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Resveratrol Promotes Self-digestion to Put Cancer to 
Sleep
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Resveratrol, a natural polyphenol present in a variety of food stuff, has been shown to exert preventive and curative anticancer 
activity in several in vitro and in vivo models. Such chemopreventive/anticancer activity has been linked to biochemical and epigen-
etic modifications of multiple pathways involved in carcinogenesis and metastasization. In this commentary, we focus on the recent 
work done in our laboratory showing that resveratrol has potential to prevent and cure cancer by promoting epigenetic-mediated 
autophagy-dependent tumor dormancy, an effect associated with re-education of the cancer-associated fibroblasts and reduced 
production of inflammatory cytokines in the tumor microenvironment. The clinical translation of the current knowledge on resveratrol 
anticancer activity is also discussed.
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INTRODUCTION

Trans-resveratrol (3,4,5-trihydroxystilbene; RV), a natural 
polyphenol particularly enriched in berries and grapes, has 
been proven an effective nutraceutical for cancer prevention 
and treatment in several types of malignancy, both in in vitro 
and in vivo preclinical models [1,2]. The efficacy of RV in in-
hibiting cancer growth can be attributed to its ability to target 
multiple pathways [1,3,4]. To mention a few, RV has been 
shown to induce autophagy, apoptosis and autophagy-asso-
ciated apoptosis in ovarian and colorectal cancer cells [5-8]. 
These led to inhibition of epithelial-mesenchymal transition 
and migration of ovarian cancer cells [9], inhibition of reduced 
glucose uptake and metabolism in ovarian cancer cells [10], 
or suppression of the insulin like growth factor 1 receptor/Akt/
Wnt-β-catenin pathways in colon cancers [11] and in stem-
like breast cancer cells [12]. RV regulates many of these 
pathways through epigenetic mechanisms [13]. For instance, 
we have shown that RV can modulate microRNAs to rescue 
the re-expression of aplasia Ras-homolog member I (ARH-I; 
aka DIRAS3), an imprinted tumor suppressor that positively 
regulates BECLIN-1-dependent autophagy [9].
 Interestingly, two independent studies have shown that 
RV can also interrupt the malignant cross-talk between 
cancer-associated fibroblasts (CAFs) and cancer cells in 

the tumor microenvironment [14,15]. RV could inhibit breast 
cancer cell proliferation and migration and the stem-like prop-
erties that were promoted by CAFs, and this effect was due 
to inhibition of the expression of cyclin D1 and c-Myc, and 
of the STAT3 (a transcription factor triggered by interleukin 
[IL]-6), Akt and self-renewal pathways [14]. In our study, the 
conditioned medium of CAFs pre-treated with RV lost the 
ability to induce proliferation and invasiveness of cholangio-
carcinoma cells [15]. The anticancer activity of RV has been 
proven in several preclinical in vivo models, including breast 
cancer [16,17], colorectal cancer [18], and lung cancer [19]. 
RV alone [19] or in combination with curcumin and quercetin 
[17] showed the ability to also modify the tumor microenvi-
ronment, reversing the infiltration of immunosuppressive Th2 
lymphocytes, tumor-associated N2 neutrophils and tumor-as-
sociated M2 macrophages.

MAIN SUBJECTS

We have previously shown that RV acts as a protein-re-
striction mimetic to induce mTOR-dependent autophagy, a 
self-digestion lysosomal-mediated process which oversees 
cellular homeostasis [8]. Recently, we found that reduced 
overall survival of cholangiocarcinoma patients was asso-
ciated with low expression of autophagy markers in cancer 
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cells along with high expression of IL-6 and high infiltration 
of CAFs in the tumor microenvironment [20]. By pre-treating 
cholangiocarcinoma-derived CAFs with RV in vitro, we could 
inhibit the secretion of IL-6 so that their conditioned medium 
lost the ability to repress autophagy and to induce prolifera-
tion and migration of the exposed cholangiocarcinoma cells 
[15]. This prompted us to test in vivo the preventive and 
curative potential of RV. To this end, we set three groups of 
nude mice in which we transplanted subcutaneously human 
cholangiocarcinoma cells. Mice in the first group (that had not 
received any treatment for five weeks) served as controls, 
the mice in the second group were treated with 50 mg/kg RV 
in drinking water two weeks before tumor transplantation and 
for the next five weeks, and they served as the “preventive” 
group, and the mice in the third group started the RV treat-
ment one week after tumor transplantation and served as the 
“curative” group. The results can be summarized as follows: 
(i) in controls, the tumors reached an average volume of 5.00 
mm3 after 5 weeks in all the five mice, while in the “preventive” 
group, only three mice developed a tumor with an average 
volume of 0.15 mm3, and in the “curative” group the five mice 
developed a tumor with an average volume of 1.0 mm3; (ii) 
both in the “preventive” and “curative” groups, the infiltrate of 
CAFs and the presence of stromal IL-6 were drastically de-
creased; (iii) in the tumors from both the “preventive” and the 
“curative” groups, the autophagy markers microtubule-associ-
ated protein 1 light chain 3 (LC3) and BECLIN-1 were highly 
expressed [21].
 It has been reported that RV can act epigenetically to mod-
ulate autophagy in cancer [22-24], and it is known that the 
secretions in the tumor microenvironment can epigenetically 
modulate autophagy to drive tumor dormancy [25]. In a sep-
arate study, we demonstrated that RV could keep ovarian 
cancer cells grown as 3D spheroids (a proxy of peritoneal 
metastatic colonies) in a dormant state even in the presence 
of IL-6, and this effect was due to the down-regulation of 
miR-1305 and concomitant re-expression of its target ARH-I 
(DIRAS3), which then rescued BECLIN-1-dependent auto-
phagy [26]. By extracting the data from TCGA, we found that 
cholangiocarcinomas highly expressing BECN1 also showed 
high levels of DIRAS3 and CDKN1A mRNA, strongly sug-
gesting a dormant state of the tumors [21]. This prompted us 
to check for the expression of ARH-I (DIRAS3) and autoph-
agy and dormancy markers in the biopsies of the preclinical 
model of transplanted cholangiocarcinomas in nude mice 
described above. To this end, we searched for co-expression 
of the autophagy markers LC3 and BECLIN-1 with p21, the 
marker for cell cycle arrest encoded by CDKN1A, and with 
ARH-1/DIRAS3 (encoded by DIRAS3), a protein playing a 
pivotal role in the switch from autophagic cell death to au-
tophagy-driven cell dormancy [27]. The images in Figure 1 
show that RV-treated tumors, either via the preventive or the 
curative protocol, present high levels of LC3 and p21 co-ex-
pression, suggestive of the involvement of autophagy in cell 

cycle arrest. Further, RV greatly enhanced the expression of 
DIRAS3, which was shown to largely interact with BECLIN-1. 
To be noted, in RV-treated tumors, the expression of STAT3 
(which is downstream of IL-6 signalling) was decreased, and 
this protein was found largely co-localized in the cytoplasm 
bound to DIRAS3. Taken together, these data suggest induc-
tion of a dormant state in association with induction of auto-
phagy in the tumors exposed to RV.
 Cancer develops following genetic and epigenetic alter-
ations of the genes controlling cell cycle and cell proliferation, 
telomerase activity and stemness, cell metabolism, motility 
and invasiveness, autophagy, apoptosis, and other types 
(e.g., ferroptosis) of cell death, along with the complicity of the 
tumor microenvironment which promotes angiogenesis and 
inhibits the immune response [28]. Chemotherapy is the gold 
standard for cancer treatment, but unfortunately it has sever-
al drawbacks that discourages the patients from continuing 
the therapy [29]. Disappointingly, even precision therapy with 
molecular drugs targeting “driver” oncogenic proteins has a 
limited efficacy [30,31]. RV could represent a valid alternative 
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Figure 1. The immunofluorescence co-staining for LC3/p21, BE-
CLIN-1/DIRAS3, LC3/DIRAS3 and DIRAS3/STAT3 shows up-regu-
lation of autophagy and autophagy-dependent dormancy in Pre-
RV + RV and RV-treated mice (for treatment details see the text 
and reference [21]). RV, resveratrol; LC3, light chain 3. Scale bar = 20 
µm.
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and/or adjuvant therapy for synergizing with chemotherapeu-
tics and at the same time mitigating their undesired side ef-
fects [32]. Two characteristics make RV an attractive cancer 
therapeutic worth of further investigations: (i) it is a hormetic 
drug, meaning that it elicits different effects in normal and 
diseased tissues depending on the concentration [33], and 
(ii) it causes negligible, if any, side effects [34]. Moreover, a 
recent systematic drug-target interaction network study found 
that RV can target up to 23 driver genes (including mTOR, 
BRCA1, TP53, PTEN, HGF, CTNB1, CDKN1A, and AKT1, 
among others) significantly mutated in up to 15 types of can-
cer [35]. Yet, clinical trials with RV (available at https://clini-
caltrials.gov/ct2/) appear not to meet the expectations, likely 
because of the low bioavailability and rapid excretion of RV, 
which prevent it from reaching a pharmacologic concentration 
in the target tissue [36].
 It is indeed puzzling that despite the vastness of in vitro 
and in vivo preclinical data supporting its anticancer activity, 
the clinical efficacy of RV in cancer patients remains ambigu-
ous and inconclusive [37]. Possible reasons for the failure of 
the clinical trials include mistakes in the experimental design 
(time, dose, administration route, patient’s selection criteria, 
etc.), the supposed mechanisms of action, and the endpoints, 
which are based on in vitro and in animal studies [36,38]. 
First, the assumption that high dose administration is need-
ed to obtain the desired therapeutic effect in the diseased 
organ has been challenged by a recent study showing that 
low dietary administration of RV (5 mg) is more effective than 
a pharmacologic dose (1 g) for a chemopreventive activity 
in colorectal cancer [38]. Interestingly, the chemopreventive 
effect was influenced by the diet, and it was associated with 

increased expression of LC3 and p21 (indicative of autoph-
agy-mediated arrest of cell proliferation) in human colonic 
mucosa [38]. To be noted, the oral administration of 5 or 50 
mgRV twice daily for 12 weeks in breast cancer women led to 
hypomethylation and re-expression of the RASSF-1α tumor 
suppressor gene encoding a RAS-associated protein that in-
hibits cell cycle and promotes apoptosis [39].
 Regarding the mechanisms of action, it is conceivable that 
the pharmacologic inhibition of biochemical pathways at-
tained in vitro at a relatively high concentration (10 to 200 µM) 
of RV unlikely occurs in patients, where its plasma concentra-
tion reached 20 nM after oral administration of 360 µg/kg [40]. 
As a comparison with the mouse, 15 mg/kg of RV adminis-
tered in drinking water (0.01%) would lead to a putative peak 
in the plasma of 1.5 µM [36]. Another possible reason for 
the different outcome at a given dose in animal experiments 
and clinical trials is that orally administered RV synergizes 
with microbiota metabolites to exert anticancer activity via yet 
unidentified pathways [41]. The microbiota in rodents and in 
humans are different and influenced by the diet, and RV itself 
can modify the microbiota [41]. This fact may account for the 
difference in the dose-response between the two species. 
This hypothesis is being explored in our laboratory.
 The dose of RV (50 mg/kg) used in our nude mice model 
(which would lead to a putative peak in the plasma of 5 µM) 
might be equivalent to approximately 500 to 600 mg per 60 to 
70 kg individual. Based on our findings, we hypothesize that 
for curative purposes, oral administration of RV at 10 to 20 
mg/kg (approximately 600 to 1,400 mg per 60 to 70 kg body 
weight) daily eventually leads to epigenetic changes of the 
gene expression and metabolism both in cancer and stromal 
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Figure 2. The cartoon illustrates the 
action of RV in the tumor microen-
vironment comprising fibroblasts 
and immune cells as well as the 
cancer cells which eventually leads 
to tumor dormancy. ATG, autophagy; 
CCD, cancer cell dormancy; MTX, me-
tastasis; RV, resveratrol; TME, tumor 
microenvironment; Fb, fibroblasts; Th, 
T CD4 lymphocyte; M, macrophages; 
CAF, cancer-associated fibroblasts; 
BM, basement membrane; IL, interleu-
kin.
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cells. This can restore homeostasis and tumor dormancy in 
the affected tissue. Of course, the dose must be personalized 
to the patient, taking into account sensitive factors such as 
age, tumor stage, performance, diet, lifestyle, and concomi-
tant therapies with drugs and/or other natural products.
 As per the treatment endpoints, it is to be stressed that 
in our animal models treated with RV in drinking water, we 
obtained an effect not only in cancer cells (where markers 
of autophagy, apoptosis, cell cycle arrest and cell dormancy 
were induced) but also in the tumor microenvironment (where 
infiltration of CAFs and stromal IL-6 levels were decreased) 
[21]. In a separate study, we showed that RV also reduces 
angiogenesis and infiltration of immune-suppressive cells in 
the tumor microenvironment of transplanted lung cancer cells 
[19]. The latter finding is compatible with induction of angio-
genic and immune-mediated tumor dormancy. The multiple 
processes targeted by RV leading to tumor dormancy are 
schematically summarized in Figure 2.

CONCLUSION

In summary, the body of scientific evidence reported here 
demonstrates that RV can block tumor growth by inducing 
“drowsiness” of tumor cells and modifying the microenviron-
ment to create a “comfortable bed” to put the tumor to sleep.
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