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Computational Cell Cycle Profiling 
of Cancer Cells for Prioritizing FDA-
Approved Drugs with Repurposing 
Potential
Yu-Chen Lo1,2, Silvia Senese1, Bryan France3,4, Ankur A. Gholkar1, Robert Damoiseaux3,4 & 
Jorge Z. Torres1,5,6

Discovery of first-in-class medicines for treating cancer is limited by concerns with their toxicity and 
safety profiles, while repurposing known drugs for new anticancer indications has become a viable 
alternative. Here, we have developed a new approach that utilizes cell cycle arresting patterns as 
unique molecular signatures for prioritizing FDA-approved drugs with repurposing potential. As 
proof-of-principle, we conducted large-scale cell cycle profiling of 884 FDA-approved drugs. Using 
cell cycle indexes that measure changes in cell cycle profile patterns upon chemical perturbation, we 
identified 36 compounds that inhibited cancer cell viability including 6 compounds that were previously 
undescribed. Further cell cycle fingerprint analysis and 3D chemical structural similarity clustering 
identified unexpected FDA-approved drugs that induced DNA damage, including clinically relevant 
microtubule destabilizers, which was confirmed experimentally via cell-based assays. Our study shows 
that computational cell cycle profiling can be used as an approach for prioritizing FDA-approved drugs 
with repurposing potential, which could aid the development of cancer therapeutics.

Cancer remains a debilitating disease that affects millions of people in the US and around the world. Despite tre-
mendous investments in cancer drug discovery including high-throughput screening and structure-based drug 
design, there has not been a significant increase in the number of new anticancer drugs introduced into the 
clinics1. Additionally, the length of time required for developing a new drug has increased from an average of 
7.9 years to 13.9 years and the average expenditure to introduce a new drug to the market is ~1.8 billion US$1, 2. 
The high attrition rate of lead anticancer compounds can often be attributed to their lack of efficacy or unwanted 
toxicities that arise during clinical trials3. On the other hand, FDA-approved drugs have acceptable safety pro-
files and pharmacokinetic properties relating to absorption, metabolism and toxicity. Consequently, identifying 
known drugs for new antineoplastic indications, known as “drug repurposing”, “drug repositioning” or “therapeu-
tic switching”, represents a promising strategy to accelerate the approval and clinical application of these drugs for 
the treatment of cancer. It is estimated that drug repurposing could effectively reduce the drug development time 
down to 3 years by significantly shortening of the lead optimization phase4. The basic idea behind drug repur-
posing is “poly-pharmacology”, which suggests that a drug not only interacts with a primary target, but also with 
multiple secondary off-targets. Thus, it is possible to repurpose the drug mechanism important for the treatment 
of the original indication to target other secondary indications. Furthermore, repurposing known drugs for new 
indications only requires minimal or no structural modifications that enable rapid drug approval and entry into 
the clinics.

Several approaches for drug repurposing have been proposed2, 5. Early repurposed drugs were discovered 
serendipitously due to their unexpected side effects. One notable example is sildenafil (Viagra), a well-known 
drug used for the treatment of erectile dysfunction whose initial indication was for the treatment of heart disease6. 
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Recent drug repositioning efforts for the discovery of anticancer agents have utilized a myriad of approaches 
including high-throughput activity-based screens of disease phenotypes as well as in-silico prediction algorithms2, 

7–12. Nonetheless, mechanism-based drug repurposing that relies on the existing knowledge of a protein target 
or drug activity often does not directly correlate to a high-level of cellular phenotypic effects, due to potential 
drug off-target interactions. While high-throughput chemical screening remains an effective strategy for drug 
repositioning, it offers little mechanistic insight on the identified compounds, making it a challenge for hit prior-
itization and hit-to-lead optimization. Therefore, there is a critical need to develop more effective approaches for 
prioritizing FDA-approved drugs with repurposing potential that could aid the development of new cancer drugs.

In this study, we report a new approach to prioritize FDA-approved drugs with repurposing potential that 
utilizes computational cell cycle profiling (Fig. 1A). The progression of cancer relies on the ability of cancer cells 
to transition through the cell cycle, which consists of G1, S, G2 and M phases, in order to proliferate13. Each cell 
cycle phase is regulated by cell cycle checkpoints that detect cellular damage and arrest cells to repair damage14–17. 
However, if cellular damage cannot be repaired, cell death pathways like apoptosis are induced to remove the 
damaged cells18. Hence, inhibition of the cell cycle with agents that cause cellular damage during specific phases of 
the cell cycle has been a viable approach for developing anticancer agents19. Although anticancer compounds like 
staurosporine (G2-phase inhibitor), camptothecin (S-phase inhibitor) and paclitaxel (M-phase inhibitor) induce 
a high percentage of cells to arrest in specific phases of the cell cycle, there are few studies on how the overall cell 
cycle profile changes in response to these agents20–22. Our recent cell cycle profiling of >84,000 drug-like mole-
cules demonstrated that wide variations in cell cycle profiles existed even for compounds arresting cells predom-
inantly in the same phase19. This is consistent with substantial in vivo and in vitro evidence that cancer cells often 
miss-regulate their cell cycle checkpoints to promote proliferation even under unfavorable external conditions or 
cellular damage. Similarly, cancer cells display drastic variations in vitro in their response to chemotherapeutic 
agents not only between different cancer cell types but also within the same cancer cell line, which can be partly 
explained by the functional status of their cell cycle checkpoints23. Along with our previous studies, here we high-
lighted the limitations of current approaches that analyze cell cycle modulators based on a single cell cycle phase 
and propose a new multi cell cycle phase analysis for prioritizing lead compounds for therapeutic development. In 
this study, we have established a computational cell cycle profiling approach by considering drug induced changes 
in G1, S, G2/M and subG1 cell cycle phases to prioritize FDA-approved drugs with repurposing potential. The 
application of this approach identified 36 FDA-approved drugs that reduced cancer cell viability, including sev-
eral clinically relevant microtubule destabilizing agents that also elicited DNA damage. These results offer further 
opportunities to develop new chemotherapies that induce both microtubule and DNA damage.

Results
To test the utility of cell cycle profiling for prioritizing FDA-approved drugs as lead drugs for developing cancer 
therapeutics, we performed large-scale cell cycle profiling of 884 FDA-approved drugs (Supplementary Table 1). 
HeLa cancer cells were plated into 384-well plates and a library consisting of 884 FDA-approved drugs was used 
to place one compound per well at 10 μM final concentration. Twenty hours later the cells were fixed and stained 
with the DNA-selective stain Vybrant DyeCycle Green, which emits a fluorescent signal after binding to DNA 
that is proportional to DNA mass when exited at 488 nm24. Plates were scanned with a fluorescence microplate 
cytometer and a cell cycle histogram profile was generated for each well, which had been treated with one FDA 
compound (Fig. 1A). The control DMSO cell cycle profile indicated that more than 50% of cells were in G1 
phase, 30% in G2/M phase, 10% in S phase and less than 5% in a subG1 phase likely due to apoptotic cell death 
(Supplementary Table 2). In contrast, the known antimitotic drug taxol arrested 80% of the cells in G2/M phase 
(Supplementary Table 2). To further quantify cell cycle phase changes, we converted cell cycle profiles into finger-
prints consisting of four cell cycle phases (G1, S, G2/M and subG1) and computed a cell cycle index (CCI) based on 
the Euclidean distance between drug-treated and DMSO-treated profiles (Fig. 1B). To identify the FDA-approved 
drugs that induced the strongest deviations in the cell cycle profile, we used a CCI cutoff of 10 and identified 
91 drugs with diverse cell cycle profiles (Fig. 2A and Supplementary Table 2). Among these 91 drugs, 30 were 
well-characterized cytotoxic anticancer drugs including doxorubicin (CCI = 77.03), paclitaxel (CCI = 57.84), and 
etoposide (CCI = 61.92) (Supplementary Table 2).

Next, we asked if the CCI correlated with a drugs cytotoxicity. First, we evaluated the cytotoxic effects of 
these 91 FDA-approved drugs in a cell viability assay. HeLa cancer cells were plated into 384-well plates and 
each drug was added at 50 μM final concentration. Seventy-two hours later, cell viability was determined using 
the CellTiterGlo assay. Of the 91 compounds, 46 reduced HeLa cell viability >3 standard deviations from 
the DMSO control while 38 compounds had less than 50% cell viability (Fig. 2B, Supplementary Fig. 1 and 
Supplementary Table 3). Importantly, the CCI showed a strong correlation with the extent of a compounds abil-
ity to reduce HeLa cell viability at this cutoff (Fig. 2B). We further evaluated the ability of the 46 hit compounds 
to reduce HeLa cell viability by performing a dose-dependent titration under the same conditions described 
above and determined that 36 compounds had an EC50 < 20 μM, which represented the most potent cytotoxic 
agents (Fig. 2C and Supplementary Table 4). The 36 identified compounds included 14 known anticancer 
drugs that reduced cancer cell viability and targeted tubulin or DNA and 22 compounds that were not origi-
nally indicated for the treatment of cancer (Fig. 2D)25–37. Among the 14 known anticancer drugs were tubulin 
targeting agents like microtubule stabilizers, paclitaxel (EC50 = 3.24 nM), parthenolide (EC50 = 17.33 nM) and 
destabilizers like colchicine (EC50 = 8.79 nM), parbendazole (EC50 = 0.53 μM), fenbendazole (EC50 = 2.27 μM) 
and mebendazole (EC50 = 3.39 μM). On the other hand, anticancer DNA damaging agents included compounds 
targeting the topoisomerase machinery such as mitoxantrone (EC50 < 0.01 μM), camptothecin (EC50 = 0.13 μM), 
etoposide (EC50 = 0.92 μM), and podophyllotoxin (EC50 = 0.38 μM), or direct DNA binders like doxoru-
bicin (EC50 = 0.52 μM), daunorubicin (EC50 = 1.37 μM), chlorambucil (EC50 = 1.37 μM) and cyclohexamide 
(EC50 = 0.33 μM). Additionally, 22 of the identified compounds were not originally indicated for the treatment 
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of cancer (Fig. 2D). Among these, 16 compounds had been previously demonstrated to have activity against 
multiple cancer cell lines including proscillaridin A (EC50 = 5 nM), diethylstilbestrol (EC50 = 0.15 µM), monensin 
(EC50 = 0.38 µM), cardiac glycosides such as digoxigenin, digoxin and lanatoside C (EC50 = 0.26 µM, 0.73 µM, 
1.84 µM), norgestrel (EC50 = 1.45 µM), 17-beta estradiol (EC50 = 2.62 µM), niclosamide (EC50 = 2.81 µM), stat-
ins such as fluvastatin and simvastatin (EC50 = 3.04 µM, 10.44 µM), eburnamonine (EC50 = 8.74 µM), alex-
idine (EC50 = 8.81 µM), methylbenzethonium (EC50 = 9.98 µM), ciclopirox (EC50 = 11.14 µM), and luteolin 
(EC50 = 16.1 µM)30, 32–36, 38–43. Importantly, 6 FDA-approved drugs with novel cytotoxic effects were discovered 
including methiazole (EC50 = 1.37 µM), medrysone (EC50 = 9.13 µM), nicergoline (EC50 = 13.34 µM), tribenoside 
(EC50 = 13.74 µM), primaquine (EC50 = 16.16 µM), and GBR 12909 (EC50 = 17.91 µM) (Supplementary Fig. 2A). 

Figure 1.  Computational cell cycle profiling for prioritizing FDA-approved drugs with repurposing potential. 
(A) Overview of the computational cell cycle profiling approach for prioritizing FDA-approved drugs with 
repurposing potential. FDA-approved drugs, with sound pharmacological and safety profiles used to treat broad 
conditions, are analyzed for their effect on the cell cycle of cancer cells through image-based cytometry. Cell 
cycle fingerprints are then used to compute a cell cycle index (CCI) that measures the deviation form control 
cell cycles. The cell cycle fingerprints and CCI are used to computationally predict a drugs cytotoxicity and 
pathway inhibition. Predictions are further evaluated by experimental cell based assays to define lead drugs with 
repurposing potential. (B) Drug-induced cell cycle profiles of 884 FDA-approved drugs were expressed as cell 
cycle fingerprints consisting of G1, S, G2/M and subG1 phases relative to the DMSO control profile. The diagram 
displays the relative percent cell cycle phase arrest on the y-axis for each of the 884 FDA-approved drugs on the 
x-axis. The four cell cycle phases are color coded; G1 (blue), S (red), G2/M (green), and subG1 (purple). Note that 
FDA-approved drugs induce a wide variety of cell cycle arrest patterns.
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Figure 2.  Evaluating drug induced cell cycle profiles and drug effect on cell viability. (A) The FDA-approved 
drug-induced cell cycle profiles were used to compute a cell cycle index (CCI), which measures the Euclidean 
distance between drug-induced and DMSO control profiles, for each of the 884 FDA-approved drugs. The 
graph displays the CCI on the y-axis and the 884 drugs on the x-axis. Note that 91 FDA-approved drugs with 
a CCI > 10 (blue circles), representing those with the strongest cell cycle profile deviations, were selected for 
further evaluation. For details see Methods. (B) The 91 FDA-approved drugs with a CCI > 10 were evaluated for 
their ability to inhibit HeLa cell viability after a 72 hour treatment at 50 µM final concentration. 46 of these drugs 
(blue circles) inhibited HeLa cell viability with >3 standard deviations relative to DMSO and were mapped 
onto their CCI values. Graph displays the percent cell viability on the x-axis and the CCI on the y-axis for each 
of the 46 drugs represented by blue circles. (C) HeLa cells were treated with increasing concentrations of each 
of the 46 selected FDA-approved drugs for 72 hours and their half maximal effective concentration (EC50) was 
determined. Graph displays the EC50 (in µM) for each drug on y-axis and the drug names on the x-axis. Note 
that 36 drugs displayed EC50s < 20 μM. (D) Pie chart summarizing the indications of the 36 most potent FDA-
approved drugs that inhibit cancer cell viability. Note that most were not originally indicated for the treatment 
of cancer.
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These 6 drugs also significantly decreased the cell viability of HCT116 (colon cancer), U2OS (bone osteosarcoma) 
and A549 (lung carcinoma) cancer cell lines, indicating that their cytotoxic activities were not limited to cervical 
cancer cells (Supplementary Fig. 2B). Interestingly, medrysone is a corticosteroid commonly used in optometry 
to treat eye inflammation44. On the other hand, nicergoline and GBR 12909 (Vanoxerine) are used for the treat-
ment of senile dementia and cocaine dependency respectively, while primaquine is effective against malaria45–47.

Since 22 out of the 36 most potent cytotoxic FDA-approved drugs were not originally indicated for the treat-
ment of cancer, we sought to determine if their cell cycle profiles were similar to known anticancer agents; as a 
means to learn about the potential biological pathways that they were affecting. To do this, we clustered the cell 
cycle profiles of the 36 drugs using hierarchical clustering and heatmap analyses (Fig. 3A). A Euclidean distance 
metric was used to compute the similarity between drug cell cycle fingerprints followed by complete agglomer-
ative clustering. The clustered cell cycle fingerprint profiles of the 36 drugs were then normalized by a Z-score 
transformation across the four cell cycle phases, G1, S, G2/M and subG1. As expected, compounds with similar 
and well characterized mechanisms of action were clustered based on common cell cycle profile signatures. For 
example, the DNA damaging agents doxorubicin and daunorubicin induced a similar increase in the subG1 cell 
population and were clustered near two other DNA binding agents mitoxantrone and cyclohexamide (Fig. 3A)48. 
On the other hand, podophyllotoxin, which inhibits both DNA replication and tubulin polymerization, clustered 
with the DNA targeting agent chlorambucil and the tubulin destabilizing agent colchicine (Fig. 3A). Interestingly, 
the heatmap also revealed unexpected links between several tubulin binding agents and DNA binding agents. 
Compounds like fenbendazole and colchicine, previously known for their specific tubulin destabilizing effects, 
induced a similar cell cycle profile to the DNA binders chlorambucil and etoposide. Cell cycle profile clustering 
also showed that methiazole, an antiworm drug, had cell cycle profile similarities to fenbendazole and etoposide, 
indicating that it could potentially induce microtubule and DNA damage49.

To further explore the significance of cell cycle profile similarities between drugs that induced microtubule 
damage and DNA damage, we analyzed the structural similarity of the 36 FDA-approved drugs using our recently 
developed three-dimensional Chemical Similarity Network Analysis Pulldown (CSNAP3D) algorithm, which 
clustered compounds into a chemical network based on the similarity of compound three-dimensional con-
formations50, 51. The basic assumption of this approach is the chemical similarity principle, which states that 
chemically similar compounds will have similar bioactivities. Thus, drugs with similar cell cycle profiles would 
likely cluster into the same subnetwork. Indeed, 3D chemical similarity clustering analysis of the 36 compounds 
indicated that many cell cycle profile similarity pairs shared 3D chemical similarities. For example, the chemi-
cal similarity network clustered doxorubicin, daunorubicin and mitoxantrone into a DNA binding subnetwork 
(Fig. 3B). Likewise, podophyllotoxin was simultaneously linked to the tubulin destabilizing agent colchicine and 
the DNA binding agents, doxorubicin, daunorubicin and etoposide, highlighting its established dual mechanism 
of action (Fig. 3B). Interestingly, methiazole was linked to three other tubulin destabilizing agents, fenbendazole, 
mebendazole and parbendazole as well as the known DNA binder camptothecin (Fig. 3B). Additionally, the 
tubulin destabilizers parbendazole and colchicine shared high 3D chemical similarity to the DNA targeting agents 
chlorambucil and podophyllotoxin, respectively (Fig. 3B and C). Importantly, the shared chemical similarity 
between these compounds could not be detected using simple chemical comparisons. For example, using their 
FP2 fingerprints to compute their 2D chemical similarity, the similarity between these compounds was low; 0.29 
between parbendazole and chlorambucil and 0.34 between colchicine and podophyllotoxin. To identify the most 
commonly shared chemical motifs of compounds with potential links to microtubule and DNA damage (col-
chicine, methiazole, parbendazole and podophyllotoxin), we performed a chemical fragment enrichment anal-
ysis by clustering consensus molecular fragments using principal component analysis (PCA) (See Methods)52. 
Consistent with the structural alignment, PCA analysis showed that carbonyl and methoxy functional groups 
were the top two enriched chemical fragments of the four drugs (Fig. 3D). Notably, the methoxy functional group 
was shown to be essential for stabilizing the podophyllotoxin-topoisomerase complex as well as for podophyl-
lotoxin binding to the colchicine site of beta tubulin50, 53. The presence of these functional groups offers novel 
insight into the future design of compounds that could be used to induce both microtubule and DNA damage.

Based on our cell cycle profile clustering and 3D chemical similarity clustering analyses of the 36 most potent 
FDA-approved drugs, we observed that many of these drugs shared cell cycle profile and 3D chemical similari-
ties to DNA damaging agents. Therefore, we sought to determine whether they could induce DNA damage in a 
high-throughput genotoxicity assay. A HEK293T cell line that expressed luciferase-tagged ATAD5 in response 
to genotoxic stress was used as a reporter to test the ability of these compounds to induce DNA damage after an 
18 hour drug treatment54. Interestingly, 4 tubulin destabilizing agents fenbendazole, mebendazole, parbendazole 
and colchicine revealed an unexpected potent DNA damage response (>5 fold) (Fig. 4A and Supplementary 
Table 5). Additionally, several non-anticancer drugs induced DNA damage to various levels relative to the DMSO 
control, including 17-beta estradiol (1.7 fold), eburnamonine (3.1 fold), norgestrel (2.5 fold), fluvastatin (3 fold), 
medrysone (2.8 fold), and luteolin (3 fold) (Fig. 4A and Supplementary Table 5). However, this high-throughput 
genotoxicity assay was conducted at 18 hours post drug treatment and previous studies have shown that DNA 
damage can arise in cells that have been arrested for prolonged lengths of time, including those that arrest in 
mitosis55, 56. Thus, it was possible that the DNA damage could have been caused by prolonged cell cycle arrests 
and not by a direct effect on the DNA. To ensure that the observed DNA damage was not an indirect effect of a 
prolonged drug-induced arrest, HeLa and U2OS cells were treated with 6 representative compounds (daunoru-
bicin, fluvastatin, norgestrel, colchicine, methiazole and parbendazole) at their EC90s for 4 hours and their ability 
to induce DNA and tubulin damage was assessed by immunostaining for tubulin and the DNA damage markers 
pH2AX and pCHK2 and by quantifying the percentage of non-mitotic cells with >5 pH2AX or pCHK2 foci57, 58. 
Consistent with our high throughput genotoxicity screen results, all six drugs induced DNA damage, as indicated 
by the increased immunostaining of pH2AX and pCHK2 and the increase in the percentage of HeLa and U2OS 
cells with >5 pH2AX or pCHK2 foci (Fig. 4B–E). Additionally, colchicine, methiazole and parbendazole also 
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Figure 3.  Computational cell cycle profiling and 3D chemical clustering for predicting drug activity. (A) The 
cell cycle profiles of the 36 most potent FDA-approved drugs that inhibited cancer cell viability were analyzed 
using hierarchical clustering and heatmap analyses. The four cell cycle phases (G1, S, G2/M and subG1) are 
indicated at the top of the hierarchical clustering heatmap. The relative percent arrest in each cell cycle phase 
was correlated with color intensity from red (low % arrest) to blue (high % arrest). Note that compounds with 
established tubulin targeting and DNA targeting mechanisms of action are indicated on the right side of the 
heatmap. The heatmap shows that compounds with similar mechanisms of action were clustered together based 
on unique cell cycle profile signatures. (B) CSNAP3D was used to perform computational network clustering of 
the 36 selected FDA-approved drugs that inhibited cancer cell viability based on 3D chemical similarity. The 3D 
coordinates of the 36 drugs were retrieved from PubChem. The molecular shape similarity between compounds 
was evaluated using the ShapeAlign algorithm to determine 3D chemical similarity scores. To visualize the pair-
wise similarity relationship between drugs (nodes on the network), the computed adjacency matrix was mapped 
to the network structure using Cytoscape. As in (A), the compounds with established tubulin targeting and 
DNA targeting mechanisms of action are color coded as indicated. Note that many cell cycle profile similarity 
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destabilized cytoplasmic microtubules, as can be seen by the lack of polymerized microtubules (Fig. 4B and C). 
Together these data indicated that tubulin destabilizing agents like colchicine, methiazole and parbendazole also 
induced DNA damage, which had been previously unreported.

Discussion
The increased investment in cancer drug discovery to search for new chemical entities (NCE) has not translated 
into an increased development of new anticancer drugs. The majority of NCEs have failed in clinical trials due 
to their lack of efficacy and associated toxicities. Consequently, repurposing old drugs for new anticancer indi-
cations represents a viable alternative in the new paradigm of polypharmacology. The approved drugs guarantee 
sound pharmacological and safety profiles, and the discovery of new indications for a known agent can be quickly 
approved for clinical use. In the past, drug repurposing has often been the result of serendipitous discoveries. 
While drug repurposing for anticancer indications has recently been attempted, many of which have focused on a 
predefined mechanism or drug target, the diversity of repurposed drug classes has been limited.

In this study, we present a new cell cycle profiling approach for prioritizing FDA-approved drugs with 
repurposing potential. The approach assumes that a compound that inhibits cellular proliferation will per-
turb the cell cycle profile, leading to a different cell cycle distribution. Thus, the cell cycle profile induced by a 
compound can be used as an indicator of its antiproliferative effect. To quantify the cell cycle profile, we used 
DMSO treated cell cycle profiles as controls, and the Euclidean distances of chemical treated profiles were 
determined by the cell cycle index (CCI). Using this approach, we identified 46 compounds from the 884 
FDA-approved drugs that showed an antiproliferative effect on HeLa cells. Among them, 36 compounds had 
an EC50 < 20 µM when evaluated in a cell viability assay including 6 compounds that showed novel antiprolifer-
ative effects on 4 different types of cancer cell lines. Although these compounds have EC50s in the micro-molar 
range and are not ideal for therapeutic treatments in their current state, they provide potential opportunities 
for drug development.

Currently, major DNA-damaging drugs for the treatment of cancer include the DNA cross-linker cisplatin, 
the antimetabolite methotrexate, 5-fluorouracil (5-FU) and topoisomerase poisons, camptothecin and doxoru-
bicin59–61. While these compounds are effective at treating a wide range of solid tumors and other malignancies, 
their uses are still limited by severe side-effect, dose limiting toxicities and the development of drug resistance59. 
Our cell cycle profiling analysis identified FDA-approved drugs that unexpectedly induced DNA damage, includ-
ing several clinically relevant microtubule destabilizing agents like colchicine, methiazole and parbendazole, 
which have been widely employed in the clinical treatment of gout, familial Mediterranean fever and pericarditis, 
or used as anthelmintics for treating worm infections respectively49, 62. In particular, parbendazole and methiazole 
displayed similar cell cycle profiles to known DNA damaging agents and elicited a strong DNA damage response 
in genotoxicity assays. Our study suggests that a board class of microtubule destabilizing compounds could be 
investigated as inducers of microtubule and DNA damage to develop more effective therapies that target both 
microtubule and DNA pathways.

In conclusion, we have developed a new approach for prioritizing FDA-approved drugs as lead drugs for 
developing cancer therapeutics that relies on cell cycle profiling. Cell cycle profiling can potentially be inte-
grated into computational flow cytometry workflows for large-scale phenotypic-based lead drug discovery. This 
approach could be expanded to include a board array of cancer cell lines to understand drug sensitivity and resist-
ance. We envision that our drug cell cycle profiling approach could be universally applied to prioritize licensed 
drugs as lead drugs for the rapid development of cancer therapies that could potentially impact the quality of life 
and survival of cancer patients.

Methods
Cell Culture.  HeLa, HCT116, U2OS, and A549 cell lines were purchased from the ATCC, which verified 
its identity by short-tandem repeat profiling, and cells were passaged for < 2 months following receipt. HeLa 
cells were maintained in F12:DMEM 50:50 medium, HCT116 and U2OS in McCoy’s 5 A medium, and A549 in 
DMEM medium (GIBCO) with 10% FBS, 2mM L-glutamine, and antibiotics (penicillin and streptomycin) in 5% 
CO2 at 37 °C.

associations in (A), also showed ligand similarity associations. (C) Representative examples of ligand similarity 
pairs generated in (B). The 3D chemical structure alignments of the tubulin targeting agents parbendazole and 
colchicine and the DNA targeting agents chlorambucil and podophyllotoxin generated in (B) were visualized 
using PyMOL. (D) Chemical fingerprint analysis of four compounds (colchicine, parbendazole, methiazole 
and podophyllotoxin) linked to both microtubule and DNA damaging agents using the KNIME Analytics 
platform. The most common chemical fragments of the four drugs were identified using the MOSS algorithm. 
The identified consensus fragments were subsequently evaluated based on 36 chemical descriptors using the 
Chemistry Development (CDK) toolkit and clustered using the principal component analysis (PCA). The 
enriched chemical fragments were visualized using a scatterplot based on the primary (x-axis) and secondary 
(y-axis) principal components. The relative fragment abundance was then correlated with color intensity from 
red (low abundance) to blue (high abundance) as indicated on the right side of the scatter plot. Note that PCA 
determined that methoxy and carbonyl functional groups (blue squares and chemical structures depicted on 
scatter plot) were enriched in compounds linked to both microtubule and DNA damaging agents.
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Figure 4.  Novel associations of FDA-approved drugs with genotoxic stress and microtubule damage. (A) To 
determine if the 36 selected FDA-approved drugs were inducing DNA damage, each drug (at 50 μM) was tested 
for its ability to induce DNA damage in a genotoxic stress reporter cell line (HEK293 ATAD5-Luciferase) after 
18 hours. Graph displays the average fold change in luciferase activity per cell (y-axis, expressed in arbitrary 
units) induced by the indicated drugs (x-axis) compared to the DMSO control. Error bars indicate standard 
deviations from 3 independent triplicate experiments. (B–C) HeLa or U2OS cells were treated with DMSO, 
Daunorubicin, Fluvastatin, Norgestrel, Colchicine, Methiazole, or Parbendazole at their respective EC90s for 
4 hours. Cells were then fixed and stained for DNA, α–tubulin, and the DNA damage markers phospho-Ser139-
histone H2A.X (pH2AX) or phospho-Thr68-Chk2 (pChk2). Immunofluorescence microscopy was then used to 
quantify the percentage of non-mitotic cells with >5 pH2AX foci or pChk2 foci. Graphs display the percentage 
of non-mitotic cells with >5 pH2AX foci (B) or pChk2 foci (C) on the y-axis and the drug names on the x-axis. 
Bars in blue represent data for HeLa cells and bars in red represent data for U2OS cells. Error bars indicate 
standard deviations from 3 independent triplicate experiments. (D–E) Representative immunofluorescence 
microscopy images of HeLa cells that were treated with the indicated compounds at their respective EC90s for 
4 hours, fixed and stained for DNA, α–tubulin, and the DNA damage markers phospho-Ser139-histone H2A.X 
(pH2AX) (B) and phospho-Thr68-Chk2 (pChk2). (C). Scale bar = 5 μm.
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Cell Cytometry.  HeLa cells were plated in 384-well plates (1500 cells/well) and treated with 10 µM drugs 
for 20 hours. Cells were fixed and stained with 5 μM Vybrant DyeCycle Green (Invitrogen) for 1 hour at room 
temperature and plates were scanned with an Acumen eX3 (TTP Labtech) fluorescence cytometer using a 
488 nm laser and a cell cycle histogram profile was generated for each well. Data analysis was performed using the 
Collaborative Drug Discovery (CDD; www.collaborativedrug.com) software and outputs were exported to Excel. 
The quality of the screen was assessed by calculating the Z’ factor [Z’ factor = 1–3 x (σp + σn)/(|μp−μn|)], which 
takes into account the dynamic range of the assay and variance of the data. The screen performed with an average 
plate Z’ factor of 0.51 ± 0.09, within the optimal performance range of 0.5–1.

Computational Cell Cycle Profiling.  The percentage of cells arrested in G1, S, G2/M and subG1 phases 
by each compound and DMSO was converted to cell cycle fingerprints < G1, S, G2/M, sG1 > and < G10, S0, G2/
M0, sG10 > respectively where zero indicated the reference point. The relative distance between drug-induced 
and DMSO control was calculated by the expression < RG1, RS, RG2/M, RsG1 > = < G1–G10, S–S0, G2/M–G2/M0, 
sG1–sG10 > . The cell cycle index (CCI) defined by the Euclidean distance was obtained by 

RG RS RG M RsGCCI 1
2 2

2
2

1
2= + + +

For results of analyses, please see Supplementary Table S2.

Cell Viability End-point Assays.  20 µl of fresh DMEM:F12 medium was added to each well of a 384-well 
plate, 0.5 µl of drug stock was then plated into each well for a final drug concentration of 50 µM, and 30 µl of 
5 × 104 cells/ml HeLa cell suspension was added. Plates were incubated at room temperature for 30 minutes and 
then placed at 37 °C for 72 hours. After equilibrating at room temperature for approximately 30 minutes, 25 μl of 
CellTiterGlo® Reagent (Promega) was added to each well. Plates were incubated at room temperature for 10 min-
utes to stabilize the luminescent signal and luminescence was recorded using a Wallac plate reader (PerkinElmer). 
The average readout for the control DMSO-treated cells was used to calculate the average % cell viability of 
compound-treated cells. Similarly, HCT116, U2OS, and A549 cells were treated with the EC90 of each of the six 
selected drugs and cell viability was measured as described above.

Compound Potency.  An 8-point serial dilution (50000 µM, 12500 µM, 3125 µM, 781 µM, 260 µM, 65 µM, 
16 µM, 4 µM) in DMSO was prepared for each test compound. HeLa cells were grown at 37 °C in 5% CO2 and 
50:50 DMEM:F12 medium (GIBCO) supplemented with 10% fetal bovine serum and 1% antibiotics (penicillin 
and streptomycin). In each well of a 384-well plate, 20 µl of fresh medium was added, .5 µl of drug stock was then 
plated in each well for a final drug concentration of 50 µM to 0.04 µM, and 30 µl of 5 × 104 cells/ml cell suspension 
was dispensed into each compound containing well in triplicate. Plates were incubated at room temperature for 
30 minutes and placed at 37 °C for 72 hours. 25 μl of CellTiterGlo® reagent (Promega) was dispensed into each 
well. Plates were incubated at room temperature for 10 minutes to stabilize the luminescent signal. Luminescence 
was measured using a Wallac plate reader (PerkinElmer).

Cell Cycle Profile Clustering Analysis.  The cell cycle profile clustering analysis was conducted using the 
Heatmap.2 function in the R statistical package (version 3.4.1). Briefly, a Euclidean distance metric was used to 
compute the similarity between the 36 drug cell cycle fingerprints followed by the complete agglomerative clus-
tering algorithm. The clustered cell cycle fingerprint profiles of the 36 drugs were then normalized by a Z-score 
transformation across the four cell cycle phases, G1, S, G2/M and subG1.

Chemical Similarity Network Analysis.  The chemical similarity network analysis was performed using 
the CSNAP3D (chemical similarity network analysis pull-down) 3D program50, 51. Briefly, the 3D coordinates of 
the 36 compounds with highest cell cycle index (CCI) were retrieved from the PubChem database. The molecular 
shape similarity between compounds was evaluated using the ShapeAlign algorithm to determine 3D chemical 
similarity scores and the generated 3D ligand alignments were analyzed using the PyMOL program51. To visualize 
the pair-wise similarity relationship between compounds, the computed adjacency matrix was mapped to the 
network structure using the Cytoscape program63.

Chemical Fragment Enrichment Analysis.  The chemical fragment enrichment analysis was performed 
using the KNIME Analytics platform64. Briefly, the most common chemical fragments of four drugs suspected 
of inducing microtubule and DNA damage (colchicine, parbendazole, methiazole and podophyllotoxin) were 
identified using the MOSS algorithm65. The identified consensus fragments were subsequently evaluated based 
on 36 chemical descriptors using the Chemistry Development (CDK) toolkit and clustered using the principal 
component analysis (PCA)52, 66. The enriched chemical fragments were visualized using a scatterplot based on the 
primary and secondary principal components.

High-Throughput Genotoxic Assay.  HEK293T ATAD5-luciferase cells were grown at 37 °C in 5% CO2 
and 50:50 DMEM:F12 medium supplemented with 10% fetal bovine serum and 1% antibiotics. 1,500 cells were 
plated in each well of a 384 well plate, 20 ul of fresh medium was added to each well of a 384 well plate, followed 
by 0.5 μl of each drug at 5 mM or DMSO and 30 μl of 5 × 104 cells/ml. The plates were incubated at 37 °C for 
18 hours and equilibrated at room temperature for 30 minutes. To measure the ATAD5-luciferase activity, 50 ul of 
ONE-Glo® luciferase assay system reagent (Promega) was dispensed into each well and the luminescence signal 
was measured using a Wallac plate reader.

http://www.collaborativedrug.com
http://S2
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Immunofluorescence Microcopy.  Immunofluorescence microscopy was carried out as described67. HeLa 
or U2OS cells were treated with the indicated compounds for 4 hours, fixed, permeabilized, and co-stained with 
Hoechst 33342 (DNA stain) and the indicated antibodies. Images were captured with a Leica DMI6000 micro-
scope (Leica DFC360 FX Camera, 63x/1.40-0.60 NA oil objective, Leica AF6000 software). Images were decon-
volved with Leica Application Suite 3D Deconvolution software and exported as TIFF files.

Antibodies.  Immunofluorescence was carried out using the following antibodies: α-tubulin (Serotec: 
mca77g); phospho-histone H2A.X (Ser139) and phospho-Chk2 (Thr68) (Cell Signaling: 9718 S, 2661 S).

Data Availability.  All data generated or analyzed during this study are included in this published article and 
its Supplementary Information files or are available from the corresponding author on reasonable request.
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