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Graphical Abstract

1. Spatial omics is transforming our understanding of the cancer ecosystem at
the systemic level.

2. The integration of spatial omics and single-cell omics can fundamentally
improve our understanding of tumourigenesis and cancermicroenvironment.

3. Generating the spatial atlas of human cancers across multiple omics and
timescaleswill potentially pioneer the revolution of spatiotemporalmolecular
medicine.
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Abstract
The idea that tumour microenvironment (TME) is organised in a spatial man-
ner will not surprise many cancer biologists; however, systematically capturing
spatial architecture of TME is still not possible until recent decade. The past
five years have witnessed a boom in the research of high-throughput spatial
techniques and algorithms to delineate TME at an unprecedented level. Here,
we review the technological progress of spatial omics and how advanced com-
putation methods boost multi-modal spatial data analysis. Then, we discussed
the potential clinical translations of spatial omics research in precision oncol-
ogy, and proposed a transfer of spatial ecological principles to cancer biology
in spatial data interpretation. So far, spatial omics is placing us in the golden
age of spatial cancer research. Further development and application of spatial
omics may lead to a comprehensive decoding of the TME ecosystem and bring
the current spatiotemporal molecular medical research into an entirely new
paradigm.
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1 BACKGROUND

One of the central issues that hinders successful anti-
cancer treatment is the heterogeneity of tumour microen-
vironment (TME).1 Spatially, TMEs in distinct tumours
are diversely organised and hierarchically structured.2,3.
Shapes of TMEs are critical for cancer cell fate deter-
mination and development, which are coordinated by
precise tumour intrinsic transcriptional regulation and
intercellular crosstalk.4–6 In response to external stimuli
(e.g., chemotherapy), spatial reprogramming will be ini-
tiated including anti-tumour immunity renaissance and
stromal cell relocation.7 Understanding the spatial struc-
ture of TME assembly is hence essential for discovering
tumourigenesis mechanisms and designing novel thera-
peutic strategies.
A challenge in decoding tumour spatial structure is how

to capture the high-throughput spatial profile of TME at
the genome-wide level. Solving this issue requires the abil-
ity to record the transcriptional information and spatial
coordinates simultaneously. An applicable way is high-
dimensional imaging (i.e., imaging mass cytometry, IMC,
and multiplex immunohistochemistry),8,9; however, those
approaches can only quantify the low-throughput profile
of TME (designed gene sets) rather than the whole tran-
scriptome/proteome.
By contrast, the state-of-the-art spatial omics has

now made the whole transcriptome or even epigenome
measurable.10–12 In light of this, we review the technologi-
cal advances plus computational strategies of spatial omics
and discuss how theymay accelerate spatiotemporal onco-
logical research. The clinical relevance of spatial omicswill
potentially extend into novel clinical-relevant biomarker
discovery, novel immunotherapy designing, and precision
medicine. The ultimate spatial tumour atlas will be an
essential resource uncovering the black box of cancers
across space and time.

2 SPATIAL OMICS TECHNOLOGIES

2.1 Laser capture microdissection-based
approaches

The first attempt to dissert the high-throughput spatial
tissue structure can be traced to laser capture microdissec-
tion (LCM)-based strategies13,14 (Figure 1A). This approach
utilises LCM to dissect tissues into small segments which
are subsequently profiled using high-throughput tech-
nologies such as RNA-seq. For example, LCM-seq14–16
combines single-cell RNA-seq (scRNA-seq) and LCM to
trace the spatial transcriptome at the single-cell level. This
technology allows the accurate quantification of compart-

ment of tissue structures and the discovery of diversified
cell subpopulation distribution within tissues. Using a
similar strategy, topographic single cell sequencing (TSCS)
is designed to capture the genomic copy number profile of
single tumour cells spatially.17 By utilising TSCS in breast
cancer samples, the results show a direct genomic lineage
of breast cancer cell progression. Interestingly, the authors
observe that most mutations and copy number aberrations
evolved prior to invasion, indicating that cancer cells are
well prepared before progression. This technique allows
the unbiased discovery of copy number variations at the
2D level. Geographical position sequencing (GEO-seq),18,19
another method combining the two technologies (LCM
and scRNA-seq), can capture the spatial transcriptome
based on a relatively small number of cells. However,
compared with LCM-seq, each spot of GEO-seq captures
more number of cells. Similarly, Tomo-seq enables the
cryosectioning of the region of interest and allows the
RNA-seq on individual sections.20–22 In the context
of oncology, only a few spatial omics studies utilised
LCM-based approaches.14,23 To summarise, LCM-based
high-throughput technologies can quantify the transcrip-
tome at the cellular level, however, those technologies
failed to reach higher resolution and can merely trace
the regional location information. Laser microdissection
is also time-consuming, posing challenges for capturing
the high-throughput profile of complex tissues without
spending a lot of time.

2.2 Image-based in situ transcriptomics

Another strategy to capture the spatial architecture of tis-
sue transcripts is image-based in situ transcriptomics tech-
nology (Figure 1A). Single-molecule fluorescence in situ
hybridization (smFISH)24–28 can detect several RNAs at
the same time. On the basis of smFISH, expansion FISH
(ExFISH), ouroboros single-molecule FISH (osmFISH),
and sequential FISH+ (seqFISH+) are designed to increase
the number of detected genes (up to 10 000).29–34 Mul-
tiplexed error-robust fluorescence in situ hybridization
(MERFISH), a robust single-molecule imaging approach,
can capture 100–1000 distinct RNA species in hundreds
of individual cells,35 which evolves the gene throughput
to ∼10000 in 2019.36 Similarly, Spatially-resolved Tran-
script Amplicon Readout mapping (STARmap), integrat-
ing hydrogel-tissue chemistry, targeted signal amplifica-
tion, and in situ sequencing, is tested to capture 160–
1020 genes simultaneously.37 Those imaged-based tech-
nologies identified specific RNAs enriched in cellular com-
partments or even high-order chromatin structure.36,38 In
a nutshell, most image-based in situ transcriptomics tech-
nologies cannot capture the whole transcriptome profile
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F IGURE 1 Spatial omics can decode the three-dimensional structure of tumour microenvironment. (A) Summary of published spatial
omics technologies. The brown text represents the LCM-based technologies. The orange text represents the imaging-based technologies. The
purple text represents the barcoding-based technologies. TF, transcription factor; LCM, laser capture microdissection. (B) The data analysis
strategies which can be adopted in spatial omics data treatment. (C) Spatial omics can be utilised to study cancer samples across different
species and distinct organs. Integrating of spatial omics and other omics techniques can systematically decode the structure of tumour
microenvironment. scRNA-seq, single-cell RNA-seq; scATAC-seq, single cell assay for transposase-accessible chromatin-seq; scBCR-seq,
single cell B-cell receptor-seq; scTCR-seq, single-cell T-cell receptor-seq; mIHC, multiplex immunohistochemistry

but can offer single-cell or even subcellular resolution
within tissues, hence enabling the discovery of complex
cellular states of cancer cells.39,40

2.3 Spatial barcoding-based
transcriptomics

Distinct from image-based in situ transcriptomics, spatial
barcode-based approaches allow the unbiased sequenc-
ing of RNA species at the whole transcriptome level

(Figure 1A). Spatial transcriptomics (ST, also named
as Visium), one of the most widely used spatial omics
technologies, enables the sequencing of 6 mm × 6 mm
tissues with each spot at the resolution of ∼100 µm
containing 2–10 cells.41 One of the advantages of such
a method is that it can capture thousands of genes with
low-level transcript expression and even from formalin-
fixed paraffin embedding (FFPE) tissues.42 The upgraded
method named high-definition spatial transcriptomics
(HDST) was then developed with resolution at 2 µm.43
This approach opens the avenue of spatial quantification
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of complex tissues at the single-cell resolution. Slide-
seq44 and Slide-seqV245, another high-resolution spatial
sequencing technology, can reach the ∼50% RNA capture
efficiency of scRNA-seq and successfully characterise the
spatiotemporal developing trajectory of mouse neocortex.
Spatio-Temporal Enhanced REsolution Omics-sequencing
(Stereo-seq), which combines DNA nanoball chips and
in situ RNA capture, can reach the resolution ∼0.5 µm
of each bin.46 Seq-Scope, newly-developed spatial tran-
scriptome sequencing technique based on a solid-phase
amplification of randomly barcoded single-molecule
oligonucleotides, can also reach the sub-cellular reso-
lution (0.5–1 µm). Those methods put us in a unique
position in exploring the new functions of organelles and
may lead to a major advance of our understandings of
spatiotemporal molecular medicine.47,48
Rather than placing the spatial barcodes onto chips, a

new class of quantifying spatial coordination of RNAs,
named microfluidic deterministic barcoding, was recently
developed in Rong Fan’s lab. Using a unique barcode
delivering method, deterministic barcoding in tissue for
spatial omics sequencing (DBiT-seq) does not require
sophisticated steps of tissue lysis to release mRNAs but
presents high resolution at∼10 µm.49,50 On the basis of this
work, they developed spatial epigenomics technique for
histone modifications quantification such as H3K27me3,
H3K4me3 and H3K27ac.51 This fantastic method enables
the discovery of spatially key regulatory elements control-
ling identity (i.e., spatial enhancer prediction) and brings
the epigenetics research into the spatial era. This microflu-
idic deterministic barcoding based approach promises to
extend single omics to spatial multi-omics sequencing and
will open exciting opportunities in quick and straightfor-
ward profiling of complex cells and tissues. The revolu-
tion of the above spatial omics will pave the way for spa-
tiotemporal molecular medical research47,48 and refresh
our understanding of the single-cell heterogeneity and spa-
tial diversity in TME (Figure 1A).

2.4 Spatial proteomics

The surging of spatial proteomics allows the detection
of dozens of proteins without losing the spatial location.
Mass spectrometry-based method is one of the highly
multiplex techniques to capture the protein spatial inten-
sity. Multiplexed ion beam imaging (MIBI), using sec-
ondary ion mass spectrometry to image labelled antibod-
ies, is able to analyse one hundred markers of the same
tissue.52 This technology yields precise quantification of
immune cell subpopulation53 and their spatial patterns54
inside the tumour. IMC is another method dependent
on metal-tagged antibodies and enables the imaging of

over 100 antibodies.55 Such method offers unprecedented
opportunities to explore regional immunity composition
and topological function units of TME.56 Another technol-
ogy named CO detection by indexing (CODEX) is capa-
ble of profiling up to 50 proteins of single slide based on
imaging antibodies conjugated to barcodes.57 However, all
those methods are dependent on the performance of anti-
bodies and are relatively costly. It is still challenging to
increase the current throughput to proteome-wide. Bias
may also exist when designing the panel of markers rather
than discovering functional proteins from the proteomics
data.

2.5 Spatial metabolomics

Identifying the difference of metabolites and the spa-
tial organization of tissues is essential to decipher intra
tumour heterogeneity and understand the cancer sys-
tems profoundly, however, the spatial metabolic fea-
tures of tumour s are largely unclear. Matrix-assisted
laser desorption ionization imaging mass spectrometry
(MALDI-IMS) allows the detection of metabolites with-
out losing the spatial information.58,59 Desorption electro-
spray ionization (DESI)-IMS is another method to detect
the spatial dynamics metabolites without destroying the
tissues.60–63 Airflow-assisted desorption electrospray ion-
ization (AFADESI)-IMS64 further advances the multiplex
capacity and can cover 1,500 metabolites. Applying such
method in profiling esophageal squamous cell carcinoma
showed the spatial tiny structure of metabolites including
pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine
phosphorylase 1 (UPase1).65 With the coming of the spa-
tial omics era, spatial metabolomics will become a useful
toolkit for identifying novel disease signatures.

2.6 Spatial multi-omics technologies

Cancer is a multifactorial disorder associated with mul-
tiple genetic and environmental factors; hence jointly
dissecting spatial multi-omics profile may enable us to
reconstruct the key processes of tumourigenesis. DBiT-seq
supports recording the spatially barcoded mRNA and
profiling proteins of interest (a panel of 22 proteins) at the
same time.49 Deterministic barcoding, the underlying key
mechanism of this technology, allows the accurate deliv-
ering of barcodes containing spatial coordinates without
tissue dissociation. The development of spatial multiomics
(SM-Omics) also offers integrated and ST and antibody-
based proteomics profiling without the need for sophis-
ticated infrastructure.66 This platform enables the auto-
matic profiling of 96 samples and efficiently generates the
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combined RNA and protein profile in ∼2 days. By testing
this platform in mouse brain cortex samples, signifi-
cant correlation between specific mRNA and protein
expression is observed. The authors further develop a
computational pipeline and claim its easy deployment to
the wide scientific community.
Another strategy to simultaneously decode the spatial

and cellular dynamics is to in silico integrating spatial-
omics and single-cell omics data. Spatially-resolved Tran-
scriptomics via Epitope Anchoring (STvEA) enables the
enrichment ofmultiplex immunohistochemistry datawith
scRNA-seq67 and is also designed to map CODEX imaging
data to scRNA-seq. As for the epigenomic data, another
group imputed single cell multiome (chromatin acces-
sibility and transcriptome multi-omics) profile from the
Visium ST data.68 Such analysis predicted the spatial epi-
genetics activity of key genes and linked the opening motif
dynamics with phonotypes. These strategies can be poten-
tially adopt to other spatial omics technologies (i.e., spa-
tial metabolomics65). In general, capturing/inferring the
spatial multi-omics profile simultaneously is still in its
infancy. The next step is to extend existed single-omics to
multi-omics and enable the jointly profiling of the complex
system of TME.

3 COMPUTATIONALMETHODS
FOR SPATIAL OMICS

While the complexity of spatial omics data is what makes
it powerful, it also makes them hard to interpret. Usu-
ally, these data are collected in batches and generated in
large quantities. The large amount of data pose great chal-
lenges for computational biologists to digest the big data
and construct computational pipelines. Here, we review
recent computationalmethods spanning fromdata prepro-
cessing, spatial variable gene selection, spatial clustering
and tissue segmentation, to spatial inter-cellular crosstalk
(Figure 1B and Table 1).

3.1 Data preprocessing

The first crucial step for spatial data downstream analysis
is normalization against the sequencing depth. The vari-
ance of RNA read counts of each spot can be diverse partly
due to heterogeneous cell type composition. To resolve
this question, several algorithms have been designed
for scRNA-seq, and some of them are still suitable for
ST data analysis such as SCTransform.69 This algorithm
integrates regularised negative binomial regression and
Pearson residuals which proved to be fit for ST data.54
SCTransform was embedded in Seurat toolkit and is

very easy-to-use.70 Another package supporting spatial
RNA read normalization is Giotto.71 This toolkit supports
the all-in-one data preprocessing functions including
library size adjustment, log transformation and data
scaling. Those methods are broadly applicable for spatial
barcoding-based transcriptomics such as ST or Slide-seq.
However, the majority of those computational algorithms
do not consider the spatial coordinates and therefore do
not measure spatial variability. Spatial normalization and
scaling was critical for improving the performance of
spatial omics (e.g., normalised expression is more linked
with specific morphologies and capture cell types’ relative
proportions72). Applying the noise reduction algorithm in
image processing such as smoothing or wavelet transform
may also enhance the performance of spatial omics.

3.2 Spatial variable gene identification

When data normalization is completed, a question natu-
rally arises: are there spatially variable genes linked with
the well-organised tissue structures? For example, some
genes show extremely variable spatial expression patterns
(i.e., tumour and normal edge specific genes), while some
genes are ubiquitously expressed (i.e., cancer housekeep-
ing genes). Computationally, quantifying the spatial vari-
able genes is hence expected to be fundamental to dis-
covering the molecular basis of TME architecture.73 The
direct way is to compute the differentially expressed genes
according to clusters/anatomical structures70 or select
genes with high variance.71 Those methods partly depend
on prior knowledge (e.g., Pathologist’s annotation) and
supervised clustering results. On the contrary, spatial-
patterned-based methods do not rely on supervised anno-
tation and is broadly applicable for spatial data. Seurat70
utilised variogram models and measures the distance
between two spots. SpatialDE builds on Gaussian process
regression and decomposes gene expression into spatial
and non-spatial elements.73 Another group reported the
marked point process-based statistical framework which
proved to be robust for simulated and real data74 This algo-
rithm is non-parametric and does not depend on any prior
knowledge. scGCO, a method based on Markov Random
Fields with graph cuts, is able to process millions of cells
in hours but does not require consuming large memory.
Interestingly, scGCO is widely applicable to a full range of
spatial data even image-based in situ transcriptomics (e.g.,
seqFISH and MERFISH).75 SPARK is also a time-saving
algorithm76. The authors use the generalised linear spa-
tial models and provide efficient control of type 1 errors.
Recently, Hao et al. proposed an artificial neural net-
work (ANN) based clustering method named SOMDE and
utilised Gaussian process to conduct feature selection.77
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TABLE 1 Summary for algorithms designed for spatial omics analysis

Name Usage Environment URL
SCTransform Data preprocessing R https://github.com/ChristophH/sctransform
Giotto Data preprocessing, spatial variable

gene identification, cell identity
inference, cell–cell crosstalk
modelling, clustering analysis

R http://spatialgiotto.rc.fas.harvard.edu/giotto.html

Seurat Data preprocessing, spatial variable
gene identification, cell identity
inference, clustering analysis

R https://satijalab.org/seurat/vignettes.html

SpatialDE Spatial variable gene identification Python https://github.com/Teichlab/SpatialDE
trendsceek Spatial variable gene identification R https://github.com/edsgard/trendsceek
scGCO Spatial variable gene identification Python https://github.com/WangPeng-Lab/scGCO
SPARK Spatial variable gene identification R https://github.com/xzhoulab/SPARK
SOMDE Spatial variable gene identification Python https://pypi.org/project/somde/
BayesSpace Clustering analysis R http://www.bioconductor.org/packages/release/bioc/html/

BayesSpace.html
SpatialCPie Clustering analysis R https://www.bioconductor.org/packages/release/bioc/html/

SpatialCPie.html
SPOTlight Cell identity inference/deconvolution R https://github.com/MarcElosua/SPOTlight
RCTD Cell identity inference/deconvolution R https://github.com/dmcable/RCTD
stereoscope Cell identity inference/deconvolution Python https://github.com/almaan/stereoscope
DSTG Cell identity inference/deconvolution Python https://github.com/Su-informatics-lab/DSTG
STUtility Data preprocessing, spatial variable

gene identification, clustering
analysis, tissue segmentation, image
processing

R https://ludvigla.github.io/STUtility_web_site/index.html

Squidpy Data preprocessing, spatial variable
gene identification, cell identity
inference, cell–cell crosstalk
modelling, clustering analysis, tissue
segmentation

Python https://github.com/theislab/squidpy

Baysor Tissue segmentation Linux https://github.com/kharchenkolab/Baysor
SPATA Tissue segmentation, trajectory

modelling
R https://themilolab.github.io/SPATA/index.html

stLearn Trajectory modelling; cell–cell crosstalk
modelling

Python https://stlearn.readthedocs.io/en/latest/

GCNG Cell–cell crosstalk modelling Python https://github.com/xiaoyeye/GCNG
SpaOTsc Cell–cell crosstalk modelling Python https://github.com/zcang/SpaOTsc
MISTy Cell–cell crosstalk modelling R https://github.com/saezlab/mistyR

This method is also featured with super-fast speed (∼5min
for 20 K spots) and low memory consumption. In sum-
mary, a wide spectrum of algorithms are focused on spatial
variable gene identification, partly due to its importance
for selecting features for downstream spot clustering and
dimensional reduction analysis.Most of them are designed
for Visium. Hence, their performance on other techniques
(e.g., DBiT-seq and MERFISH) still remain unknown due
to the completely different read count distributions and
spot resolutions.

3.3 Clustering the spots

Defining the clusters in a given tissue is fundamental
for cell-type identification and downstream functional
annotation. In the context of scRNA-seq, filtering the pure
clusters, the population exhibiting identical functions,
requires manual gene signature checking and tricky
parameter adjustment. A robust method is to compute the
entropy metric (ROGUE algorithm78) or Gini index (Gini-
Clust algorithm79,80) of given clusters. As for spatial data

https://github.com/ChristophH/sctransform
http://spatialgiotto.rc.fas.harvard.edu/giotto.html
https://satijalab.org/seurat/vignettes.html
https://github.com/Teichlab/SpatialDE
https://github.com/edsgard/trendsceek
https://github.com/WangPeng-Lab/scGCO
https://github.com/xzhoulab/SPARK
https://pypi.org/project/somde/
http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html
http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html
https://www.bioconductor.org/packages/release/bioc/html/SpatialCPie.html
https://www.bioconductor.org/packages/release/bioc/html/SpatialCPie.html
https://github.com/MarcElosua/SPOTlight
https://github.com/dmcable/RCTD
https://github.com/almaan/stereoscope
https://github.com/Su-informatics-lab/DSTG
https://ludvigla.github.io/STUtility_web_site/index.html
https://github.com/theislab/squidpy
https://github.com/kharchenkolab/Baysor
https://themilolab.github.io/SPATA/index.html
https://stlearn.readthedocs.io/en/latest/
https://github.com/xiaoyeye/GCNG
https://github.com/zcang/SpaOTsc
https://github.com/saezlab/mistyR
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treatment, simultaneously considering the locational
information andmixed cell types pose challenges for accu-
rate spot clustering. The direct way is to provide a user-
friendly package for users to manually select the parame-
ters such as resolution.81 More complicatedly, Zhao et al.
utilised the Bayesian model with a Markov random field
and successfully enhanced the clustering efficacy.82 This
algorithm has been demonstrated to perform well on mul-
tiple datasets (i.e., squamous cell carcinoma and prefrontal
cortex) generated by distinct spatial omics technologies.
Other computational methods utilising graph convolu-
tional network or deep learning also appeared to perform
well for ST data.83,84. To summarise, the existing clustering
methods are mostly designed for scRNA-seq and do not
consider the neighbourhood spot information or spatially
patterned structure, pressing the need for developing
more algorithms. Robust spatial clustering algorithms
can generate the precise subpopulation maps of cancer
cells and correlate the cellular states with their spatial
distributions.

3.4 Cell identity inference

A lot of strategies have emerged to link gene expression
with cell identity, although most of them are designed
for single cell transcriptomics.85 Some of them are based
on the correlation between test data and reference data,
while others require supervised classification and classi-
fier training.85 Given the spatial omics data usually con-
tain a mixture of cells such as ST, new algorithms are
needed for optimising the automatic analysis pipeline.
One of the most used approaches is deconvolution,
such as SPOTlight (using non-negative matrix factor-
ization regression),86 RCTD (using non-negative least-
squares regression),87 DSTG (using graph-based convolu-
tional networks)88 and stereoscope (a probabilistic model
based on the negative binomial distribution).89 Another
practical way is to modify the scRNA-seq integration
algorithm. For example, Seurat70 enabled the ‘anchor’-
based workflow and transferred labels from scRNA-seq
data to ST data. This algorithm was previously demon-
strated effective for cross-species integration and has now
shown robustness in ST. The above methods are mostly
designed for spatial omics of near-single-cell resolution
such as Visium and can effectively infer the cellular com-
position of a spot mixture. Also, those algorithms largely
rely on matched scRNA-seq data to compute the cell-type
probability. As a result, such analysis is largely depen-
dent on single-cell clustering analysis and the uncertain
level of resolution parameter. Annotating higher resolu-
tion data (e.g., Stereo-seq) without prior knowledge is still
challenging.

3.5 Single-cell segmentation

Accurately defining the tissue borders is critical for under-
standing how cells locally interact with others (i.e., can-
cer cells interact with immune cells). For example, robust
segmentation is able to increase the number of detected
cells and allow the inference of the real cell states.90 To
resolve this question, Baysor enables cellular segmenta-
tion based on the likelihood of transcriptional compo-
sition, size and shape of the cell.90 A pipeline named
Squidpy allows the extraction of image features and nuclei
segmentation.91 This pipeline is largely based on image
processing and provides options of different deep learn-
ing algorithms such as Stardist92 and Cellpose.93 How-
ever, a lot of questions regarding tissue segmentation still
remain unexplored. How to computationally model the
cellular spatial patterns such as immune cells (sparse) and
endothelial cells (linear)? How to segment the organelle
structure (e.g., nuclei and cytoplasm) and trace the RNA
origin in subcellular spatial omics data? A possible way is
to train amachine learningmodel by using the spatial coor-
dinates of existed multiplexed immunofluorescence imag-
ing, given that spatial distribution patterns of spatial omics
is similar to immunofluorescence. New algorithms sup-
porting high spatial resolution segmentation need to be
developed and will allow its broad application in the spa-
tial omics community.

3.6 Cell–cell communication analysis

In the context of scRNA-seq data analysis, decoding cell–
cell communication is crucial for understanding how cells
interact with each other and how such crosstalk net-
works are changed under specific disease conditions such
as cancer.94 Decoding the global cell–cell communication
network will help design specific targeting strategies.6,95
Existed algorithms96–99 are mostly designed for scRNA-
seq and do not consider spatial information. To trace the
spatial cellular communication dynamics, several algo-
rithms have been proposed. For example, SpaOTsc can
infer intercellular gene–gene regulatory information flows
between genes by using a machine learning model.100
Another intercellular communication quantification pack-
age named stLearn can compute the morphological simi-
larity between spots and then perform the cell–cell com-
munication analysis.101 GCNGencodes the spatial location
as a graph, integrates it with an expression profile using
supervised training, and infers the cell–cell interactive
scores.102 MISTyis a flexible and scalable machine learn-
ing framework for capturing the cell–cell communication
score and performs well on multiple datasets.103 Well-
established ST pipelines including Giotto71 and Squidpy91
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also support the spatial intercellular crosstalk analysis.
By utilising those methods,71,100 spatial interactive cells
such as interacting astrocytes and inhibitory neurons were
observed. Taking the advantage of high-resolution spatial
technologies such as Slide-seq or Stereo-seq, it may be pos-
sible to computationally model the dynamics of intercellu-
lar gene regulation and fundamental biological processes
(i.e., phase separation).

4 SPATIAL OMICS IN CANCER
RESEARCH: FROM BENCH TO BEDSIDE

Cancer can be viewed as a complex system.104 The evolu-
tion of tumour cells is like a dynamic interaction between
microenvironmental/therapeutic selective forces and their
intrinsic adaptive strategies to survival.105 With the help
of the state-of-the-art spatial omics, it is now possible
to tackle a range of basic and fundamental questions of
oncology at the systemic level. Current spatial research
is spanning from multi-omics (e.g., transcriptomics,106
epigenomics50), and multiple organs (e.g., breast cancer,43
melanoma107), to multiple species (e.g., Homo sapiens,54
Danio rerio108) (Figure 1C).

4.1 Spatially decoding the
heterogeneity of TME

The core problem hindering patients’ long-term survival
is cancer heterogeneity.1 This heterogeneity was featured
as mixed cell types with spatial differences in gene
expression.4,109 As a consequence, diverse cellular popula-
tions exist within the TME, making any gene- or pathway-
specific therapy less effective.1 Existed single-cell omics
techniques have decoded the intra tumour heterogeneity
at the systems level,110–113 however, such amethod does not
retain the spatial coordinates of each cell. In 2018, Lun-
deberg’s lab first utilised ST to explore the prostate TME
diversity in the cancer research.106 They precisely com-
puted the dynamic gene expression changes during cancer
progression and demonstrated the cancer cell state differ-
ence between the TME periphery and centre. In stage III
metastatic melanoma samples, they found that immune-
related genes such as HLA genes and CD74 are highly
active in cancer regions.107 Surprisingly, a recent study
indicates that cancer hallmark pathways are specifically
activated even in specific regions of tumours.114
Another grand challenge in tumour ecology research

is the spatial quantification of immune cells. Andersson
et al. used the deconvolution algorithm89 and inferred
the region-specific enrichment/depletion of B cells. They
further developed a gene signature of tertiary lymphoid
structure (TLS) and observed the activation of cell acti-

vation/differentiation pathway in TLS115. By using the
SPOTlight deconvolution algorithm,86 the authors spa-
tially trace the T cell subsets in glioblastoma patient sam-
ples and infer the trajectory of those T cells.116 We recently
reported the spatiotemporal immune profile of colon can-
cer liver metastasis and observed the increased infiltration
of MRC1+ CCL18+ macrophages in the metastatic sites.95
All these studies are partly based on ST which cannot
directly profile the transcriptome of single immune cell
but the combined profiles of cancer/immune cell mixture.
In the future, more data generated by high-resolution spa-
tial omics (e.g., DBiT-seq) will identify the mechanisms
that are shared among varied cell-type compositions and
will help develop new therapeutic approaches targeting
the spatial TME organization.

4.2 Tumour invasive margin: the main
battlefield in the fight against cancer?

Not all cancer cells are created equal. As for cancer cells
located in the boundary or core regions, they exhibit
different phenotype states117 and distinct microenviron-
mental features.118 Previous immunohistochemistry-based
low-throughput studies119 largely rely on the selection of
region of interest and the design of protein panels. By
contrast, spatial omics allows the unbiased discovery of
key cell types and genes controlling the fate of tumouri-
genesis. For example, by integrating ST and multiplexed
ion beam imaging, Ji et al. identified tumour-specific ker-
atinocytes (TSKs) which are specifically located in the
fibrovascular niche at leading edges.54 Such TSKs are asso-
ciated with a high density of intercellular crosstalk with
immune cells. Interestingly, this cellular population is fea-
tured with an oncogenic transcriptional program shar-
ing the activation of HDAC1 and ETS1, indicating the
potential epigenetics reprogramming resides in the lead-
ing edge zones. A zebrafish-based study also reveals that
unique edge cell states at the melanoma boundary are
associated with upregulated ETS-family transcription fac-
tor activity.108 These transcriptional states are validated
in 10 patient samples, implicating the potential conserva-
tion across species. All those pieces of evidence place the
tumour leading edges in the limelight and naturally raise
the hypothesis TMEconditions (i.e., tumour boundary bar-
rier vs. tumour core)may be spatially different (Figure 2A).

4.3 The compartment of TME for
supporting tumour growth

Significant progress has been made in the field of single-
cell omics and we now know that TME is well-structured
with immune cells, cancer-associated fibroblasts, and the
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F IGURE 2 The cancer microenvironment spatial structure and compartment revealed by spatial omics. (A) The distinct
microenvironment structure of tumour core and tumour margins. ECM, extracellular matrix. (B) Spatial omics can precisely capture the TME
compartment such as CAFs and vessel. CAFs, cancer associated fibroblasts. (C) The microenvironment pf primary and metastatic tumour s
are largely different revealed by spatial studies

extracellular matrix,6,120 but the challenges still remain.
Importantly, it is difficult to trace back the spatial cellu-
lar states and developmental states. The evolution of spa-
tial omics technologies helps to open the black box of TME.
For example, the prostate cancer tissues can be divided into
compartments with distinct gene expression profiles and
pathway activities.106 A subset of stroma cells are specifi-
cally reactive to nearby cancer cells, while the others show
inflammatory features. Inside the TME of pancreatic can-
cer samples, the structure of the stroma is also highly
ordered. In particular, the inflammatory fibroblasts and
endothelial cells are co-localised in this region (Figure 2B).
As for immune cells, their distribution is closely linked
with the compartment zones.23,121 Combined scRNA-seq
and ST revealed the pancreatic cancer subtype-specific
compartment reprogramming in response to neoadjuvant
chemotherapy.7 Collectively, those data explain how the
anatomical molecular profile of the TME compartment
determines the tumourigenesis fate and how cancer cells
spatially respond to therapy.

4.4 Tracing the spatiotemporal
evolution of cancer cells

Evolution is the driving force behind cancer cell resis-
tance or metastasis.122,123 Previous research largely relied
on multi-region sample collection,124 where directly mod-
elling the spatial evolutionary routes cell-by-cell was far
from applicable. Now, with the help of spatial omics, trac-
ing cancer evolution at different space coordinates and
cellular units is now possible. Sundar et al. utilised the
NanoString transcriptomics profiling (composed of 770
genes) and found that nearby lymph node metastases may
originate from deeper subregions of the primary cancer
cells.125 Another group reported that metastatic tumour s
were depleted with immune cell infiltrates but harboured
high expression of the immune checkpoints (B7-H3,
TIM-3, etc.).126 Interestingly, the epithelial–mesenchymal-
transition (EMT) gradient is specifically enriched in
the metastatic tumour but not the primary tumour127
(Figure 2C). At the genome level, recent data indicated that
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F IGURE 3 The spatial evolution of cancer cells and the potential clinical application of spatial omics. (A) Spatial genomics and
transcriptomics allows the discovery pf evolution and their specific signature of cancer cells. (B) Spatial omics can be potentially used to
predict the drug response and the clinical outcomes in the clinical setting. EMT, epithelial-to-mesenchymal transition; CAF,
cancer-associated fibroblasts

co-existed clones surprisingly have different transcrip-
tional and immunological features. Such spatial clonal
diversity is deeply impacted by resident tissue struc-
tures. TSCS profiling allows the genomic lineage tracing
between distinct tumour subpopulations17 (Figure 3A).
These results highlight the spatial rearrangement during
cancer evolution, and further multidimensional spatial
analysis will allow a broad range of spatiotemporal molec-
ular medicine47,48 problems to be solved.

4.5 Is spatial omics still far from the
clinical application?

Initial data showed that spatial arrangements of
TME quantified by mIHC perform better in predict-
ing immunotherapy response comparable to existed
methods (i.e., PD-L1 expression, immunohistochemistry,
tumour mutational burden and bulk gene expression
profiling).128 These observations indicate that spatial
omics can potentially provide innovative solutions for
designing precision medicine strategies. Another spatial

analysis of the melanoma clinical cohort reveals the spa-
tial interaction between PD-1/PD-L1 and IDO-1/HLA-DR
was tightly linked with anti-PD-1 clinical response.129 All
those data revealed that spatially quantifying the TME
structure might have better prognostic power than existed
biomarkers. This technique may be perfectly suited to
discover how TME evolves during therapy (Figure 3B) and
has the potential to reveal the targetable structures (e.g.,
reprogramming the tumour borderlines to engineer the
cold TME). However, data from retrospective/prospective
clinical cohorts are still lacking.
In the clinical practice, spatial omics technology may

pave the way for precision pathology. It is now possible
to link the pathological images with spatial gene expres-
sion profile by using machine learning or deep learn-
ing algorithms.130,131 These studies may enable the predic-
tion of the transcriptomics profile based on existed H&E
staining slides which may perform better than existed
biomarkers. Generating the spatial atlas of a large sample
of tumours will hence not only reveal newways to improve
patients’ outcomes, but also pave the way for spatiotempo-
ral molecular medical research.47,48
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F IGURE 4 Building up the interdisciplinary link between ecology and oncology. (A) The TME is an ecosystem composed of diversified
species such as immune cells and cancer cells. (B) The proposed models for describing different cancer ecotone patterns. The bounded pattern
refers to equal and homogeneous interface (capsule) between tumour and adjacent normal tissues. The interpenetration pattern refers to the
cancer cell infiltration into the adjacent normal tissues. The micrometastasis pattern refers to the mini cancer cell invasion into the adjacent
normal tissues. The invasion pattern refers to the invasive cancer cell infiltration into the adjacent normal tissues. (C) The
patch–corridor–matrix model for modelling the spatial tumour heterogeneity. (D) Methods for quantifying the spatial biodiversity inside the
tumour microenvironment

5 SPATIAL TUMOUR ECOLOGY:
TOWARD A NEWRESEARCH PARADIGM

5.1 Microenvironment is an ecosystem

The cancer microenvironment is similar to an ecologi-
cal system, a mixture with distinct cellular populations
and species (Figure 4A). The establishment and growth of
tumours are strikingly similar to an adaptive and evolv-
ing ecosystem.132 For example, the species richness, which
can also be referred to intra tumour heterogeneity, is
potentially linked with immunotherapy robustness and
patients’ long-term outcome.133,134 The metabolic com-
petition between immune cells and cancer cells, which
can be termed as interspecific competition, is also a key
determinant of cancer progression.135. The behaviour of

microenvironmental populations and the structure of TME
can be explained by ecological theories, but more high-
dimensional data are needed.

5.2 Ecotones of cancer: the transitional
zones of cancer-normal communities

Edge effect refers to a greater diversity of the commu-
nity at the boundary of habitats.136 Particularly in TME,
the edge effect occurs in tumour -normal borders, where
two distinct systems meet and mingle. Interestingly, TSKs
are specifically located in the edges of skin cancer and
those cells harbour frequent intercellular communications
with nearby immune cells.54 A possible explanation is
that intratumour environmental conditions drive those
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species to colonise habitable borders. This observation
leads us to hypothesise that the edge effect in the cancer
ecosystem widely exists and may be therapeutically tar-
geted to destroy the cancer cell habitats. Those transitional
zones are also termed ecotones, referring to the transition
area between two biological communities (i.e., interface
between forest and grass).137 At the boundary of TME, how
the sharp border is formatted still remains unclear (Fig-
ure 4B). Does the formation of cancer ecotone help or pre-
vent the cancer invasion? How does the transitional zone
interact with immune system and forms the cold or hot
tumour? The study of cancer ecotones by spatial sequenc-
ing technologies is still in its infancy. A multimodal and
systems-level spatial atlas of cancer ecotone may funda-
mentally improve our knowledge of cancer ecology and
facilitate the designing of novel anti-cancer strategies.

5.3 The patch–corridor–matrix
landscape model: defining the spatial
distribution patterns

The patch–corridor–matrix is an important theory
for describing the spatial heterogeneity of ecological
landscapes.138 In general, a patch refers to a spatial unit
that harbours distinct features with the surrounding
environment and has a certain internal homogeneity. A
corridor refers to a linear structure connecting different
spatial units; while a matrix refers to a continuous and
widely distributed space in space. Recently published ST
data reveal that the structure of tissues is in potential
accordance with this model. For example, the structure
of elongating/elongated spermatids is in consistency with
the definition of the patch, while their progenitors such as
spermatocytes and spermatogonium are located surround-
ing elongated spermatids which can be described as the
matrix.139 In the context of oncology, the structure of TME
and their adjacent tissues is in line with patch–matrix
patterns. We hypothesise that the vascular structure
conforms to corridor, which connects the patch (TME)
and matrix (adjacent normal tissues). Inside the tumour,
the formation of cancer stem cell niche may reside in
the TME140,141, which resembles the patch–matrix model
(Figure 4C). Systematically, modelling the TME on the
basis of the patch–corridor–matrix may hence provide
scientific basis for understanding the size, shape, content
and structure of tumour s at microscale (Figure 4C).

5.4 Computationally modelling the
TME spatial biodiversity

Biodiversity originally refers to the biological variety of
life on the Earth.142 Similarly, the biodiversity of cancer

microenvironment is also a key factor for drug responses
and patient outcomes.134 To accurately trace the TME
diversity, statistical models are required to quantify the
biodiversity of a given spatial omics data. A widely used
equation is the alpha, beta and gamma diversity.143 Alpha
diversity refers to the diversity in a particular ecosystem.
This concept is usually used to measure the number of
species in a given ecosystem (e.g., the species richness in
TME).143 Beta diversity allows us to compare the biodi-
versity changes between ecosystems (e.g., metastatic TME
vs. primary TME).143 Gamma diversity refers to the mea-
sure of the overall diversity in a large region.143 Another
index assessing biodiversity is Shannon entropy index.144
This index represents the uncertainty that we can predict
which species the individuals randomly selected in the
community belong to. If the TME consists of only a sin-
gle species (e.g., cancer cells), then the randomly selected
individual must be that unique species. At this time, the
Shannon entropy index is zero. As the number of species
in the community increases, the Shannon entropy index
will increase. Similarly, the Simpson index145 and Gini
coefficient146 also represent species richness and even-
ness. The classic Simpson index represents the probability
that two randomly selected individuals in the community
belong to the same species. When the species richness of
the community increases, this probability decreases, that
is, the Simpson index decreases as the species richness
increases.145 With the help of those biodiversity quantifica-
tion indexes (Figure 4D), it is now possible to link the bio-
diversity with spatial cancer phenotypes such as immune
exclusions.

6 DISCUSSION AND FUTURE
PERSPECTIVES

To decode the tumour ecosystem, we need to model how
individual cells work and how they interact with each
other. Although high-throughput spatial sequencing tech-
nologies coupled with the state-of-the-art computational
algorithms have greatly improved our understanding of
tumour architecture, many pressing questions still remain
to be answered, especially the profiling of the intact tissue
structure. Existed experimental protocols merely enable
the sequencing of tiny slide(s) of tissues. In fact, such pro-
filing may represent the partial tissue expression profile
and cannot fully capture the 3D architecture. An interest-
ing example is the 3D transcriptomics reconstruction of the
developing heart,147 which raises the possibility of generat-
ing the 3Dmodel of other tissues such as tumours. Compu-
tational strategies originally designed for radiomics, such
as 3D Slicer148, are expected to reconstruct the spatial
molecular organization. We hypothesise that, with the
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development of advanced spatial omics technologies, a 3D
bird’s-eye view of TME that encompasses transcriptomics,
proteomics and metabolomics may pave the way towards
the comprehensive decoding of the TME ecosystem.
We are now in the golden age for spatiotemporal molec-

ular medicine47,48 research. Spatial omics is transforming
our understanding of cancer milieu by offering the pre-
cise spatial coordinates of cellular and molecular profiles
at the systemic level149–151. At the same time, existed meth-
ods pose experimental and computational challenges for
optimising current protocols and expanding the scope of
these models. How to integrate biology data and mathe-
maticsmodel into the same framework, establish the inter-
disciplinary link between ecology and oncology, digest the
booming spatial omics data and develop sophisticated ana-
lytical algorithms are still challenging. Achieving those
goals are of exceptionally significance for unravelling the
biology of TME as well as establishing a framework to
explain the aggressive characteristics of malignant cells.
Generating the spatial atlas of human cancers acrossmulti-
ple omics and timescales can fundamentally improve our
understanding of tumourigenesis, pioneer the revolution
of medical research paradigm, and ultimately facilitate the
designing of advanced therapeutic strategies in the near
future.
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