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Abstract

large homologous protein superfamilies.

Background: Phylogenetic profiling is a technique of scoring co-occurrence between a protein family and some
other trait, usually another protein family, across a set of taxonomic groups. In spite of several refinements in
recent years, the technique still invites significant improvement. To be its most effective, a phylogenetic profiling
algorithm must be able to examine co-occurrences among protein families whose boundaries are uncertain within

Results: Partial Phylogenetic Profiling (PPP) is an iterative algorithm that scores a given taxonomic profile against
the taxonomic distribution of families for all proteins in a genome. The method works through optimizing the
boundary of each protein family, rather than by relying on prebuilt protein families or fixed sequence similarity
thresholds. Double Partial Phylogenetic Profiling (DPPP) is a related procedure that begins with a single sequence
and searches for optimal granularities for its surrounding protein family in order to generate the best query profiles
for PPP. We present ProPhylo, a high-performance software package for phylogenetic profiling studies through
creating individually optimized protein family boundaries. ProPhylo provides precomputed databases for immediate
use and tools for manipulating the taxonomic profiles used as queries.

Conclusion: ProPhylo results show universal markers of methanogenesis, a new DNA phosphorothioation-
dependent restriction enzyme, and efficacy in guiding protein family construction. The software and the associated
databases are freely available under the open source Perl Artistic License from ftp:/ftp.jcvi.org/pub/data/ppp/.

Background

Phylogenetic profiling is an established and widely
known technique for inferring biological roles for
unknown proteins [1]. The technique capitalizes on the
propensity of proteins that work together in the same
cellular system to have traveled together in evolutionary
processes of speciation, gene loss, and lateral transfer.
Such systems may consist of biochemical pathways,
multi-subunit protein complexes, protein-modifying
enzymes with their targets, efc. For a given protein, the
evolutionary history of its family is reflected in its pre-
sent day taxonomic distribution [2]. Therefore, examin-
ing protein family co-occurrence across large numbers
of genomes may reveal evidence linking one protein to
others that cooperate in the same system.
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A phylogenetic profile in its simplest form is a series
of binary characters [3], 1’s or 0’s that show the pre-
sence or absence of a given protein family or of some
other marker across a defined set of taxonomic groups
[4-6]. This profile is then scored against profiles gener-
ated from other protein families in order to find statisti-
cal evidence that the families they represent cooperate
in some way. Since its inception, the technique has
undergone extensive refinements [7]. Some of these
improvements are: a) use of information such as logic
relationships amongst proteins [8]; b) use of domains
[9], single amino acid [10], or even peptides [11] instead
of proteins for comparison of profiles; ¢) refinements in
selection of reference organisms [12]; d) incorporation
of evolutionary relationships of the species into the
comparison of profiles [13,14]; and e) use of information
such as copy numbers of domains within genomes [7].
In spite of these refinements, the technique still depends
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heavily on some method for approximating the bound-
aries of a protein family such that its members are func-
tionally equivalent, which is a notably difficult problem
to solve.

Nonetheless, phylogenetic profiling can be very suc-
cessful in identifying cohorts of protein families likely to
cooperate in the same cellular processes, and for making
strong predictions of biological roles or molecular func-
tions on unknown proteins when combined with other
types of evidence. The technique has been used for var-
ious genetic and phenotypic traits that can be coded as
binary characters [1]. Some examples are: prediction of
subcellular localization of proteins [15,16]; identification
of virulence associated genes in human pathogens [17];
prediction of protein domains and their interactions
[9,18,19]; prediction of protein-sorting enzymes from
the taxonomic ranges of their target sequences [20], pre-
diction of restriction sites [21], etc. A few online data-
bases now provide search and display capabilities using
co-occurrence data computed through phylogenetic pro-
filing, although the method for scoring co-occurrence is
not user-adjustable. Examples include MicrobesOnline
[22], STRING [23], etc. [reviewed in [24,1,25]].

The success of phylogenetic profiling is affected by
considerations in four components of the method, pre-
sented here in the order in which they are applied. The
first is the selection of target species. Although the
effect of species selection in the success of phylogenetic
profile methods is largely unexplored, it is now generally
believed that the prediction accuracy increases with
increasing numbers of species [12,26] while limiting
taxonomic redundancy [27]. Second is the ability to find
the appropriate set of homologs to a particular protein
sequence in a set of genomes. This step typically relies
either on prebuilt protein families, or on some methods
for using sequence similarity results (e.g., BLAST) to
identify members of a protein family. Third is the
method of representing the phylogenetic distribution of
a protein family as a profile. Although a binary vector is
typical, a profile sometimes is represented by real or
transformed values of raw BLAST scores [28-30,2].
Fourth, and finally, is the identification of a suitable
method for scoring the match between profiles. Such
methods include simple distance measures such as
Hamming distances [4], mutual information content
[31,32], Jaccard coefficients [33,34]; statistical measures
such as Pearson’s correlation coefficient [34], Fisher’s
exact test [14], rank correlation [2], etc. There are also
methods that go beyond naive measures and take into
consideration evolution of protein families, such as tree-
kernel based method [35], parsimony-based methods
[36], and maximum likelihood methods [14,36,37]. Such
methods, instead of considering only the distribution of
protein homologs amongst the extant species, take into
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account the ancestors of such species and how gene
gain and loss events have affected the current distribu-
tion of a protein family.

It appears that the most leverage for improvement of
the method is found in the second of these: phylogenetic
profiling works best when the working definition for
each protein family comes as close as possible to the
full set of homologs among which some specific func-
tion is conserved. Typically, however, molecular function
varies within protein superfamilies, and a particular
function is shared only within a narrow subset. Auto-
mated protein clustering methods or fixed sequence
similarity cutoffs used for sequence homology searches
cannot reliably achieve granularities that represent pro-
tein family sizes optimally. This shortfall can limit the
effectiveness of available profiling methods, especially
when they need to evaluate subgroups found within lar-
ger superfamilies.

We describe here ProPhylo, a distributable software
framework for performing phylogenetic profiling studies.
It includes the first distributable tool for performing
Partial Phylogenetic Profiling (PPP), an algorithm that
overcomes such limitations by optimizing protein family
size simultaneously with scoring co-occurrence. Since
first introducing the principle [20], we have been using
PPP extensively to find key protein components of novel
biological systems, and to guide construction of their
corresponding protein family definitions [38-41]. We
introduce as well a variation on PPP called Double Par-
tial Phylogenetic Profiling (DPPP). DPPP starts with a
single query sequence, and then optimizes protein
family sizes around both the query protein and the col-
lection of target proteins. ProPhylo provides, in addition,
utilities for constructing and manipulating taxonomic
profiles and for using pre-computed BLAST results to
perform PPP and DPPP.

ProPhylo is a framework written in Per]l and designed
to perform high-performance phylogenetic profile
searches using arbitrary profiles on a desktop computer.
A version is also available to run on computer clusters
(available on request). The software comes with a data-
base of pre-built BLAST searches of ~1500 selected pro-
karyotic reference genomes for immediate phylogenetic
profile search. Users additionally have the option to cre-
ate their own databases. The software comes with tools
for the creation and manipulation of phylogenetic pro-
files. At present, the software is configured to run pro-
file searches using our own PPP algorithm, but it is
designed in such a way that any scoring function can be
used as a plug-in. We have plans to include several
other scoring functions with future versions of the soft-
ware. The software and the associated databases are
freely available under the open source Perl Artistic
License from ftp://ftp.jcvi.org/pub/data/ppp/.


ftp://ftp.jcvi.org/pub/data/ppp/

Basu et al. BMC Bioinformatics 2011, 12:434
http://www.biomedcentral.com/1471-2105/12/434

Implementation

Databases

For a phylogenetic profile search, ProPhylo requires
two databases: the cross-genome all vs. all BLAST
search results (or a slice of this data set for at least
one target genome), and the NCBI taxonomy database.
The pre-formatted, ready-to-use databases can be
downloaded from the ProPhylo distribution site, ftp://
ftp.jcvi.org/pub/data/ppp/. The current version pro-
vides all vs. all BLAST result data for ~1500 complete
prokaryotic genomes. These genomes were manually
selected to remove excessive strain-level redundancy,
while keeping the maximum possible taxonomic
breadth. The peptide files for these genomes were
downloaded from NCBI and an all vs. all search using
NCBI BLAST was performed. Results were processed
using a script supplied with ProPhylo to produce files
suitable for reading by ProPhylo. These parsed BLAST
result files are stored separately for each genome.
BLAST results for a user-selected target genome,
therefore, can be downloaded separately from other
genomes, keeping the download size small.

ProPhylo depends on the NCBI taxonomy tree for
extraction of phylogenetic information. Thus, a local
installation of the NCBI taxonomy tree is essential to
run the software. A pre-formatted SQLite (http://www.
sqlite.org/) database of the NCBI taxonomic tree can be
downloaded from the ProPhylo software distribution
site. Alternatively, scripts supplied with the package can
automatically download the NCBI taxonomic tree from
the NCBI website and create the necessary SQLite data-
base on the user’s desktop machine.

As an alternative to using the supplied databases,
users can create custom databases. An extensive collec-
tion of scripts are supplied with software package,
including scripts for performing BLAST searches and
parsing BLAST result files, to create the databases suita-
ble for use with ProPhylo.

Profile creation

ProPhylo at present uses profiles in binary form, as a
tab-delimited text file containing two columns: a taxo-
nomic ID as defined by NCBI taxonomy database fol-
lowed by a 1 and O to indicate the presence or absence
of a trait in the corresponding genome. A user can cre-
ate such a profile file from several sources. Scripts sup-
plied with the package can create a query profile from
BLAST, from HMM search results, or even from a col-
lection of sequence identifiers. A user also has the
option of supplying a manually created or modified pro-
file file; taxa may be toggled between 0 and 1, or may
be removed entirely from influence on PPP results by
omission from the query profile.
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Creation of profiles used in this study

TIGRFAMs [42] model TIGR03185 describes the DptD
(previously DndD) protein that is one of the four trust-
worthy markers for the presence of the DNA phosphor-
othioation (DPT) system [43]. Examination of the 80
proteins (or protein fragments) that score > = 200 to
this model using HMMERS3 [44] identifies 70 different
sporadically distributed genomes from the 1466 gen-
omes searched (4.8%) and was used to create the DPT
profile. The methanogenesis profile was created manu-
ally to agree with the scientific literature.

Utility scripts

For effective use of the phylogenetic profile methods,
providing only the method to compare profiles is not
enough. The software package comes with a set of pro-
grams (Additional file 1 Table S1) to effectively manage
and manipulate profiles. The programs allow the user to
perform the following operations on profiles:

1. The user can use scripts to manipulate profiles
and perform several operations on profile files, such
as Boolean and set operations on pairs of profiles to
create new profiles. The operations make it possible
to define profiles for working with orphan markers,
or with recurring pathway holes.

2. The user can create a profile directly from the
NCBI taxonomic database. These profiles can be
used to query for proteins most universally con-
served within a lineage. They can also be used,
through Boolean operations, to perform taxonomic
restrictions on other profiles. For example, using a
profile based on a marker for pathway X, the follow-
ing question is easy to ask: what proteins occur only
in the Proteobacteria, and only when pathway X is
present?

3. The user can perform masking operations that
remove genomes whose assignments of the query
trait are uncertain or irrelevant and a possible source
of noise. This masking makes it possible to contrast
species with all three markers A, B, and C for some
system against species with none of the three, while
ignoring species whose incomplete systems recon-
structions may represent decaying systems, faulty
classifiers, pathway variants, or other confounding
situations.

Profile search

At present, the ProPhylo package only supports compar-
ison using the Partial Phylogenetic Profile (PPP) algo-
rithm [20]. The algorithm is called “partial” because it
does not score two full profiles (each equal in size to
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the number of genomes in the all-vs-all data set) against
each other. Instead, at each step in an optimization pro-
cedure it examines the partial profile that consists only
of genomes encountered so far while descending a list
of best BLAST hits. It assigns all of these genomes the
value 1, and scores each such partial profile for consis-
tent agreement with the query profile, which contains
both matching (1) and mismatching (0) values. In order
to compare different proteins in a genome by their rela-
tive ability to match the query profile, each protein is
scored based on the depth in its list of best BLAST hits
where its match to the query profile shows the greatest
statistical significance.

Algorithms

A profile P = (Py,....P,) € {0,1}" is defined over a collec-
tion of taxonomic identifiers T = {¢;,...,¢,}, with negative
examples being Ty = {t;:P; = 0} and positive examples
being T = {tzP; = 1}. We iterate through each gene in a
genome. For each gene (G) we get its BLAST result (R),
which is a collection of tuples (g;s;) for j = 1,...,m, where
g is a GenBank identifier (GI) and s; is a measure of sig-
nificance, where only the most significant match from
each taxon is considered. For each such R, we iterate
through the GIs sorted in decreasing order of signifi-
cance. For each g; we get its taxonomic ID, ue T While
iterating over j = 1,..,m the algorithm calculates,

pj = X]: ({2) P -p),

le=h;

where, ¥ = [{41,....u3nT1|, i.e., the number of profile’s
positive genome seen up to index j. The value p; is,
therefore, simply the probability, according to the bino-
mial distribution, of finding at least /; hits (taxonomic
identifiers whose value is 1 in the query profile) after j
distinct taxa have been encountered in the BLAST hits
list. The parameter p is the prior probability either pro-
vided by the user or calculated as the relative frequency
of positive taxa in the input profile: p = |T1|/(| To|+|T1|)

The score of a particular gene G is then reported as p*
= minpj, that is, the most significant probability com-
puted for any depth in the BLAST hists list. For a gen-
ome, the results are presented as a sorted order of
scores for each gene along with the values of p* and its
corresponding j and /;.

A variation of the algorithm is double partial phyloge-
netic profiling (DPPP). This allows iterative searching
starting with only a single given sequence. The algo-
rithm iteratively goes down the BLAST hit list of a
given protein, creating a new version of the taxonomic
profile each time it finds a new taxon. These sets of
query profiles are then searched using the PPP
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algorithm described above. The significant hits for each
search are then collected and a sorted list of hits is gen-
erated as output. DPPP automates the generation of the
optimized PPP data sets needed to guide systems biol-
ogy discovery and protein family construction. However,
presently we do not provide any post processing tools to
automate building protein families according to DPPP
results.

To accelerate the speed of the search we developed
several heuristics, such as pre-calculation of the maxi-
mum binominal probability given a particular profile. A
read-ahead mechanism determines whether it is possible
to improve on the existing best score, given the remain-
der of the hit list, and stops the search if there is no
chance of such improvement.

The sensitivity of the algorithm can also be modulated
at the user’s discretion. One such mechanism is collap-
sing terminal branches of the taxonomic tree. The soft-
ware fully understands the NCBI taxonomic tree; a
search can be performed using higher taxonomic levels
such as genus or family rather than the strain-level iden-
tifier from NCBI taxonomy tree. The algorithm will
walk up the taxonomic tree to the level specified by the
user and count that node only once for scoring. Another
user option is to override the default calculation of p;
increasing this value increases the penalty for mis-
matches to the query profile and thus helps to find
only-if relationships even for proteins that are relatively
rare.

Software Details

ProPhylo is written in the Perl computer language and,
therefore, theoretically can run on any platform where
Perl is available, however at present we support only
MacOSX and Linux officially. The software runs
searches in parallel taking full advantage of multi-core
processors frequently available in modern desktops. The
software also comes in a flavor that runs on compute
clusters (available on request).

In addition to a collection of scripts for various tasks
related to phylogenetic profile comparison, ProPhylo
contains an object-oriented Perl library. Components of
the search mechanism, such as BLAST results, phyloge-
netic profiles, algorithms for comparison of profiles, are
represented as software classes and thus are extensible
and readily modifiable. One advantage of such a design
is apparent in the case of the implementation of the
algorithm modules, with each algorithm being a plug-in.
Any new algorithm, currently not supported by Pro-
Phylo, can be easily supplied by inheriting from an
interface and providing the concrete implementation of
a few virtual methods.

The user can download the software and the required
databases from the distribution site. Detailed
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documentation is provided with the package for correct
installation of the package and the database. The user
also has the option to either create the databases on
local machine or to use the pre-made databases available
on the FTP site.

Results

PPP method overview

The workflow of phylogenetic profile searching using
ProPhylo with the PPP algorithm is shown in Figure 1.
A profile search begins with BLAST or HMM results, or
even from a collection of GIs (Figure 1A). A script then
determines the taxonomic distribution of the GIs in the
hits list file and creates a query profile (Figure 1B). A
user can also provide a profile directly for the search.
The user may also optionally provide a value to override
the calculated binomial probability factor, p (see detailed
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discussion below), and/or specify a taxonomic level at
which to filter the profile. Then, given a target genome
to search and the query profile, the software iterates
through every protein in the target genome, finding that
protein’s optimal correlation to the query profile. It
orders its results by the statistical significance of each
individually optimized score, and reports the numbers
of matches and mismatches to the profile for each pro-
tein where its optimum was found (Figure 1C).

Finding molecular markers of methanogenesis - a large-
scale test

An example that illustrates the use and utility of PPP is
the identification of universal molecular markers of
methanogenesis. Methanogenesis requires a number of
unusual cofactors that are rare or unknown outside the
methanogens. All methanogens belong to the archaea,

BLAST result

Arbitrary sequence

HMM search IDs

N
blast2profile.pl

hmm3profile.pl

I

|
gi2taxid.pl

profile creation

Phylogenetic

Manually
created
profile

/|

taxid_1 1

, Profile manipulation
taxid_2 0

(profile_set_op.pl)

Target

Figure 1 Flowchart for profile search using ProPhylo with the P

candidate functionally linked proteins.

software name is indicated. (A) Creation of a profile from various search methods or directly using a set of GenBank Gls. (B) The created profile
is a tab delimited text file containing a set of taxonomic IDs from NCBI taxonomic database and 1's and 0's for the presence and absence of the
query protein family. (C) The main script ppp.pl searches a given genome using the query profile and generates results as a ranked list of

ppp-pl Genome
BLAST hits
Result ppp_cutoff.pl
(optional)

artial Phylogenetic Profile algorithm (PPP). For each step, the relevant
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but they are quite divergent. Furthermore, additional
non-methanogenic lineages such as Archaeoglobus and
Ferroglobus, rather than methanogens exclusively, des-
cend from the presumed last common ancestor to all
methanogens. Finally, methanogens are metabolically
varied. Some are able to convert only methanol, and not
carbon dioxide, into methane, and the group includes
both thermophiles and mesophiles.

In the TIGRFAMSs collection of protein family defini-
tions [42], we have been able to construct thirty-three
manually reviewed HMMs serving to identify protein
families whose membership is universal in, yet limited
to the archaeal methanogens among the current avail-
able set of prokaryotic reference genomes. This is a
large set of proteins to associate with a single biological
process; it serves as a positive control set while demon-
strating how widely sequence similarity cutoffs must be
varied to choose protein family boundaries correctly.
The method was performed on a test genome, that of
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Methanohalophilus mahii DSM 5219, using a literature-
based methanogenesis query profile in which 28/1466
genomes were marked 1 (methanogen) rather than 0
(non-methanogen).

In the PPP results, the top-scoring twenty-nine proteins
(Table 1 Figure 2) were those found to occur universally
in and yet restricted to the methanogens: the first 28 spe-
cies encountered in the BLAST lists were the 28 methano-
gens in the profile. This allows an appropriate cutoff score
for BLAST results to be selected to define the families.
The table shows in the second column how high (permis-
sive) the E-value had to become to bring in the last metha-
nogen genome, and in the third column the E-value of the
first hit outside the set of archaeal methanogens. The list
includes proteins from seven consecutive genes for subu-
nits of tetrahydromethanopterin S-methyltransferase, and
eight consecutive genes from the methyl-coenzyme M
reductase region. The list contains another long gene clus-
ter, encoding six different uncharacterized proteins (which

Table 1 Proteins identified in Methanohalophilus mahii DSM 5219 as PPP’s top hits with perfect agreement (28 of 28
genomes) to the methanogenesis phylogenetic profile, showing BLAST E-values flanking the boundaries selected by

PPP

Gl number Last True First False Protein Functional Assignment

294495086 Te-24 4e-23 paralog of MtrA

294495087 5e-52 2e-46 paralog of MtrH

294495289 5e-170 25 methyl-coenzyme M reductase, alpha subunit
294495290 8e-68 0.11 methyl-coenzyme M reductase, gamma subunit
294495291 5e-35 (none) methyl-coenzyme M reductase operon protein C
294495292 7e-17 0.63 methyl-coenzyme M reductase operon protein D
294495293 2e-130 24 methyl-coenzyme M reductase, beta subunit
294495294 5e-94 3e-07 methanogenesis marker 10 radical SAM protein
294495889 0.38 0.64 protein of unknown function DUF2098

294495924 7e-131 6e-130 formylmethanofuran dehydrogenase, subunit A
294495926 6e-08 1e-07 formylmethanofuran dehydrogenase, subunit D
294496062 2e-73 4e-09 methanogenesis marker 13 metalloprotein
294496216 9e-68 3e-55 methanogenesis marker 2 protein

294496423 5e-48 (none) tetrahydromethanopterin S-methyltransferase, MtrE
294496424 3e-25 (none) tetrahydromethanopterin S-methyltransferase, MtrD
294496425 1e-18 0.78 tetrahydromethanopterin S-methyltransferase, MtrC
294496426 0.003 048 tetrahydromethanopterin S-methyltransferase, MtrB
294496427 2e-37 8e-19 tetrahydromethanopterin S-methyltransferase, MtrA
294496429 4e-04 040 tetrahydromethanopterin S-methyltransferase, MtrG
294496430 8e-76 2e-48 tetrahydromethanopterin S-methyltransferase, MtrH
294496497 9e-52 045 methanogenesis marker 7 protein

294496498 0.011 0.36 methanogenesis marker 17 protein

294496499 Te-115 %e-31 methanogenesis marker 15 protein

294496500 3e-34 1.5 methanogenesis marker 5 protein

294496501 2e-14 30 methanogenesis marker 6 protein

294496502 2e-45 1.8 methanogenesis marker 3 protein

294496503 le-144 4e-39 methyl coenzyme M reductase system, AtwA protein
294496608 2e-43 %e-31 paralog of AtwA

294496619 2e-72 0.031 methanogenesis marker 14 protein
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had already been recognized as methanogenesis markers
and captured as TIGRFAMs models, see below) and the
methyl coenzyme M reductase system component A2.
Conspicuously absent from the list are proteins of essential
processes such as protein translation, whose presumed
high barriers to gene loss and lateral transfer make them
popular choices for computing species phylogenies. The
~200 sequences ranked highest by PPP score (Figure 2) is
highly enriched in proteins whose functions are linked to
methanogenesis, although not necessarily exclusively or
universally. No ribosomal proteins, tRNA ligases, transla-
tion factors, cell division proteins, etc., occur until the 84th
best hit by PPP to the methanogenesis profile.

In Table 1 two of the proteins found are subunits A
and D of formylmethanofuran dehydrogenase (FMD),
part of a C1 transfer pathway required by methanogens
but not absolutely restricted to them. These two are,
from one perspective, false-positives, in the sense that a
complete family of functionally equivalent FMD proteins

would include members from more species than just the
methanogens. On the other hand, within the methano-
gens these proteins do act in methanogenesis, and PPP
is accurately identifying that branch of the family as a
universal marker of methanogenesis.

PPP performs an excellent enrichment for proteins
directly involved in methanogenesis in the set of pro-
teins earning top score. Thirty-four of the top forty
genes returned by PPP are members of previously iden-
tified methanogenesis marker families built in TIGR-
FAMs and identified within Genome Properties [42].
These are mixed with six genes whose BLAST lists gen-
erate patterns deviating from the methanogenesis profile
by the absence of only one genome or the presence of
one extra genome. Five representatives of the TIGR-
FAMs/Genome Properties marker set have similar off-
by-one patterns, one of which can be explained by a
missed gene call, and another by a truncated gene that
may be a sequencing or assembly error. Including the
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remaining three off-by-one cases, a total of eight of the
marker genes have imperfect profiles. This is by no
means unexpected as the use of raw BLAST lists as
input is undoubtedly noisy (see below). It is clear, how-
ever, that using a query profile based on a phenotypic
trait, or a molecular marker used to signify such a trait,
can provide a highly significant enrichment of proteins
directly involved in the process in the set of proteins
with the best scores by PPP.

From BLAST to HMM: ProPhylo to guide protein family
construction

The core computational function in PPP picks a score cut-
off for a sorted list of BLAST hits in order to optimize a
working definition of a protein family, based on which the
family’s match to the query profile can assessed. BLAST,
however, suffers certain limitations. First, there is a limit in
sensitivity. Second, in any protein family, both heterogeneity
in the rates of evolution in different lineages and regions of
unusual sequence composition can interfere with the ability
of the evolutionarily most closely related proteins to out-
score more distantly related proteins. Limitations of BLAST
explain the absence of the MtrF protein, tetrahydrometha-
nopterin S-methyltransferase F subunit (G1:294496428)
from the list of proteins in Table 1 that perfectly match the
methanogenesis query profile. Two archaeal methanogens
have MtrF proteins divergent enough not to show up in the
BLAST hits list for G1:294496428, letting that protein rank
only the 42™ best hit by PPP.

HMMs based on protein multiple sequence align-
ments regularly outperform BLAST, both in sensitivity
and in the discrimination of protein family members
from non-members. An HMM (TIGRFAMs model
TIGR02507) made from the alignment of just three
MtrF sequences, for example, finds the complete MtrF
family without a false positive. Constructing tools such
as model TIGR02507 that cleanly identify molecular
markers in large data sets often is a goal when phyloge-
netic profiling is performed. The ProPhylo software
package, therefore, provides the utility ppp_hmmer.pl
for analyzing HMMER3 search results files. It uses the
compute engine of PPP, reading GI numbers ordered by
HMM score rather than BLAST score. It finds and
reports an optimal depth in an HMM hits list for
matching a query profile, which aids in setting proper
score cutoffs. This utility should be useful in workflows
that begin with PPP search results and aim to develop
new HMM-based protein family identification rules.

PPP with user-controlled scoring behaviors - discovering
novel DNA phosphorothioation-dependent proteins

PPP results show candidate protein families whose cor-
relations to the query profile outscore the background
from uninteresting correlations, as from similar
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taxonomy (all methanogens are archaeal) or from simi-
lar environmental pressures (most organisms that need
to synthesize histidine also need to synthesize trypto-
phan). A rare protein meaningfully correlated (e.g. abso-
lutely restricted) to another can outscore the
background if an appropriate scoring system is used.
PPP scoring depends on the binomial distribution; chan-
ging its parameter p will determine which scores better,
25 “YES” genomes out of 75, or 7 out of 7. A command
line switch that forces use of a different probability p
from what is calculated naively from the query profile
can steer a PPP search toward better detection of cer-
tain types of relationships. Using a larger value of p
increases the effective penalty for each mismatch, and
makes it easier to detect even rare proteins that approxi-
mate an “only if” relationship to the query profile. Fig-
ure 2 shows an example of using a binomial distribution
probability parameter raised from 0.02 to 0.2 to achieve
a low background in PPP results based on the methano-
genesis query profile. (Conversely, a smaller value of p
lowers the penalty and steers PPP towards the identifi-
cation of families absolutely including the set described
by the profile, but also including genes from other
genomes.)

The DNA phosphorothioation (DPT) system presents
a challenge to phylogenetic profiling that can be
addressed by application of this technique. The DPT
system catalyzes a post-replication sulfur modification of
the phosphate backbone of DNA, first identified in
Streptomyces lividans [45]. The proteins DptF, DptG,
and DptH are now known to represent the first restric-
tion enzyme system specific for DPT modification sites
[46]. There is no particular reason why all organisms
with the DPT system should necessarily encode this par-
ticular restriction system, and in fact, DptFGH are only
observed in a strict subset of those genomes. For exam-
ple, a DPT profile based on the DptD gene (see Meth-
ods) yields a profile with 4.8% “YES” genomes (p =
0.048). Artificially raising p approximately 5-fold to 0.25
and running PPP on the genome of Pseudoalteromonas
haloplanktis TAC125 yields the DptFGH genes as the
top hits after the components of the DPT system itself.
This is despite the DptFGH genes being present in
roughly 1/4 of the genomes encoding the DPT system.
Additional, yet-uncharacterized DPT-dependent systems
should be expected having distinct subset distributions,
and some of these may be relatively rare. PPP can be
used with a raised value of p to enrich its results for
protein families that are subsets of the DPT profile and
likely candidates for such systems.

A PPP search of Serratia odorifera 4Rx13, using the
DPT profile with p set to 0.4 yields, in addition to the
DPT system components and the DptFGH genes, the
protein GI:270263649 despite its occurring in only seven



Basu et al. BMC Bioinformatics 2011, 12:434
http://www.biomedcentral.com/1471-2105/12/434

genomes (Table 2). With the naive value of p at 0.048 it
is only the 34™ best hit. The seven homologs of this
protein are invariably found adjacent to the elements of
the DPT system; sometimes the DptFGH genes are pre-
sent, sometimes not. It would appear that the homologs
of protein GI:270263649, do represent a novel DPT
satellite protein family, analogous to DptFGH. This
family is now represented by the TIGRFAMs model
TIGR04172. Guided by PPP similar results generated
with elevated p values, we have constructed TIGRFAMs
definitions for several additional strictly DPT-dependent
families. TIGR04062 describes an uncharacterized pro-
tein (n = 25), while TIGR04095 describes a subfamily of
PF04851, “type III restriction enzyme res subunit,” (n =
26), apparently the second discovery of a DPT-depen-
dent restriction enzyme. Both of these families include
members located adjacent to DPT system genes.

Double-Partial Phylogenetic Profiling (DPPP)

In the TIGRFAMs collection of protein families, models
that describe equivalogs (proteins conserved in function
since their last common ancestor) can vary in sizes, ran-
ging from universal (100%) to less than 1% in coverage
of prokaryotic reference genomes. When building a pro-
tein family to represent one component of a new and
previously unknown complex system, the proper protein
family size cannot be known in advance. DPPP
addresses this limitation by taking a query protein and
systematically varying the numbers of its closest matches
by BLAST as the basis for constructing query profiles
for use in PPP (Figure 3). If a protein participates in a
multicomponent system, then for the query protein, the
BLAST hits list depth that comes closest to matching
the list of genomes that actually have the system should
generate the best query profile. For the other proteins in
the system, that query profile should provide their best
PPP scores.

Page 9 of 14

The [FeFe] hydrogenase H-cluster maturation
GTPase HydF [47], GI:113971588 from Shewanella sp.
MR-4, was selected as an example. DPPP searched a
range of depths in the hits list to the query protein,
from 10 genomes to 930 and the best score for any
protein other than itself occurred when the BLAST
score cutoff gave a query profile with 200 “YES” gen-
omes of the 1466 in ProPhylo (Figure 4). Results for
the top ten proteins using this depth are presented in
Table 3; proteins proposed to belong to the system of
[FeFe] hydrogenase maturation are in boldface. The
maturase proteins HydEFG perform best followed at a
somewhat lower score by the hydrogenase large and
small subunits (because genomes from a few species
encode [FeFe] hydrogenase genes but lack the three
maturases).

The sixth protein listed in Table 3 is ThiH, a radical
SAM protein for thiamin biosynthesis. Its PPP score,
78.4, is well above background (the highest scores seen
for protein families with no relation to hydrogenase
maturation, Figure 5), but this is misleading. ThiH is
closely related to HydG. At a depth of 613 proteins in
its BLAST results, the mix of ThiF and HydG proteins
represents 336 genomes, of which 194 have the GTP-
binding protein HydF. This illustrates that PPP results
should be read with additional caution for any protein
that is homologous to a better-scoring protein from the
same genome.

ProPhylo offers the user a flexible environment for
performing phylogenetic profiling. It not only supports
the discovery of cohorts of proteins that work in con-
cert, but also guides initial steps in protein family con-
struction by reporting a meaningful suggested protein
family size. Its computation is based on the principle
that the correct granularity for defining individual pro-
tein families may not be known in advance. In fact, we
have shown here that the “right” BLAST score E-value

Table 2 Top hits by PPP in Serratia odorifera 4Rx13 using a query profile for DptD (TIGR03185 family) of the DNA
phosphorothioation system, with a modified probability of 0.4.

Gl number’ DPT Total Score* Protein Functional Assignment
Genomes? Genomes®

270263651 66 66 26.26 DptD (DndD) (DNA phosphorothioation)

270263652 59 59 2348 DptC (DndC) (DNA phosphorothioation)

270263653 32 32 12.73 DptB (DndB) (DNA phosphorothioation)

270263650 19 19 7.56 DptE (DndE) (DNA phosphorothioation)

270263648 16 16 6.37 DptH (DPT-dependent restriction)

270263645 18 20 530 DptF (DPT-dependent restriction) (N-terminal)

270263647 15 16 497 DptF (DPT-dependent restriction) (C-terminal)

270263646 12 12 478 DptG (DPT-dependent restriction)

270263649 7 7 2.79 DGQHR domain protein

'NCBI Gl. >The number of unique taxa common to the query profile and the target BLAST hit list. *The total number of unique taxa in encountered where PPP
found the optimal depth. “Score reported by PPP as the negative logarithm of the P-value at the optimal depth, which is lowest that can be obtained from the
binomial distribution for any depth.
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these profiles is then searched against the target genome. (D) The top hits for each of these searches are then collected and the output is

cutoff can vary over 130 orders of magnitude (Table 1),
depending greatly on protein length and the degree of
conservation in the families in question. The search
strategy is analogous to that of BLAST, which ranks all
proteins in a target database on the basis of each pro-
tein’s best possible pairwise alignment to the query. PPP
scores every protein in a genome against the query pro-
file by first finding that protein’s best possible family
size, and therefore best score.

Investigators using PPP may choose runtime para-
meters, or design query profiles, to favor particular ave-
nues of inquiry. Query profiles can represent not only
phenotypes or protein families, but various other possi-
ble starting points for research investigations: pathway
holes, short motifs found on proteins in some genomes
but not others, genomes with known molecular markers
in unexpected contexts, etc. The flexibility in the way a
query profile can be defined and how it is used,
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Figure 4 Double partial phylogenetic profiling (DPPP) using the GTP-binding protein HydF (GI:113971588) as query. For the query
protein (red), the curve rises monotonically, because it measures the correlation of the list of species it generates to itself. Among all proteins
other than the query, the peak score for any protein occurs (for HydE, GI:113971587,) where the query protein BLAST hits list depth is about 210.
DPPP scores are shown for query protein depths 10 to 930, sampled every tenth hit, for the ten proteins that scored the best at the depth 210.
The curves for HydE (GI:113971587, olive), HydG (GI:113971585, green), and the hydrogenase large (GI:113971582, blue) and small (G:113971583,
purple) subunits all peak at this query protein depth, which largely exhausts the list of species that carry the [FeFe] hydrogenase maturation
system (see text and Table 3 for details). Proteins unrelated to [FeFe] hydrogenase maturation are shown in gray.

combined with the software’s ability to base its searches  similar to a “taxonomic” profile, one capturing every
on optimized working definitions for protein families, organism in the test set descendant from a common
makes the ProPhylo package a powerful investigational ancestor. Such an information-poor profile can generate
tool in comparative genomics. an enriched list of marker genes, but inhomogeneities in

The examples presented here illustrate the potential of  similarity scoring by BLAST, and infrequent data errors,
profiling analysis using PPP and DPPP and some of the serve to blur the separation between genes whose func-
intrinsic limitations of the method. Results are very tion is directly linked to the process represented by the
much dependent on the nature of the phylogenetic pro-  profile, and those matching by chance or indirect rela-
file under study. The methanogenesis profile is very  tionships. However, given sporadic, information-rich
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Table 3 Top 10 hits from DPPP at in Shewanella sp. MR-4, with the [FeFe] hydrogenase maturation GTP-binding
protein HydF (Gl:113971588) as query, at a query protein BLAST hits depth of 210 (finding 200 genomes)

Gl YES Total BLAST Score®> HMM-based protein annotation®

number'  genomes? genomes® depth?

113971588 200 200 209 172.61 [FeFe] hydrogenase H-cluster maturation GTPase HydF (TIGR03918)

113971587 189 189 206 163.11 [FeFe] hydrogenase H-cluster radical SAM maturase HydE
(TIGR03956)

113971585 179 180 187 152.29 [FeFe] hydrogenase H-cluster radical SAM maturase HydG
(TIGR03955)

113971582 191 218 485 132.19 iron hydrogenase, large subunit (TIGR02512)

113971583 159 176 272 115.03 iron hydrogenase, small subunit (PF02256)

113970224 194 336 613 7843 thiazole biosynthesis protein ThiH (TIGR02351)

113971167 169 320 480 60.69  hydroxylamine reductase (TIGRO1703)

113971205 181 374 603 5737  radical SAM protein (TIGR01212)

113971473 161 327 484 5243  peptidase, U32 family (PFO1136)

113971082 132 240 843 5034  MATE domain protein (PFO1554)

Proteins related to [FeFe]-hydrogenase are marked in boldface.

'NCBI Gl. >"YES” denotes number of unique taxa common to query profile and the target BLAST hit list. *The total number of unique taxa found in the target
BLAST list at the level that gives the best PPP score. “The depth in the target BLAST list that give the best PPP score, which may reflect multiple hits in some
genomes. *Score reported by PPP as the negative logarithm of P-value. °TIGRFAMs and Pfam models were used because existing GenBank annotations were out
of date.
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Yellow: the ThiH gene.
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profiles that are characterized by a greater degree of
gene loss and lateral gene transfer (differing widely from
the taxonomic background), significant signal-to-noise
can be realized. For instance, the high information con-
tent of the DNA phosphorothiolation profile enables the
identification of real relationships even when the overlap
between profiles is very small, by using ProPhylo’s abil-
ity to modulate the expected probability factor, p. Even
in cases such as the HydF example, where the distribu-
tion of a functionally homogeneous protein family is not
posited in advance, the use of DPPP can extract both
the correct family scope and the identities of process-
linked partners given sufficient information in these
patterns.

Conclusion

ProPhylo is a software package for high-performance
phylogenetic profile searches on desktop computers.
The package implements Partial Phylogenetic Profiling
(PPP) and Double Partial Phylogenetic Profiling (DPP),
algorithms to facilitate protein family construction using
phylogenetic profiles. The computational advances
represented by the PPP and DPPP algorithms have the
potential to take phylogenetic profiling beyond the lim-
ited correlation of pre-formed protein families, and to
remove much of the insensitivity of previous methods
due to the vagaries of protein cluster calculations. With
ProPhylo, users will be able to generate and modify cus-
tom profiles, iterate and refine hypotheses, and tune
parameters to perform real-time profiling research in a
manner distinctly more powerful than is currently
available.

Availability and Requirements

Project name: ProPhylo; Project home page: ftp://ftp.jcvi.
org/pub/data/ppp/; Operating system(s): Platform inde-
pendent; Programming language: Perl; Licence: Open
Source Perl Artistic License.

Additional material

Additional file 1: Supplementary Table 1. Table of the utility scripts
and their uses, supplied with ProPhylo software.
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