider is the variability observed between the examined
patient groups, as shown by the radar charts in Figure 4.
Hence, some incongruent approximations may appear,
making the brain structure deteriorate due to the head seg-
mentation complexity (see Figure 5). As a result, the
patient-specific head model that provides the inclusion of
more realistic knowledge of the brain tissue morphology
allows the most increase of the performance of EEG source
localization.

5.2. Impact of Volumetric Brain Segmentation. In particular,
we investigate the inclusion of the CSF compartment that
has been reported as having an impact on the source recon-
struction. However, we obtain that the discrepancy in perfor-
mance between neglecting CSF and adding this tissue to the
conventionally used configuration may vary from case to

case. The drop in performance may be explained because
some small changes in CSF layer thickness can provide a sig-
nificant effect on EEG signal magnitudes in several standard
visual paradigms [42]. Instead, the distinction between the
white matter and the gray matter makes the volumetric seg-
mentation perform almost the best for each method includ-
ing the anatomical priors, demonstrating that neglecting
this tissue division diminishes the ESI solution results
remarkably [43]. So the volumetric brain segmentation influ-
ences strongly on the forward and inverse problems, but it
must be carried out as accurately as possible.

Due to accurate volumetric tissue segmentation rules on
the construction of a realistic finite element head conductiv-
ity for EEG source localization, the intended forward meth-
odology must be adaptable to the voxelized structural
information provided by the volumetric segmentation,
including more complex tissues. In particular, we use the
FDRM method that fulfills the needed conditions at a negli-
gible computational effort.

5.3. The Benefit of Individually Defined Source Reconstruction.
More realistic modeling of the sulci and gyrus of the brain
enhances the individually defined forward model. In practice,
canonical source reconstruction is employed that pools ana-
tomical data from multiple subjects, being very susceptible
to intersubject variability in cortical anatomy that poses a fac-
tor of an inaccurate tissue modeling. To cope with this issue,
we propose a cortical mesh that is transformed anatomically
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Figure 8: ESI solution for a representative subject using the best-achieved head models for each structural prior information, namely, 5L-PD,
3L-AT, and 5L-NY. (a) Sensor space: ERP and topographic map. (b) Reconstructed activity. Views: Or: outside right; Ol: outside left; To: top;
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to produce the subject-specific mesh. For this, we confine all
sources of brain electrical activity within the gray matter by
applying a dilation-based morphological operator over the
volumetric segmentation of white matter, resulting in a seg-
mented middle area between the cortex and WM boundary.
As an additional advantage, our source space generation pro-
posal is easily adaptable to a wide class of prior structural
information as it does not require any manual intervention
for ensuring that sources are enclosed within the gray matter.
As a concrete example, Figure 8 shows some focalized sources
in the posterior cingulate gyrus, which in fact must be related
to the tested, visual stimulus [44]. Therefore, even if the
patient-dependent approaches demand the cortical surface
extraction from an individual’s MRI, an efficient method for
computing the EEG forward problem, along with the head
model, is essential to provide more accurate localization of
very focal sources.

As regards the influence of the used dipole source locali-
zation, we also compare two well-established approaches:
LORETA and MSP. The former ESI approach reconstructs
mostly superficial sources, favoring the simplest head model
(i.e., the NY template) that produces the poorest detailed
description of the tissue structures. Instead, the MSP method

enables the reconstruction of superficial as well as deep
sources, embracing the entire cortical surface. As a result, a
more elaborate ESI solution also enhances the individually
defined source reconstruction.

6. Conclusion

We discuss the improvement of EEG source localization per-
formance by combining the head geometry complexity of the
modeled tissue compartments and the prior knowledge of the
brain tissue morphology, attempting to enhance the brain
structure model in the individually defined forward problem
formulation. Several testing scenarios for EEG source imag-
ing are performed on 25 children, from which a set of MRI
scans is acquired for extracting the anatomical priors and
an EEG/ERP set for validating the EEG source imaging
scenarios. For model comparison, the more probable model
to generate the available data is determined by Bayesian log
evidence.

As a result, only enough accurate volumetric brain
segmentation can efficiently influence the forward problem,
at least, for the examined cases of CSF, WM, and GM tissue
segmentation, allowing identifying neural disorders and
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13Computational and Mathematical Methods in Medicine



abnormalities. In turn, the complementary use of a patient-
specific head model, as a strategy to personalize the head
models in the forward problem, allows steadily increasing
the source reconstruction performance in comparison to
the contrasted atlas and template-based head models. There-
fore, even if the patient-dependent approaches demand the
cortical surface extraction from an individual MRI, an effi-
cient computing of the individually defined forward problem
is essential to provide more accurate localization of quite
focal sources.

We develop an approach that automatically defines the
source space in the gray matter volume, without any manual
intervention, and regardless of the provided anatomical
priors. Furthermore, the incorporation of patient-specific
head models places all defined sources inside the patient-
specific brain cavity, improving the localization of focal and
deep sources.

Another aspect to consider is the influence of the used
source localization, for which we compare two well-
established approaches (LORETA and MSP), obtaining that
a more elaborate ESI solution also enhances the individually
defined source reconstruction. However, the tissue combina-
tion must be defined according to the used source localiza-
tion method. On the one hand, the simplest tissue model
encourages recovering superficial sources, benefiting the
LORETA performance. On the other hand, a more complex
tissue combination enhances the localization of focal and
deep sources, improving the MSP performance.

Since the discussed methodology uses a set of fixed dipole
orientations perpendicular to the brain surface and isotropic
tissue conductivities, as future work, we plan to generate a
forward model with anisotropic tissue conductivities and to
develop a methodology that allows estimating the dipole
amplitude and orientation. Additionally, we aim to test the
ESI performance when more tissues such as eyes or fatty tis-
sue are included. Also, even if previous investigations show
that CSF is crucial to enhance the ESI accuracy, the finding
that adding CSF does not help with accuracy in PD models
prompts us to analyze more profoundly the influence of the
particular database used in our study.
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