
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23553  | https://doi.org/10.1038/s41598-021-02630-3

www.nature.com/scientificreports

Just noticeable differences 
for elbow joint torque feedback
Hubert Kim & Alan T. Asbeck*

Joint torque feedback is a new and promising means of kinesthetic feedback imposed by a wearable 
device. The torque feedback provides the wearer temporal and spatial information during a motion 
task. Nevertheless, little research has been conducted on quantifying the psychophysical parameters 
of how well humans can perceive external torques under various joint conditions. This study aims to 
investigate the just noticeable difference (JND) perceptual ability of the elbow joint to joint torques. 
The paper focuses on the ability of two primary joint proprioceptors, the Golgi-tendon organ (GTO) 
and muscle spindle (MS), to detect elbow torques, since touch and pressure sensors were masked. We 
studied 14 subjects while the arm was isometrically contracted (static condition) and was moving at a 
constant speed (dynamic condition). In total there were 10 joint conditions investigated, which varied 
the direction of the arm’s movement and the preload direction as well as torque direction. The JND 
torques under static conditions ranged from 0.097 Nm with no preload to 0.197 Nm with a preload 
of 1.28 Nm. The maximum dynamic JND torques were 0.799 Nm and 0.428 Nm, when the arm was 
flexing and extending at 213 degrees per second, respectively.

Joint torque feedback (JTF) is the sense of being guided or given information by a joint torque generated from a 
wearable device. This method of haptic feedback is analogous to training someone in how to move via one person 
manually moving another person’s joint through different trajectories. Typically, this is used in rehabilitation, 
where someone is re-learning a motor skill, or it can also be used to teach someone a new skill. Joint torque 
feedback could also be used to convey a general continuous signal to a person, similar to force feedback with a 
joystick. JTF is a new type of haptic feedback, and has only sparsely been  explored1–4.

In general, haptic information involves mechanotactile sensors, vibrotactile sensors, and  proprioception5–7. 
Most prior research has focused on skin receptors due to their ease of stimulation, and has specifically focused 
on the spatial resolution and sensitivity of skin sensors, such as through  vibrotactile8, skin  stretch9, and 
 mechanotactile10 feedback. In contrast, this study focuses on the proprioceptors within the arm. Unlike the 
haptic modalities detected by sensors located under the skin, proprioceptors are situated inside a joint—inside 
the muscles and  tendons5,6 (Fig. 1a). The primary afferent joint proprioceptors are Muscle Spindles (MS) and 
Golgi Tendon Organs (GTO), and they are located in muscle fibers and tendons,  respectively6 (illustrated in 
Fig. 1a, c). MS are broadly known to detect the change of length and rate of length change of muscle fibers, and 
thus detect the position and movement of a joint; GTO are used to measure the tension of the muscle  fibers6. Our 
objective is to explore using these sensors to convey haptic information to a person through JTF. This is natural 
feedback in the sense that these are the same sensory organs—proprioceptors—that we use in daily activities 
to get feedback about our body’s position and the forces in our muscles. In motion training scenarios, convey-
ing information through the proprioceptors is typically referred to as kinesthetic or proprioceptive  feedback5,6. 
Kinesthetic feedback usually consists of position or velocity feedback, or force feedback applied through a handle 
or joystick. Joint torque feedback is a subset of kinesthetic feedback, where we are specifically concerned with 
the effects of torques applied across a joint.

Some prior work has been done that is broadly related to the proprioceptive sensors: researchers have quanti-
fied how much torque is required to drive a joint  passively11, and the amount of torque a joint can generate during 
isometric contraction has also been  characterized12–14. Also, human perception when the arm is passively-driven 
has been  explored15. Early studies utilized a contralateral limb-matching test to investigate the force resolution. 
Subjects’ perceptual ability was determined based on how well they could reproduce the left arm’s perceived force 
with the right  arm16. Researchers also explored identifying force magnitudes presented with a  stylus17. However, 
the torque that encourages a person’s voluntary arm motion has not been fully characterized.

For motion training, understanding the minimum detectable torque at a joint is important. In prior work 
on motion training, researchers have identified two extremes: a fully patient-driven strategy, where no external 
assistance is provided, and a fully robot-driven strategy where the robot drives a person’s limb through a desired 
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trajectory and the person does not need to exert any effort  whatsoever18,19. Studies have found that the optimal 
assistance to maximize learning should be strong enough to cue the person to move and to realize when they 
have made an error, but not strong enough to hinder the subject’s voluntary motion or fully constrain the wearer’s 
desired  motion18,20. To meet these requirements, the torque from a wearable device for motion training should 
be relatively small but still convey information to the wearer, similar to how vibrotactile motors convey informa-
tion without causing motion. Thus, it is crucial to understand the minimum perceptual limits of joint torques, 
in order to optimally convey information through kinesthetic guidance.

Other benefits of understanding the human perceptual resolution include optimizing exoskeletons, teleop-
eration, and Virtual Reality (VR) systems. For rehabilitation and motion training applications, examining the 
minimum noticeable level of torque provides an insight into how much parasitic torque is permitted in an 
exoskeleton or force feedback system without disturbing the wearer. Parasitic torque refers to an unwanted 
resistance torque when a person moves. It can be induced by several reasons, such as friction, a control loop’s 
latency, or noise in force feedback sensors. State-of-the-art powered exoskeletons can have parasitic torques of 
0.3–1  Nm21–23; additionally, Schiele et al. found that the interaction torque between an exoskeleton and wearer 
due to mechanical constraints and misalignments could be as large as 1.46  Nm24.

Understanding the human perceptual resolution is also important in fields where the transmission of physical 
interaction is required, such as teleoperation or haptic motor  learning25. The technique called lossy compression 
utilizes the perceptual resolution for selectively eliminating haptic information outside of the human perception 
 threshold25; the reduced data size can improve the efficiency of teleoperation or VR systems.

In this paper, our objective is to understand the minimum necessary amount of external torque for a person 
to feel its presence (i.e., the Just Noticeable Difference (JND) torque), both when a joint is stationary (static con-
dition) and when it is moving (dynamic condition). The current work is an extension of a prior experiment that 
solely examined the static  condition3. In the static condition, a fixed reference torque is applied to the elbow joint 
and the subject holds stationary to resist that torque, thereby isometrically contracting their arm muscles. On 
top of the fixed reference torque, additional test torques are applied briefly in order to measure the JND. In the 
dynamic condition, the arm moves back and forth continuously, and test torques are applied briefly when the arm 
is at a near-constant velocity. In all of the experimental conditions, pressure and touch sensations from the skin 
are  masked26 over the arm area so as to isolate the proprioceptors inside the arm during Joint Torque Feedback.

Exploring the human perception under the joint’s dynamic condition is motivated by our pilot test  results4 
in which a person was following a continuous trajectory while being guided by JTF. We noticed that the arm 
motion showed a staircase trend: the person felt the JTF at first, and moved their arm. Then, they paused for a 
moment, since while moving they could not sense the stimulus. The person waited until they could sense the 
torque, then moved again. This effect suggests that arm speed affects, and masks, the sensation of torque at a 
joint. The relationship between afferent signals and the masking effect due to movement has been characterized 
as backward  masking27–29. Collins et al. applied an electric twitch to the right extensor carpi ulnaris and found 
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Figure 1.  (a) Illustration of dissected arm view, showing the primary proprioceptors involved in joint torque 
sensing as well as how the exoskeleton applies pressure and masks skin receptors. (b) Picture of a participant’s 
arm with the exoskeleton worn, showing the exoskeleton components. (c) Illustration of how each propioceptor 
is triggered under different joint conditions. The left column shows how the Muscle Spindles (MS) lengthen or 
shorten depending on the arm’s movement. The right column illustrates how isometrically contracted flexor or 
extensor activity affects the Golgi–Tendon Organ (GTO). (d) Illustration of the ten studied torque interactions, 
showing the kinesthetic stimuli (black arrows), contracted muscles (red highlighted muscle shapes), and 
direction of arm motion (blue arrows).



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23553  | https://doi.org/10.1038/s41598-021-02630-3

www.nature.com/scientificreports/

that active and passive movement contributed to 37–40% of velocity-dependent attenuation of the muscular 
sensation with the electric stimulation  input28. Also, Chapman et al. exerted small electric charges after different 
delays to the index finger skin before and after the onset of active or passive elbow extension  movement27. The 
user response was delayed 38 ms more with active elbow motion as compared to passive motion, indicating that 
motor commands from the central nervous system contribute to tactile suppression.

Similarly, other researchers conducted perceptual studies of the whole arm with a haptic  stylus1,25,30. The 
researchers found that the force feedback magnitude and arm speed influenced the JND, and the observed 
behavior seemed to have a slope following Weber’s law. In psychophysics, our sensory organs are argued to fol-
low Weber’s law where the ratio of a detectable stimulus change to the initial stimulus intensity is a constant. 
Correspondingly, this study addresses different JND torques at each joint state (preload torque and joint speed) 
in terms of Torque Slope (measured JND per preload and measured JND per joint speed).

Several researchers have studied a subset of external conditions affecting the torque perception of the arm. 
Zadeh et al. studied the JND of kinesthetic stimuli that influenced the whole arm, with a hand-held stylus 
 display25 and with the arm in motion. Feyzabadi et al. also used a stylus-based haptic device to study the force 
perception of the wrist, elbow, and shoulder joints. For the elbow specifically, Feyzabadi et al.’s experiment exam-
ined flexional motion ranging from 20◦–80◦ with a preload in the flexional direction. Similarly, Thomas et al. 
employed JTF for replacing the tactile sensation of  amputees2. Cross-modal matching was conducted between 
the vibrotactile and the joint torque feedback. The torque was applied in the flexional direction, with the arm 
moving in free motion. These studies are useful yet do not fully address all of the conditions that would arise dur-
ing motion training, i.e., different preloads and different speeds with the JTF in various directions. Furthermore, 
measuring the perception ability of a proximal joint (i.e., the elbow) with a distal manipulator (i.e., a hand-held 
stylus) could yield different results than observations through direct joint torques. For example, the perceptual 
resolution at the elbow using a hand-held  device1 could be affected by the neural receptors in the whole arm’s 
afferent pathway. Also, these studies with a stylus did not isolate the proprioceptive sensors: there is the chance 
that skin receptors in the hand holding the stylus could sense forces through pressures, skin stretch, or other 
feedback signals, giving additional information to the test subject beyond that from the proprioceptors.

In this paper, we examine ten different test conditions to completely characterize the arm’s response to both 
stationary (static) and in-motion (dynamic) conditions (Fig. 1d; Table 1). The test conditions involve arm muscles’ 
isotonic and isometric contraction representing dynamic and static joint conditions. All of the static experiments 
were conducted at the arm’s neutral condition ( 45◦ ). All test results were analyzed to derive the participants’ 
temporal, spatial, and directional perceptions. The static test condition involves 0.89 Nm and 1.28 Nm of preload. 
In the dynamic condition, the subject’s arm moves at approximately 100◦/s and 200◦/s , which is equivalent to the 
elbow moving through a range of around 80◦ at 0.5 Hz and 1 Hz. In designing the arm’s movement, the highest 
speed does not exceed 2 Hz based on Neilson et al.31.

Results
Static JND torques. The results for the static tests ( N = 14 ) are shown in Fig. 2a. A summary of the means 
and standard deviations is listed in Table 2. Each of the conditions in Fig. 2 and Table 1 has two levels of fixed 
effects, except for the neutral conditions (NCF and NCE). The effect level is followed by the label. For example, 
ECF has 0.89 Nm (ECF1) and 1.28 Nm (ECF2) of preload torque pulling toward the flexional direction (that 
leads to the extensor muscles contracting).

The best-fit torque slopes for the static condition (i.e., the slope of the least-squares regression line passing 
through the Neutral condition and the two levels of torque for a given condition) were calculated for each subject. 

Table 1.  Description of the different conditions examined in this paper.

NTF Neutral, Flexional torque Exoskeleton applies a flexion torque while the arm is posed at neutral without 
muscle contraction or arm movement

ECF Extensor muscles Contracted, Flexional torque Exoskeleton generates a flexion torque while the Extensor muscles are iso-
metrically contracted

FCF Flexor muscles Contracted, Flexional torque Exoskeleton generates a flexion torque while the Flexor muscles are isometri-
cally contracted

EMF Extensional Movement, Flexional torque Exoskeleton generates a flexion torque while the arm is moving in the exten-
sional direction

FMF Flexional Movement, Flexional torque Exoskeleton generates a flexion torque while the arm is moving in the flexional 
direction

NTE Neutral, Extensional torque Exoskeleton generates an extension torque while the arm is posed without 
muscle contraction or arm movement

ECE Extensor muscles Contracted, Extensional torque Exoskeleton generates an extension torque while the Extensor muscles are 
isometrically contracted

FCE Flexor muscles Contracted, Extensional torque Exoskeleton generates an extension torque while the Flexor muscles are iso-
metrically contracted

EME Extensional Movement, Extensional torque Exoskeleton generates an extension torque while the arm is moving in the 
extensional direction

FME Flexional Movement, Extensional torque Exoskeleton generates an extension torque while the arm is moving in the 
flexional direction
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Figure 2.  Summary of the converged torque values. For the icons below the x-axis illustrating each 
experimental condition, please refer to Fig. 1d. (a) The JND resulting from the static tests. All subject data is 
shown with gray lines, and the black line is the mean of the data. (b) The JND torque from dynamic tests, where 
the arm is in motion at different speeds. The black line is the median of the data. The black × s indicate that the 
data exceeds the maximum device output, which is 1.1 Nm.

Table 2.  Unpooled means ± standard deviations of the static JND torque and torque slope. The first row (Ext. 
Torq.) corresponds to the FCE2, FCE1, NTE, ECE1, ECE2 trials, while the third row (Flx. Torq.) corresponds 
to the FCF2, FCF1, NTF, ECF1, ECF2 trials. (Flx. = flexional; Ext. = extensional; Torq. = torque). The second 
and fourth rows show the corresponding mean Torque Slopes (i.e., mean of the torque slopes computed for 
each subject). The second row contains FCE then ECE, and the fourth row contains FCF then ECF. Brackets 
indicate the 95% confidence intervals [LL, UL].
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 Ext. Torq. [Nm]
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Figure 3.  Summary of the subjects’ torque slopes. For the icons below the x-axis illustrating each experimental 
condition, please refer to Fig. 1d. (a) The JND Torque slopes corresponding to static tests. All subject slopes 
are shown with gray dots, the black line is the mean of the data, and error bars are the standard deviation. The 
data was analyzed with a Repeated Measures ANOVA followed by a Tukey post-hoc test. FCE and ECE were 
statistically signficantly different with p = 0.002 . (b) The JND Torque slopes from dynamic tests, where the 
arm is in motion at different speeds. The black line is the median of the data. The data was analyzed with the 
Kruskal–Wallis test and followed by the Wilcoxon signed-rank test to compare pairs of conditions. Statistically 
significant pairs ( p < 0.05 ) are indicated with asterisks.
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Figure 3a shows all subjects’ data as grey dots with mean and standard deviation as black lines with error bars; 
the mean torque slopes are also shown in Table 2. A Repeated Measures ANOVA yielded significant differences 
between conditions ( F(3, 39) = 4.896, p = 0.006 ). A Tukey post-hoc test revealed that the FCE and ECE torque 
slopes were significantly different ( p = 0.002).

A Kaiser–Meyer–Olkin (KMO) test indicated that factor analysis was not informative (KMO = 0.460) and 
Bartlett’s test was not significant ( X2(3) = 6.322, p = 0.097 ), meaning that there was no strong correlation 
between each subject’s response across the different conditions. All of the static conditions had response times 
of 0.445± 0.108 s, and these were not significantly different from each other per a Repeated Measures ANOVA.

Dynamic JND torques. During the dynamic condition, subjects moved their arms through a mean ± Std.
Dev. range of 76.4◦ ± 7.5◦ . At the midpoint of the cycle, the mean absolute arm velocity was 97.1◦/s±23.2◦/ s for 
the 0.5 Hz conditions and 213.1◦/ s ±23.5◦/ s for the 1 Hz conditions. The entire cycle took 2.06± 0.01 s for the 
0.5 Hz conditions and 1.04± 0.04 s for the 1 Hz conditions.

The results for the dynamic JND tests are shown in Fig. 2b, and the medians of the data are given in Table 3. 
The dynamic measurements involved some trials where the converged JND torque values were beyond the 
hardware limit (1.1 Nm); these are shown in Fig. 2b with “ × ” symbols. The arm’s movement speed was a fixed 
effect. In the dynamic conditions, there were two measured speeds, which were two levels of the fixed effect. For 
example, the EME has two levels of extensional movement speed: 0.5 Hz (EME1) and 1 Hz (EME2). Note that 
FMF and EME are conditions with the JTF aiding the arm movement, while EMF and FME have JTF resisting 
the arm motion.

The torque slopes for each subject are shown in Fig. 3b. The torque slopes involving measurements that 
exceeded the hardware limit during the faster level (1 Hz) were calculated based on the neutral condition (NT) 
and slow level (0.5 Hz). For one subject that had both speed levels exceeding the hardware limit in FMF, the 
torque slope was computed assuming that the JND torque was 1.1 Nm for the slow level (0.5 Hz). To handle the 
outlier trials, analysis was conducted based on ranks: non-parametric tests were used, specifically the Kruskal-
Wallis test followed by a Wilcoxon signed-rank test to find significant pairs. The Kruskal-Wallis test for the 
torque slopes in the dynamic condition yielded X2(3, N = 14) = 8.298, p = 0.040 . The significant pairs from the 
Wilcoxon pairwise comparison were FMF-EMF ( Z = 2.504, p = 0.012 ) and FMF-EME ( Z = 2.228, p = 0.026 ). 
These are indicated by asterisks in Fig. 3b.

A Kaiser–Meyer–Olkin (KMO) test found that the data is not adequate for factor analysis (KMO = 0.572) 
and a Bartlett’s test did not find statistical significance X2(3) = 6.272, p = 0.099.

In the dynamic condition, all of the trials except the fastest ones (FM2 and EM2) had response times of 
0.431± 0.107 s (very similar to the static conditions), while the fastest ones had response times of 0.244± 0.064 s. 
This difference was due to the experimental setup, where the subjects were asked to answer within the arm’s 
movement. With the faster arm motion, there was a shorter time window in which subjects could respond.

Discussion
Overall, the elbow torques required to be noticeable (0.1–0.8 Nm under various conditions) are 100–200 times 
smaller than the maximum isometric torques able to be produced by the elbow (49–72 Nm)12–14. The results from 
this study show that the perception of torque feedback is affected by various joint conditions.

Static conditions. The masking effect due to a static preload (Fig. 2a) resulted in a similar pattern with the 
previous test that was conducted with 0.64 Nm and 1.28  Nm3, but with smaller JND values in all condition levels 
as compared to the prior experiment. Feyzabadi et al. found a value of 0.012 Nm as the average of testing the 
neutral conditions. This is smaller than our results for NTE and NTF, which were 0.098 [0.061, 0.135] Nm and 
0.097 [0.061, 0.132] Nm, respectively. Similarly to our previous  test3, the JND of extension torques was larger 
when the subject was contracting their tricep (ECE) as compared to their bicep (FCE). It is unknown why this 
asymmetry occurs.

Additionally, the observed torque slope (JND torque divided by preload torque) in the current experiment 
was slightly smaller than that found in the prior  experiment3. For the extension torque, it was 0.081 [0.050, 
0.111] Nm/Nm for ECE (previously 0.118 Nm/Nm), and 0.011 [-0.020, 0.041] Nm/Nm for the FCE (previously 
0.026 Nm/Nm). The flexional torque slope was 0.046 [0.015, 0.076] Nm/Nm for ECF (previously 0.0692 Nm/
Nm) and 0.047 [0.016, 0.077] Nm/Nm for FCF (previously 0.0548 Nm/Nm). These differences are likely due to 

Table 3.  Medians and median torque slopes for the dynamic JND condition. The first row (Ext. Torq.) shows 
the medians for the FME2, FME1, NTE, EME1, EME2 trials, while the third row (Flx. Torq.) shows the 
medians for the FMF2, FMF1, NTF, EMF1, EMF2 trials. The second row (Ext. Torq. Slope) shows the median 
torque slopes for FME, EME, and the fourth row (Flx. Torq. Slope) shows torque slopes for FMF, EMF. (Flx. = 
flexional; Ext. = extensional; Torq. = torque.).

FM2 FM1 NT EM1 EM2

Ext. Torq. [Nm] 0.721 0.432 0.098 0.219 0.428

Ext. Torq. Slope [ Nm/(◦/s)]  2.625 ·  1.481

Flx. Torq. [Nm] 0.799 0.430 0.101 0.314 0.408

Flx. Torq. Slope [ Nm/(◦/s)]  3.310 ·  1.409
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increased amounts of training in this experiment (we examined additional conditions, as compared to previ-
ously when only the static cases were tested) or due to slightly different parameters in the psychophysics tool 
that allowed the tests to converge faster. Additionally, in this experiment the direction that converged first could 
keep converging, whereas previously it stopped after a fixed number of transition points.

Dynamic conditions. The dynamic conditions resulted in comparatively large values for JND torque (up to 
1.1 Nm for some participants, with medians up to around 0.8 Nm for the fastest speeds), so motion does appear 
to cause a masking effect, confirming earlier  studies27,28. For comparison, the maximum JND torque during the 
static conditions was only 0.2 Nm. Also, the dynamic conditions had a relatively large variance as compared 
to the static conditions (the largest observed dynamic JND torques were around 1 Nm more than the smallest 
dynamic JND torques). This may have been due to the relative difficulty of the experiment: participants needed 
to maintain a constant arm speed and track visual cues while responding to torque cues. Some participants may 
have been better able to focus on the torque cues while still maintaining the correct arm speed. The dynamic 
JND torques do increase roughly linearly with the arm speed. Thus, Weber’s law appears to be in effect, similar 
to previous  results1,25.

The torques, and torque slopes, in the dynamic tests were similar for a given arm motion direction, regardless 
of the direction of applied torque (Fig. 2b). That is, if the elbow was moving in flexion, the minimum perceivable 
torques and torque slopes were very similar for a given speed regardless if the applied torque was pushing in 
flexion or extension; the same was true if the elbow was moving in extension. Also, the torque slopes and the JND 
torques at a given speed while the elbow was flexing were close to double those while the elbow was extending. 
Although not all pairs of fixed effect levels had significance, the FMF torque slope was larger than EME and EMF.

It is unclear why this asymmetry occurs. When the torques are applied, the arm is moving at nearly a constant 
velocity, and the velocity is the same in both directions. Thus, there is not a clear dominance of the flexors or 
extensors. It is possible that if the arm is flexing, then the biceps are more strongly contracted and if the arm is 
extending, then the triceps are more strongly contracted. However, this would result in an opposite pattern to 
that observed with the static conditions (FCE vs. ECE), where the bicep contracting had a smaller JND torque 
than when the tricep was contracting.

While the flexors tend to create higher MVC  forces32,33, the extensors have a larger cross-sectional  area32. A 
larger cross-sectional area of the extensor with the corresponding larger MS population might be responsible 
for the lower medians in extensional motion.

Another possible explanation for the difference between flexion and extension JND torques is related to the 
arm’s passive stiffness. The arm’s passive stiffness is slightly higher when the arm is flexed as compared to when 
it is  extended34,35. Thus, if the exoskeleton causes the arm to move, a higher muscle stiffness will correspond to 
a smaller displacement. If the MS in the arm muscles sense the arm’s displacement, and contribute to the sensa-
tion of external torques, presumably individuals would have a harder time sensing smaller displacements. This 
corresponds to FMF having a higher JND torque slope than the EME condition (Fig. 3b).

A final possibility is that the pressure around the arm from the exoskeleton cuff might affect the results during 
elbow flexion. To mask the skin pressure, we applied distributed pressure around the arm. This pressure increased 
during arm flexion due to the expanded volume of the contracted bicep muscle (Fig. 1). Though we did not 
measure how much the FSR readings increased during full arm flexion, the escalation of the skin pressure might 
mask proprioceptive sensations even more, leading to the FME and FMF conditions being relatively insensitive.

The change rate of the perceived torque as a function of speed is much steeper than results from Zadeh 
et al.25. They used a Phantom haptic device that the user held in the fingers and moved back and forth laterally 
while a force either opposed or aided their motion (the force switched direction as the hand switched direction 
to maintain opposing or aiding). Zadeh et al.’s test yielded a JND of 0.222 N/(m/s) for forces opposed to the 
movement, and 0.187 N/(m/s) for aiding forces. To compare our results, we can convert our torque and speed 
based on an average length between the elbow joint to the center of the hand. Considering this moment arm to 
be 32.7 cm according to anthropometric  data36 results in torque slopes of 0.884 N/(m/s) for EME, 1.668 N/(m/s) 
for FME, 1.871 N/(m/s) for FMF, and 0.824 N/(m/s) for EMF. In the opposing direction (FME and EMF in our 
experiment), the smallest JND is 0.824 N/(m/s) (EMF), and the smallest JND in the aiding direction (FMF and 
EME) is 0.884 N/(m/s) (EME). Thus, our experiment found values that are around four times larger than those 
in the Zadeh et al. experiment.

These differences could be due to several factors. Since the Zadeh et al. experiment used a Phantom haptic 
device held in the fingers, there are many more proprioceptors that could have been stimulated. Not only could 
mechanotactile and vibrotactile sensors on the fingertips be used to sense forces, but other proprioceptors along 
the wrist and hand could have provided additional information. Second, the input feedback was triggered when 
the averaged arm speed (over the entire back-and-forth cycle or multiple cycles) was at certain values. The force 
reversed directions at the ends of travel, and it is possible that the user could have sensed those transitions in some 
circumstances. Finally, the speed level investigated in the experiment was much slower than our experiment. The 
speed levels we chose are nearly two and four times larger than their experiment’s high velocity (0.22–0.28 m/s). 
For both Zadeh et al.’s experiment and our test, slower speeds yield better perceptual resolution. Our higher arm 
speeds may have led to larger torque slopes through some nonlinear mechanism.

Static versus dynamic conditions. Comparing the JND values for the static versus dynamic conditions, 
the converged torque values under the dynamic conditions (medians ranging from 0.219 to 0.799 Nm) were 
substantially larger than the values with the static conditions (0.097–0.197 Nm, including the neutral conditions) 
(see Fig. 2; Tables 2 and 3).
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Recall that GTO are traditionally considered to measure muscle force while MS measure position and velocity 
of a  joint6. We thus consider which sensors are being used to detect the joint torques in this experiment. One pos-
sibility is that the GTO are being used to detect the force change in the muscles. In most of the static conditions, 
the muscles are flexed due to the preloads on the arm. Since GTO measure the muscle tension, and the muscle 
tension changes slightly due to the torque from the exoskeleton, the GTO could be detecting the exoskeleton’s 
effects. However, we note that in the dynamic conditions, the thresholds for noticing the applied torque were 
much higher than the thresholds for the static conditions (more than four times higher for fast velocities). We 
then must consider the amount of muscle activity in the biceps and triceps during the dynamic conditions. At 
the ends of the joint travel, there will be substantial muscle activity due to accelerating and decelerating the arm’s 
inertia. However, in the center of the range of travel, the arm is moving at approximately steady state (Fig. 6b). 
While we did not measure muscle activity during the experiment, we can roughly surmise the muscle activity 
in the biceps and triceps. By taking the second derivative of the measured elbow angle and assuming a nominal 
moment of inertia for the forearm and hand, we find that the elbow torques even in the center of the range of 
motion are frequently 1-3 Nm, which must be created by the biceps and triceps muscles. Additionally, the muscles 
surely have some co-contraction due to needing to maintain control and follow the desired trajectory. Thus, there 
can be muscle contraction in the dynamic conditions that is even larger than that tested in the static conditions. 
Even if the GTO were the sole arm sensor being used to measure the torque pulses from the exoskeleton, and 
the GTO are not sensitive to arm motion (as is commonly understood), then the additional muscle activation in 
the arm could account for much of the difference between the static and dynamic conditions.

An alternative hypothesis is that some combination of the MS and GTO are contributing to the sensation of 
torque from the exoskeleton. Since the MS primarily respond to length and velocity of the muscle fibers, they 
could be stimulated if the exoskeleton caused small changes in the arm’s position which were then detected and 
used to determine that the exoskeleton caused torque on the arm. One  study37 found that people could correctly 
sense the direction of motion if their elbow was displaced only 0.1◦–0.2◦ at angular velocities of greater than 1◦/ s. 
In our experiment, during the static condition torque pulses the exoskeleton itself moved at a maximum speed 
of 1–2◦/ s with displacements of 1–2◦ during many of the pulses. While the exoskeleton’s motion is not exactly 
the same as the arm’s motion due to the intervening padding, it is likely that the arm moved more than 0.1◦–0.2◦ 
and thus could be triggering the MS with the exoskeleton’s torque pulses. During the dynamic conditions, the 
arm was moving at close to 97◦/ s or 213◦/ s in the different conditions. Due to the arm’s motion, it is extremely 
difficult to determine if any additional motion was caused by the exoskeleton. However, since the torques applied 
during the dynamic conditions were generally larger than those applied during the static conditions, it is likely 
that some perceptible arm motion occurred as well.

If the MS are contributing to the sensation of torque, then their contribution could be affected by the arm’s 
velocity. Assuming that Weber’s law holds, neural signals due to the arm’s motion could be thus masking the 
additional length changes due to the exoskeleton torque. Indeed, a recent model of the arm’s proprioceptive 
abilities supposes that the MS and GTO combine their  signals38, and that the overall neural stimulus is a com-
bination of the force and velocity.

An alternate reason why the dynamic JND is much larger than the static JND could be  thixotropy6. Briefly, 
the response of the MS is affected by the muscle’s activation immediately preceding a test condition. A condition-
ing contraction will increase the background firing rate of the  MS39,40, which would imply that a larger stimulus 
would be required to produce a noticable response. In the dynamic tests, the arm muscles create large torques 
(up to 8-10 Nm in the faster condition) when reversing the arm’s direction of motion. These large torques could 
mask any sensations in the center of the arm’s range of motion where the torques were lower, if the MS were 
involved in sensing the exoskeleton torque.

A final reason for the difference between the dynamic and static conditions could be possible psychologi-
cal distractions during the test itself. The static condition experiment was comparatively much simpler than 
the dynamic condition, where people needed to first maintain a steady arm motion and then secondly detect 
disturbance torques. Thus, a larger stimulus might be needed to gain their notice. However, this is unlikely to 
explain all of the differences observed.

Limitations. We have quantified the perceptual ability of the elbow to sense torques via a psychophysics 
tool. However, the accuracy of the converged values could be improved. The step size we implemented has a 
limitation as it is pre-defined as the exponential function. If subjects missed initial trials, it took a long time 
for the torque magnitude to get back to the perceivable range, which decreased resolution. The step difference 
could be adjusted to an individual’s learning speed using various adaptive algorithms in the future. Moreover, 
measuring electromyography (EMG) concurrently with torque inputs could better compare the arm’s muscle 
activity between dynamic and static conditions. EMG sensors could clearly show the muscle activity during the 
dynamic conditions, and better be able to determine if the increased JND values were due solely to increased 
muscle activity or if the MS must be involved. Furthermore, choosing subject groups with different age groups or 
strength-training proficiency will be another helpful reference for simulating real-life training scenarios because 
they have different muscle properties and proprioceptors. Younger people tend to have stronger MVC and larger 
cross-sectional muscle  area32, and may have different proprioceptive  abilities6.

Also, we did not perform any test re-test (i.e. using the same subjects on different days) to test the stability 
of the measurements or if subjects improved with additional practice. Thus, the stability of these measures are 
unknown. A final limitation is that suppressing the tactile feedback over the forearm and upper arm area poten-
tially affected the measurements. The exoskeleton cuffs also intensified the skin pressure during the arm flexion 
due to the expanded volume of the flexor muscle groups, which could have further affected the measurements in 
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unknown ways. In most real-world systems, exoskeleton cuffs will not be so tight and so the minimum perceptible 
torques may be different than those presented here.

Conclusions
In conclusion, this work provides a comprehensive examination of the minimum elbow torques required to be 
sensed under various conditions with the GTO and MS in the arm. The analysis suggests that the perception of 
elbow JTF is influenced by the arm’s contraction condition and movement, and that these proprioceptors are 
less sensitive than the sensors in the skin. In general, we observed a more significant masking effect from arm 
movement than from isometric contraction. This work is useful for motion training systems, exoskeleton design, 
and force-feedback systems.

Methods
Elbow exoskeleton. The hardware setup was an evolution of that used in a prior  study3,4, and is shown in 
Fig. 4. The exoskeleton’s range of motion is mechanically designed to reach 120◦ when the arm is fully flexed. 
However, when it is worn with the foam, the range is reduced to 90◦–95◦ depending on the subject’s arm vol-
ume. The chosen motor was Antigravity MN7005 KV115 (24N 28P). To provide more torque to the arm for the 
dynamic condition experiment, the maximum current magnitude was increased to 14 A. The torque in the sys-
tem was calibrated using a FUTEK LBB200 load cell with a Tacuna Systems Amplifier v.2.3. The torque constant 
was found to be 0.072 Nm/A.

As briefly described in the prior  study3, we calculated how much pressure was required to mask the skin recep-
tors based on  measurements26. Tan et al.26 explained that the human tactile system is sensitive to the perimeter of 
the contact between the arm and another object. The JND force threshold per contact perimeter was found to be 
0.06–0.09 N/cm26. The effective surfaces of the exoskeleton are the two plastic cuffs (Fig. 1b), of which the outer 
edge is 34.5 cm for each side and the surface area is 414 cm2 . When choosing 0.09 N/cm for the force threshold 
at the perimeter, the minimum pressure to mask the tactile sensors becomes 0.015 N/cm2 . After donning the 
exoskeleton and tightening the straps, four FSR sensors (size: 4.5 by 4.5 cm) are measured to make sure that 
each sensor reading is more than 0.015 N/cm2 . The four FSR sensor readings are shown in the top right corner 
of the Graphical User Interface (GUI) as four red circles (Fig. 4a). Because we wrapped the arm with foam, the 
actual pressure required to be noticeable is assumed to be larger than the value calculated from the periphery.

Figure 4.  (a) GUIs for the static (left) and dynamic (right) mini-games. The score for the mini-game provides 
participants whether the current user’s response is correct or not. Additionally, the red block of the dynamic 
condition is only shown during the demonstration to supplement the ideal timing window for response. The 
white box represents the arm position that moves along three boxes that correspond the arm’s range of motion. 
From (b) to (d) are examples of testing of the static (flexor muscle contracted), dynamic, and static (extensor 
muscle contracted) conditions, respectively.
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Software systems. The experiment was programmed in three different platforms: Processing, Texas 
Instruments Code Composer Studio (CCS), and MATLAB. Processing was utilized to make a Graphical User 
Interface (GUI) to give cues to the participants (Fig.  4); the subjects responded to perceived joint torques 
through a computer keyboard. Processing was also used to take the user’s responses and calculate the magnitude 
of the upcoming applied torque via a psychophysics tool. The calculated torque was then transmitted back to a 
Texas Instrument(TI) C2000 TMS320F28069M microcontroller (programmed in CCS) that commanded the TI 
DRV8305 motor shield to apply the torque to the arm. When the current was applied, to mitigate abrupt current 
surges that might trigger the wearer’s vibrotactile sensation, we apply a first-order Low Pass Filter with a rise time 
of 0.5 seconds. Finally, MATLAB took the logged data from Processing and summarized the user’s perceptual 
abilities. The microcontroller transmitted 24 byte data packages at 200 Hz, while the UI platform logged the data 
at 200 Hz and refreshed the GUI at 100 Hz.

Psychophysics tools. A psychophysics tool similar to that used in Kim et al.3, the interweaving Staircase Method, 
was used to assess perception capability for both static and dynamic conditions. The Staircase Method is a recur-
ring algorithm that updates the stimulus reflecting the user’s response (Fig. 5). It updates like a staircase; while 
the input alternates its direction randomly, the consecutive magnitude of the input increases or decreases based 
on the user’s  response1,25.

In the Static experiment, the state machine (Fig. 5a) constitutes two states: the Apply state and the Calculate 
state. In the Apply state, the torque is provided to the user’s arm, and they make a response. The torque is set to 
zero in the Calculate state, and the state machine is updated to prepare for the next torque application. When 
torque is applied, the user’s response could be: (1) torque felt in the flexional direction, (2) torque felt in the 
extensional direction, or (3) did not feel any torque. A series of answers of “YES-torque felt” are responsible 
for decreasing the magnitude until the answer switches to “NO-did not feel torque” and vice versa. Whenever 
the trend of magnitude change switches from increasing to decreasing and vice versa, the transition is counted, 
and the step size of the magnitude is reduced to yield a high-resolution converging value. The step difference is 
calculated with the exponential decay StepSize[n] = Ae−0.1(n−1) , where n is the transition point number (starting 
at n = 1 ), and A is a fixed scalar of A = 0.1 Nm for all conditions. The exponential function is tuned such that 
the initial adjustment can be done with the large step size and start decreasing as the transition happens. Thus, 
the Step Difference does not change until the transition happens. For example, when there were a series of YES 
responses, the system subtracted the same magnitude of Step Difference from the original torque value until the 
subject answered NO. When the answer switches from YES to NO, then the step difference’s size was changed. 
However, the initial magnitude of the torque is set considering the difficulty of the task. We found that the 
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Figure 5.  (a) Schematic diagram of state machine for static condition, and (b) example of a static JND test 
result. The programmed state machine (a) switches state between APPLY (applying torque) to CALCULATE 
(pausing torque). The APPLY state determines the direction of the torque randomly. The applied torque is 
graphed in the top panel of (b). Flexional torque is shown on the positive y-axis, and extensional torque is 
plotted on the negative y-axis. The CALCULATE state updates the magnitude of the torque based on the user’s 
response. The user responses versus time are shown in the bottom panel of (b), where a high value represents 
“perceived,” and a low value represents “not perceived.” A series of “perceived” responses leads to a decreasing 
input magnitude while the consecutive “not perceived” answers lead to the torque increasing. This continues for 
a specified number of transition points. Both directional torques converge to final values that are illustrated in 
the top panel of (b) as a blue dashed line for flexion and a magenta dashed line for extension.
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subjects had difficulty responding whenever the required arm movement is the same as the direction of applied 
torque from the pilot test. Therefore, the initial values for those conditions (FMF, EME) were set to 0.9 Nm, while 
other dynamic conditions have 0.5 Nm. The initial values for the static condition were 0.4 Nm. Even though 
more transition points directly contribute to a higher resolution of the converged value, the experiment needs to 
balance the resolution and fatigue from wearing the exoskeleton. Therefore, the static experiment continued until 
both the flexion and extension directions had at least eight transitions. Typically one of the directions converged 
before the other; the direction that converged first continued updating until the other direction reached eight 
transitions. At the end of the test, the mean of the final two transition points was recorded as the converged value. 
In the Pausing state, the experiment could also be stopped by the experimenter for an extended period of time. 
This was used whenever the participant’s arm strayed away from the initial neutral position too much (i.e., the 
forearm was more than around 30◦ away from vertical). If the experiment was stopped, the experimenter told the 
participant how to move their arm, so it was once again close to the neutral position, and then the experiment 
was resumed. The effect levels for the static condition are slightly different from our prior  test3, specifically the 
smaller amount of preload was increased from 0.64 to 0.89 Nm. The design change was made to anticipate more 
significant changes in user response with the higher preload.

Psychophysics tool for dynamic JND testing. The psychophysics tool for dynamic testing shares many properties 
with the staircase method with the static condition, including the same exponential function to calculate the 
step difference. However, the dynamic JND experiment required additional design considerations because the 
participants need to maintain the required arm speed while reacting to the psychophysical input. The first design 
consideration was how to discretize the arm movement. We pilot tested applying torque during the whole arm 
cycle, as did prior  researchers25; in this case, the subjects were asked to move the arms back and forth with the 
same average speed, and the torque magnitude and direction did not change during one complete cycle of exten-
sion and flexion. However, we noticed that users’ answers were mainly acquired when their arms were changing 
direction. At these moments, the velocity was very slow and not distinctly in either flexion or extension. We 
speculated that the users were feeling the torque in a condition that was essentially static. So, the final system 
only applied torque in the center of each arm’s movement while the arm had substantial velocity.

Figure 6 gives an overview of the GUI, arm motion, state machine, and example data for the dynamic condi-
tions. To guide the participants’ motion, a GUI was presented on a monitor. Figure 6a shows a series of green 
rectangles which are examples of the GUI at different points in the arm’s motion. Within each green rectangle, 
there are three blocks (outlines of rectangles) that correspond to the limits of the arm’s range of motion and the 
center of the range of motion. These are labeled 1© - 3© at the very bottom of the sequence of green rectangles. 
Each block changes its color to blue sequentially to guide the wearer to move to that arm angle. A moving white 
bar displays the wearer’s current arm position. The border of each block becomes thicker when the arm position 
hits the block, indicating the arm reached different points in the range of motion. Additionally, to cue the user, 
the moving white block turns red when the subject presses the keyboard. This process ensured that the subjects 
moved through the full range of motion. The approximate arm angles swept by the participant are shown in 
Fig. 6b. The gray shaded regions and labels 1© - 3© correspond to the regions and labels indicated at the bottom 
of Fig. 6a.

The state machine, Fig. 6c, updates and generates the torque signal based on the participant’s past reply during 
one motion direction (i.e., flexion or extension). The state machine calculates the stimulus based on the real-time 
arm position. Whenever the subject’s arm moved the wrong way or missed the end block, the state machine 
detected it and paused the internal update such that the user’s response was not recorded and no input magnitude 
change was made. When subjects respond, because two options (Yes or No) are given instead of three (flexion, 
extension, No), the system is equipped with a random-on-off system to mitigate subjects guessing the incoming 
stimuli. Figure 6d shows how the random decision on each extension or flexion affects the torque generation.

The second design problem in the dynamic conditions was the means to effectively guide the participant into 
moving their forearm back and forth at the right velocity. In pilot testing, we tested solely using a visual cue to 
guide arm motion, similar to the study  from25. However, the subjects were easily distracted by the arm motion 
directions and could not focus on the psychophysics sensations. Therefore, we used multimodal cues (an auditory 
cue in addition to the GUI) to facilitate subjects adapting to the test environment faster. We first attempted to 
use a continuous sound where the pitch was synchronized with the arm’s motion, but this was not helpful. Even 
with a small deviation from the desired movement, the sound changes were confusing to the subjects. We then 
sectioned the arm’s range of motion into five regions and assigned music notes of do-le-mi-fa-sol to each region 
using the Processing 3.0 Minim library. The programmed sound played whenever the arm position was within 
the region. Even with this system, the motion was not as smooth as expected. Eventually, we decided to use two 
different beeping sounds played whenever the arm motion should change direction. The subjects were instructed 
to move their arm to hit the end blocks (Fig. 6a) concurrently with the beeping sounds. This synchronization 
prevented the torque from being applied during the wrong arm movement.

Comparing Fig. 6b, d, the users nominally would move their arm through a range of 90◦ . In practice, people 
changed their arm’s motion direction as soon as they hit the end blocks ( 1© and 3© ), without fully flexing or 
extending their arm. This led to a slightly reduced range of motion during the experiment.

Participants. We fully randomized the session orders for the static and dynamic conditions via a Standard 
Latin-square design to account for any fatigue effects and learning effects. The recruited sample size was N = 14 
where 12 were male, 2 were female. The average age was 29.31± 4.00 years, and all were healthy right-handed 
individuals. The experiment was approved by the Virginia Tech Institutional Review Board (IRB #16-175) and 
the Human Research Protection Program at Virginia Tech for the COVID-19 mitigation process, and all experi-
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ments were performed in accordance with the relevant guidelines and regulations. All the participants also 
followed the COVID-19 safety guidelines. Subjects provided informed consent and signed a consent form, then 
were instructed about the purpose of the experiment before the test. The entire experiment took 45-50 min, 
including a 5-min break between the two sessions.

Experimental protocol. All of the experiments began with calibration, discussed in the next section. The 
tests constituted a randomized combination of static and dynamic sessions. The static and dynamic sessions 
were made up of a practice session, followed by two test sessions with different effect levels. Thus, all the test 
sessions, including static and dynamic tests and fixed effect levels, were fully randomized. The practice session 
was intended to facilitate learning how to respond with the keyboard given a JTF input. Due to the difficulty 
of the experiment setup for the dynamic conditions, a practice session was conducted whenever the effect level 
changed. For instance, when the speed level was increased, another practice session was conducted immediately 
before the test. The practice session for the static condition was conducted only at the neutral arm posture, with 
no preload torques.

All the practice sessions were comprised of a mini-game. Participants were rewarded with 10 points for a 
correct answer and punished with -5 points for a wrong answer. Figure 4a illustrates the GUI for the static (left) 
and the dynamic (right) mini-games. Upon responding, the correct answer is shown on the GUI by updating the 
score. Subjects are required to score 100 to transition into the test sessions. The mini-game that took 3–4 min 
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in our previous  work3 was extended to be 10 min long to ensure each participant got used to the system. After 
each session, to promote engagement, a brief summary of the participant’s performance was provided to them. 
The provided analysis included the smallest magnitude the subject could perceive in each direction and how 
quickly they responded.

Throughout the test, two computer monitors were used for the experiment: one for the subject and another 
for the experimenter. Thus, the experimenter observed the subject’s converging dependency to determine if the 
subjects were correctly pressing the buttons or were distracted from the environment. If a subject was distracted, 
the experiment was paused and the experimenter reminded them to pay attention.

Calibration. Subjects first adjusted the seat and height of the platform where their elbow was resting (labeled 
“stand” in Fig. 1b) until their upper arm was parallel to the ground. The exoskeleton was adjusted so the motor 
was aligned with the center of rotation of the elbow joint. Next, calibration of the strap pressure was conducted 
in the arm’s neutral position (at a right angle), to account for the expanded volume of the arm flexors. During 
the donning process, the subject’s arm was kept fully supinated. Straps were fastened until four FSR readings 
reached the minimum required values, which were indicated on the GUI as red circles at the top of the display 
(Fig. 4a). Due to the relatively high pressures from the exoskeleton cuffs, subjects were asked to provide feed-
back on whether it was too snug while the system was being demonstrated, and the strap pressure was adjusted 
accordingly. Lastly, subjects finalized the calibration process by resetting the index pin. As soon as the encoder 
detects the index pin during the arm swing, it triggers the timer interrupts in the microprocessor and prepares 
the motor controller.

Once the calibration is finished, the GUI indicator directs the instruction to conduct the Interweaving Stair-
case Method. The state machine indicates when each experiment terminates, then resumes once the conditions 
for the next experiment are ready, such as changing the weight used to create the preload torque in the static 
conditions.

JND for static condition. The preload torques were applied by a string pulling on the forearm of the exoskeleton. 
The string passed over a pulley, and a mass of 700 g or 1000 g of mass was attached to the string on the far side 
of the pulley (Fig. 4b, d). This created a constant preload torques of 0.893 Nm and 1.275 Nm due to the string 
pulling on the exoskeleton forearm at a distance of 13 cm from the elbow joint. On top of these preload torques, 
the exoskeleton motor provided test torques.

The GUI notifies the subject that a torque event occurs via a color change, the only visual data transferred. 
The green background on the GUI (Fig. 4b) means the torque is being applied, and the subject should respond 
if they felt the torque feedback. The red background on the GUI (Fig. 4d) indicates that the torque is not applied 
and the subject should prepare for the upcoming torque input. While the red background is shown, any user 
response is not recorded. From pilot testing, we found that the recovery torque (i.e., torque returning to zero after 
a test stimulus is applied) behaves as a phantom stimulus in the opposite direction. The event cue (color change 
only when the stimulus is applied) keeps subjects from reacting to the restoring torque.

A panel obscured the exoskeleton from the participants’ view to prevent them from responding by watching 
the arm movement (Fig. 4b, d). The participants were instructed to not touch the panel, as the mechanorecep-
tors around fingers might respond more sensitively than the kinesthetic receptors. This better matches a typical 
motion training scenario that assumes a floating limb while correcting the motion. Test subjects are required 
to relax their right arms in an L-shape, not fully supinated nor pronated. Subjects cannot see their arm, so they 
can easily deviate from the neutral position when torques are applied. If this occurs, the experimenter pauses 
the state machine and provides verbal correction to be in the neutral position again.

JND for dynamic joint condition. The dynamic condition sessions required knowledge that could be difficult to 
explain by simple verbal explanation. Therefore, a pre-recorded video of the instructor reacting to the GUI with 
the exoskeleton was prepared. It contained what the GUI was showing, the expected response, and what feed-
back the system would give when the answers were given to the system. Additionally, at the beginning of each 
practice session, the subjects were asked to move their arm while wearing the exoskeleton but without torque 
feedback. Torque was applied only after they had adapted to the visual and auditory interfaces and were able to 
generate the expected speed.

The test was separated into two sessions: torque in the opposing direction and torque in the aiding direction. 
When aiding, the torque was applied in the same direction as the arm’s motion, and when opposing it was in 
the opposite direction. Consequently, the flexional torque of FMF and extensional torque of EME were grouped 
together as the aiding trials, while EMF and FME were applied as part of the same session as the opposing trials. 
The expected user response was either yes or no (felt or did not feel the torque), and each direction’s torque was 
converged based on its own transition counter.

The dynamic condition had ten transition points to convergence. For the practice session of the dynamic test, 
we increased the number of transition points to fifteen so that the subjects could adapt to the exoskeleton and 
the GUI system before the test sessions. All the test combinations, including the static and dynamic, were fully 
randomized; some subjects had harder tasks to begin with than others. Specifically, those who began with the 
dynamic aiding conditions required additional time to learn the system.

Data availability
The raw and processed data generated and analyzed during this study are included as Supplementary Information.
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