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Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer.
Despite major advances in defining the molecular mutations driving PDAC, this disease
remains universally lethal with an overall 5-year survival rate of only about 7–8%. Genetic
alterations in PDAC are exemplified by four critical genes (KRAS, TP53, CDKN2A, and
SMAD4) that are frequently mutated. Among these, KRAS mutation ranges from 88% to
100% in several studies. Hippo signaling is an evolutionarily conserved network that plays a
key role in normal organ development and tissue regeneration. Its core consists of the serine/
threonine kinases mammalian sterile 20-like kinase 1 and 2 (MST1/2) and large tumor
suppressor 1 and 2. Interestingly, pancreas-specific MST1/2 double knockout mice have
been reported to display a decreased pancreas mass. Many of the genes involved in the
Hippo signaling pathway are recognized as tumor suppressors, while the Hippo transducers
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ)
are identified as oncogenes. By dephosphorylation, YAP and TAZ accumulate in the nucleus
and interact with transcription factors such as TEA domain transcription factor-1, 2, 3, and 4.
Dysregulation of Hippo signaling and activation of YAP/TAZ have been recognized in a variety
of human solid cancers, including PDAC. Recent studies have elucidated that YAP/TAZ play a
crucial role in the induction of acinar-to-ductal metaplasia, an initial step in the progression to
PDAC, in genetically engineered mouse models. YAP and TAZ also play a key role in the
development of PDAC by both KRAS-dependent and KRAS-independent bypass
mechanisms. YAP/TAZ have become extensively studied in PDAC and their biological
importance during the development and progression of PDAC has been uncovered. In this
review, we summarize the biological significance of a dysregulated Hippo signaling pathway
or activated YAP/TAZ in PDAC and propose a role for YAP/TAZ as a therapeutic target.

Keywords: pancreatic cancer, Hippo signaling pathway, Yes-associated protein, TAZ, KRAS mutation, pancreatic
ductal adenocarcinoma
Abbreviations: ADM, Acinar-to-ductal metaplasia; CAFs, cancer-associated fibroblasts; CTGF, connective tissue growth
factor, CYR61, cysteine-rich angiogenic inducer 61; DKO, double knockout; ECM, extracellular matrix; EMT, epithelial-to-
mesenchymal transition; FBXW7, F-box and WD repeat domain containing 7; FOLFIRINOX, 5-fluorouracil, folinic acid,
irinotecan, and oxaliplatin; GEMM, genetically engineered mouse model; GnP, gemcitabine plus nab-paclitaxel; ICMT,
Isoprenylcysteine carboxylmethyltransferase; LATS1/2, large tumor suppressor 1/2; MST1/2, mammalian sterile 20-like kinase
1/2; MMR, mismatch repair; PDAC, pancreatic ductal adenocarcinoma; TAZ, transcriptional co-activator with PDZ-binding
motif; TEAD, TEA domain transcriptional factor; PD-L1, programmed cell death-ligand 1; Pdx-1, pancreatic and duodenal
homeobox 1; YAP, Yes-associated protein.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) remains one of the
most lethal types of cancer (1). Genetic alterations in PDAC are
exemplified by four critical genes that are frequently mutated
(KRAS, TP53, CDKN2A, and SMAD4). Some of these mutations
occur when the tumors are in a preneoplastic condition (2).
Despite major advances in defining the molecular mutations
driving PDAC, this disease remains universally lethal, with an
overall 5-year survival rate of only about 7–8%. Although recent
developments in systemic chemotherapy such as FOLFIRINOX
(5-fluorouracil, folinic acid, irinotecan, and oxaliplatin) and GnP
(gemcitabine plus nab-paclitaxel) regimens have provided
improved survival outcomes of patients with metastatic PDAC
(3, 4), chemoresistance to current systemic chemotherapies
(FOLFIRINOX and GnP) is a major treatment issue.
Furthermore, of the patients who receive surgical treatments,
60% relapse within 12 months; this is most likely due to micro-
metastases that were not detected during the diagnostic
computed tomography scan (5). Although approximately 25–
30% of patients respond to chemotherapeutic drugs, most
eventually become resistant. Resistance mechanisms include
deficiencies in drug uptake, alteration of drug targets,
activation of DNA repair pathways, and resistance to apoptosis
(6). Heterogeneity caused by admixture of tumor cells and
stromal cells also produces chemoresistance and limits the
targeted therapy of PDAC (7). Unfortunately, our knowledge
of the genetic and biological backgrounds in this deadly disease
has not yet been linked to improved patient survival. Further
developments in therapeutic approaches by continued
elucidation of the genetics and molecular biology of PDACs
may be the next approach to overcoming this poor prognostic
disease and improving survival outcomes.

The Hippo signaling pathway was first discovered from
studies in Drosophila melanogaster (8–10). Hippo signaling is
an evolutionarily conserved network that plays a key role in
normal organ development and tissue regeneration (11).
Multiple inputs control Hippo signaling, ranging from
mechanical cues instructed by the cellular microenvironment
(mechano-transduction) to soluble factors and metabolic
pathways (12, 13). The Hippo pathway also displays extensive
crosstalk with other signaling pathways such as transforming
growth factor-beta (14, 15), Wnt (16, 17), Sonic hedgehog (18,
19), and Notch (20, 21). Its core consists of the serine/threonine
kinases mammalian sterile 20-like kinase 1 and 2 (MST1 and
MST2; Hippo in Drosophila) and large tumor suppressor 1 and 2
(LATS1 and LATS2). MST1/2 cooperate with salvador homolog
1 to phosphorylate and activate LATS1/2 kinases. LATS1/2
kinases then combine with the adaptor MOB kinase activator 1
to phosphorylate the Hippo transducers Yes-associated protein
(YAP) and transcriptional co-activator with PDZ-binding motif
(TAZ) (9, 22) (Figure 1). Many of the genes involved in the
Hippo signaling pathway are recognized as tumor suppressors,
while YAP/TAZ are oncogenes. In addition, YAP and TAZ can
be phosphorylated at numerous sites (23, 24). Active LATS1/2
kinases phosphorylate YAP at 5 serine residues (S61, S109, S127,
S164, and S381) and TAZ at 4 serine residues (S66, S89, S117,
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and S311) (23, 24). Among these, S127 (S89 in TAZ; as noted
below, the two proteins share moderate sequence similarity) and
S381 (S311 in TAZ) are key phosphorylation sites in suppressing
YAP/TAZ oncogenic activity (24, 25). Phosphorylation of YAP
and TAZ results in their cytoplasmic translocation, sequestration
by 14-3-3 proteins, and recruitment of the b-TrCP (SCF)
ubiquitin ligase complex (24).

Upon dephosphorylation, YAP and TAZ accumulate in the
nucleus and interact with transcription factors such as TEA
domain transcriptional factor (TEAD)1, TEAD2, TEAD3, and
TEAD4. YAP/TAZ also transcriptionally activate target genes
such as connective tissue growth factor (CTGF) and cysteine-rich
angiogenic inducer 61 (CYR61) (11). Deregulation of Hippo
signaling has been recognized in a variety of human solid
cancers, including PDAC (26–28). YAP/TAZ induce the
epithelial-to-mesenchymal transition (EMT) and also induce a
more undifferentiated state with malignant behavior in cancer
cells (25, 29). YAP/TAZ also contribute to the strongly
immunosuppressive microenvironment characteristic of mouse
and human PDAC (30). Although YAP and TAZ have very
similar structural topologies, share nearly half of their overall
amino acid sequences, and are thought to be largely redundant,
they may differ in their regulation and downstream functions
(31, 32).

YAP/TAZ have become extensively studied in PDAC and
their biological importance during the development and
progression of PDAC has been uncovered. In this review, we
summarize the biological significance of a dysregulated Hippo
signaling pathway and activated YAP/TAZ in PDAC, and
propose a role for YAP/TAZ as a therapeutic target.
BIOLOGICAL ROLE OF HIPPO SIGNALING
PATHWAY DURING NORMAL PANCREAS
DEVELOPMENT

The mammalian pancreas is a dual-function organ that is critical
for the regulation of basic metabolism. In the mouse, development
of the pancreas is divided into two stages, commonly denoted as
the primary and secondary transitions (33). In a report using
pancreatic MST1/2 double knockout (DKO) mice, George et al.
(34) found that YAP is broadly expressed throughout the
pancreatic and duodenal homeobox 1 (Pdx1)-positive
embryonic day (E)12.5 mouse pancreas (primary transition)
(34) (Figure 2). YAP expression then gradually becomes limited
to prospective ductal and acinar regions at E16.5 (secondary
transition). At E16.5, the productal cells show high YAP
expression in the nucleus, whereas acinus-fated cells display
expression mainly within the cytoplasm. Strikingly, prospective
endocrine cells are negative for YAP expression. Pancreas
development at E12.5 is characterized by compartmentalization,
whereas E16.5 is characterized by massive cell proliferation and
differentiation throughout the pancreas epithelium. In the adult
mouse pancreas at 6 weeks (34), YAP expression is markedly
decreased and strong expression is largely confined to ductal and
terminal-duct centroacinar cells, unlike in the embryonic pancreas.
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YAP expression in acinar cells displays a weak cytoplasmic staining
pattern, and is undetectable within islets. YAP expression in the
adult human pancreas mirrors that in the mouse. On the other
hand, phosphorylated-MST1/2 expression (indicative of active
Hippo signaling) is broadly detectable in adult human pancreas,
and islet cells display strong expression of phosphorylated MST1/2
(34). In another report using pancreaticMST1/2DKOmice by Gao
et al. (35), nuclear YAP staining was observed in the “trunk”
regions at E15.5, and was almost undetectable at birth. Thereafter,
YAP expression is weak and confined mainly to the ductal
compartment at postnatal day (P)7 and later stages. MST1/2
mRNA levels are highest at E15.5 and lowest at birth; MST1
mRNA expression reappears at P7 and later stages. Interestingly,
YAP expression is decreased and absent during the late embryonic
and perinatal periods, raising the possibility that YAP must be
silenced for proper pancreas differentiation. Such sequential
changes in YAP expression have a crucial role for proper
pancreas development (34, 35).

Indeed, in pancreatic MST1/2 DKO mice, abundant YAP
expression was observed in the abnormally numerous duct-like
structures from P7 to P14 (35). Furthermore, the duct-like cells
inMST1/2DKOmice originated from acinar cells. In the absence
of MST1/2, acinar cells differentiate normally but fail to maintain
their differentiated state and de-differentiate or trans-
differentiate into a duct-like state (35). On the other hand,
Frontiers in Oncology | www.frontiersin.org 3
MST1/2 deletion does not affect perinatal YAP expression,
suggesting that perinatal YAP repression occurs via an MST1/
2-independent mechanism (35).

In addition, pancreatic MST1/2 DKO mice show the
histologic features of acute pancreatitis. While no discernible
difference is observed between control and pancreatic Mst1/2
DKOmice at E12.5 (primary transition), a dramatic reduction in
the overall expression of amylase is found in the pancreatic
MST1/2 DKO mice at E16.5 (secondary transition), suggesting a
defect in exocrine differentiation (34). In these mice, acini fail to
form the classic rosette-like structure (34, 35). Robust immune
cell infiltration and TUNEL-positive cell death are also detectable
with a pancreatitis-like phenotype (35). These findings further
suggest that Hippo signaling becomes active during the
secondary transition where it regulates acinar cell proliferation
and differentiation.

By 6 weeks, the majority of pancreatic cells are not
proliferating in mice (34). In contrast, one-third of amylase-
positive acinar cells and cytokeratin 19-positive ductal cells
display sustained cell proliferation with BrdU incorporation in
the pancreaticMST1/2DKOmice (34). Thus, MST1/2 play a role
as suppressors of proliferation in the mammalian pancreas.

On the other hand, for endocrine cells, YAP is not expressed in
glucagon- or insulin-expressing cells at E12.5 and E16.5,
respectively (34). Even at P30, YAP is not detectable in the b-
FIGURE 1 | Regulation of the Hippo signaling pathway in mammalian cells. See text for details.
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cells (35). YAP remains undetectable within endocrine cells even
in the absence of MST1/2 (34). Additionally, islet cells are largely
Ki-67-negative, in agreement with undetectable YAP expression in
both control and pancreaticMST1/2 DKO mice (34). The ratio of
insulin-positive to glucagon-positive cells is not different between
control and MST1/2 DKO mice (34), and blood glucose level also
shows no significant difference between them (34, 35). On the
other hand, complete loss of YAP in Yapflox/flox:p48-Cre mice also
has no effect on blood glucose level (36). Hippo signaling does not
play a crucial role in the pancreatic endocrine compartment.

As a consequence of the above features, the pancreas in
pancreatic MST1/2 DKO mice is smaller (approximately 2-fold
decrease in pancreas mass), displaying a pale white color and
atrophy (34, 35). While Hippo deficiency in liver results in liver
hypertrophy (37, 38), the Hippo-deficient pancreas is reduced in
size (34, 35). Thus, pancreas mass and tissue architecture are
Frontiers in Oncology | www.frontiersin.org 4
greatly disrupted in the absence of MST1/2. YAP plays a crucial
role downstream of MST1/2 during pancreas development, and
dysregulation of Hippo signaling may contribute to human
pancreatic disease phenotypes.
BIOLOGICAL ROLE OF THE HIPPO
SIGNALING PATHWAY IN PANCREATIC
CANCER DEVELOPMENT—LESSONS
FROM GENETICALLY ENGINEERED
MOUSE MODELS

The genetic landscape of PDAC is characterized by four
frequently mutated genes: KRAS, TP53, CDKN2A (p16), and
SMAD4 (39). The four predominant gene mutations appear to
FIGURE 2 | MST1/2 and YAP expression during normal pancreas development. MST1/2 mRNA levels are highest during the embryonic phase and lowest at birth.
MST1 mRNA expression reappears at postnatal day 7 and later stages. Phosphorylated MST1/2 expression (active Hippo signaling) is broadly detectable in adult
human pancreas, and islet cells display strong expression of phosphorylated MST1/2. YAP is broadly expressed throughout the pancreatic and duodenal E12.5
mouse pancreas (primary transition), but then gradually becomes restricted to prospective ductal and acinar regions at E16.5 (secondary transition). In the adult
mouse pancreas, YAP expression is markedly decreased and the strong expression is largely confined to ductal and terminal-duct centroacinar cells, unlike in the
embryonic pancreas. In pancreatic MST1/2 double knockout (DKO) mice, nuclear YAP staining is observed in the “trunk” regions during the embryonic phase, but is
almost undetectable at birth. Thereafter, YAP expression is weak and confined mainly to the ductal compartment at birth and later postnatal stages. In pancreatic
MST1/2 DKO mice, abundant YAP expression was observed in abnormally numerous duct-like structures during the postnatal phase. YAP remains undetectable
within endocrine cells even in the absence of MST1/2. Pancreatic MST1/2 DKO mice show the histologic features of acute pancreatitis and decreased size (an
approximately 2-fold decrease in pancreas mass).
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occur sequentially as PanIN progresses. KRAS mutations can be
found even in normal pancreas and in PanIN1. In PDAC, KRAS
mutation ranges from 88% to 100% in several studies (40–45).
Although the initial step in PDAC development remains to be
elucidated, oncogenic KRAS mutation is a key event, as
evidenced by its presence in PanIN lesions (46, 47) and the
development of PanIN lesions in oncogenic KRAS-driven
genetically engineered mouse models (GEMMs) (48, 49). The
oncogenic KRAS mutation perturbs the constitutively activated
RAS protein, and results in the dysregulated activation of
proliferation and survival pathways. GEMMs have provided
several insights into the development of PDAC (50–53).
Although oncogenic KRAS mutations are recognized early
events in PDAC development, they are not entirely sufficient
for the development of fully invasive PDAC. Indeed, only 5–10%
of animals in GEMMs with mutated KRAS (without additional
genetic alterations) develop frank PDAC, and do so very late
(usually after 9 months) (50). PDAC development can be
enhanced by the existence of another mutation (e.g., TP53)
(51, 54). Pancreatic inflammation by administration of cerulein
Frontiers in Oncology | www.frontiersin.org 5
accelerates the formation of PanINs and PDAC in KRASG12V

mice (55). In addition to the role of oncogenic KRAS in
development of PDAC, KRAS mutations have also been shown
to be important for PDAC maintenance (56, 57). Interestingly,
inactivation of KRASG12D in confirmed precursor lesions and
during progression to PDAC leads to tumor regression of those
lesions, showing that KRASG12D is required for tumor cell
maintenance (56, 58) (Figure 3). In an analysis of KRAS
mutation type, codon G12D mutation was the most frequent
(48%), followed by G12V (31%) and G12R (21%) (45).

Acinar-to-ductal metaplasia (ADM) caused by pancreatitis
is an initiating step in pancreatic tumor development (55).
Cerulein treatment reduces phosphorylation of LATS1, and
increases YAP/TAZ protein levels accompanied by strong
nuclear localization (59). Following cerulein treatment,
cytokeratin 19 (duct cell marker) expression is also
increased, consistent with acinar-to-ductal reprogramming
(59). Thus, YAP/TAZ activity is accelerated in the injured
pancreas, particularly in the subset of cells undergoing
ADM (Figure 3).
FIGURE 3 | Pancreatic tumor development and maintenance by KRAS-dependent and KRAS-independent mechanisms via YAP activation. Oncogenic KRASmutation is a
key event of the development of PanIN lesions. Acinar-to-ductal metaplasia (ADM) caused by pancreatitis is an initiating step in pancreatic tumor development. The pancreatic
tumor mouse model LSL-KRASG12D; Pdx1-Cre displays increased ADM lesions and development of PanIN in response to cerulein, accompanied by YAP/TAZ expression. On
the other hand, deletion of YAP/TAZ reduces the ability of KRASG12Dmutant mice to develop ADM in response to cerulein, and these mice are free of PanIN lesions even after
cerulein-induced pancreatitis. Inactivation of KRASG12D in established tumor lesions can lead to tumor regression. Although KRASG12D extinction induces regression of
pancreatic tumors, 70% of the mice develop relapsed tumors via oncogenic KRAS-independent mechanisms involving the YAP1 oncogene. An anti-YAP1 therapeutic strategy
with KRAS-targeting agents may be required for elective tumors.
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Recent studies have demonstrated that YAP/TAZ play a crucial
role in the induction of ADM, an initial step in the progression to
PDAC, in GEMMs (36, 59). The pancreatic tumor mouse model
LSL-KRASG12D;Pdx1-Cre displays the whole spectrum of
preneoplastic lesions (50). In these mice, increased ADM lesions
and development of PanIN with strong YAP/TAZ expression are
detectable, and YAP/TAZ levels are elevated in pancreatic protein
lysates (59). Deletion of YAP/TAZ significantly reduced the ability
of KRASG12D mice to induce ADM in response to cerulein, and
these mice (KRASG12D;YAP1fl/fl;TAZfl/fl) were free of PanIN lesions
at 3 months after the transient induction of pancreatitis by
cerulein, similar to control mice (59). Thus, YAP/TAZ are
required for KRASG12D-induced ADM in response to
pancreatitis in vivo (Figure 3). Deletion of YAP/TAZ in the
KRASG12D mice reduced Ras activation even after cerulein
treatment (59). In contrast, ectopic YAP/TAZ activation in
acinar cells by adenoviral vectors converted the infected acinar
cells to duct cell morphology (59). Overexpression of
constitutively active YAP1 in primary acinar cells also enhances
Ras activity (59). YAP/TAZ are necessary and sufficient for ADM
induction (59). Acinar cell-specific YAP/TAZ signaling may be
essential for oncogenic KRASG12D-induced PanIN formation in
the context of pancreatitis.

Zhang et al. (36) genetically engineered KRASG12D/+:
TP53R172H/+:YAPflox/flox:p48-Cre mice to determine whether
YAP is involved in PDAC development. In their study,
KRASG12D/+:p48-Cre or KRASG12D/+:TP53R172H/+:p48-Cre mice
with one or two intact YAP alleles developed ADM and early
PanINs from 4 to 8 weeks of age, respectively (36). These ADM
and early PanINs progressed through late-stage PanINs and
eventually to invasive PDAC by 2 to 4 months in KRASG12D/+:
TP53R172H/+:p48-Cre mice, or from 6 months to 2 years in
KRASG12D/+:p48-Cre or KRASG12D/+ mice (36). In contrast,
when these mice underwent homozygous YAP deletion
(KRASG12D/+:YAPflox/flox:p48-Cre and KRASG12D/+:TP53R172H/+:
YAPflox/flox:p48-Cre), they entirely lacked any late-stage PanINs
or PDAC (36).

Zhang et al. generated p48-Cre;LSL-KRASG12D;FBXW7fl/fl

mice to examine whether loss of the tumor suppressor FBXW7
might be an additional gene alteration in the development of
PDAC (60). They found that the mice displayed accelerated
tumorigenesis: PDACs were detectable by P14 and all mice
yielded PDACs by P40 PDAC in p48-Cre;LSL-KRASG12D;
FBXW7fl/fl mice was preceded by earlier onset of ADM and
PanIN lesions, and accompanied by chromosomal instability and
the accumulation of YAP (60). Furthermore, in a pancreatic cell
line established from p48-Cre;LSL-KRASG12D;FBXW7fl/fl mice
and in FBXW7-deficient human pancreatic cancer cells, down-
regulation of YAP attenuated cell growth. Thus, deletion of the
tumor suppressor FBXW7 accelerates KRAS-driven pancreatic
tumorigenesis with YAP expression (60).

Kapoor et al. examined the mechanism of KRASG12D-
independent PDAC recurrence using a doxycycline-inducible
KRASG12D transgene and conditional p53 null alleles (p48Cre;
tetO_LSL-KRASG12D; ROSA_rtTA; p53L/+, designated iKras)
(61). In their investigation, KRASG12D extinction by
Frontiers in Oncology | www.frontiersin.org 6
doxycycline withdrawal induced complete regression of
pancreatic tumors at three weeks, as determined by MRI
imaging. However, 70% of the mice developed relapsed tumors
between 9 and 47 weeks after doxycycline withdrawal, with a
median survival of 36.6 weeks compared to 15.4 weeks for iKras
mice with continued doxycycline treatment (61). Kapoor et al.
revealed oncogenic KRAS-independent bypass mechanisms
involving the YAP1 oncogene in KRASG12D-independent
PDAC recurrence, and emphasized the potential importance of
an anti-YAP1 therapeutic strategy for elective tumors in the
clinical setting with agents that targeted KRAS and its signaling
pathways (61) (Figure 2). Shao et al. reported similar
mechanisms in KRAS-driven lung cancer (62). These findings
suggest that murine PDAC cells can survive in the absence of
oncogenic KRAS signaling and acquire alternative mechanisms
to foster their own growth (61, 63). The activity of the
transcriptional co-activator YAP plays a critical role in the
promotion and maintenance of PDAC by operating as a key
downstream target of KRAS signaling. YAP/TAZ amplification
frequency ranged from 0% to 19% in 9,125 tumor samples
among 33 cancer types from The Cancer Genome Atlas (64).
Among these 33, the top six cancer types with the highest
amplification frequency of YAP/TAZ included all five
squamous cell-involved cancers (lung squamous cell
carcinoma, esophageal squamous cell carcinoma, head and
neck squamous cell carcinomas, and bladder urothelial
carcinoma), whereas the frequency in PDAC was about 2%
and 14th among 33 cancer types (64). Overall, YAP has
emerged as a central node of transcriptional convergence in
growth-promoting signaling in PDAC cells by both KRAS-
dependent and KRAS-independent bypass mechanisms.
(Figure 3). Collectively, these observations indicate that YAP/
TAZ also play a crucial role in the development and recurrence
of PDACs.
CLINICAL IMPACT OF YAP/TAZ
EXPRESSION IN PDAC PATIENTS

The clinical function of YAP as a prognostic marker has been
investigated in several studies (Table 1), which have indicated
that YAP and/or TAZ are overexpressed in tumor samples from
patients with PDACs (61, 65–68). It has been found that nuclear
overexpression of YAP is an independent prognostic marker for
poor survival and is associated with liver metastasis (68).
Furthermore, using public mRNA expression data, YAP was
confirmed to be correlated with poor survival (69, 70). The 5-
year survival rate was 0% in patients with high YAP mRNA
expression compared to 32% in those with low expression.
Furthermore, multiple YAP/TEAD-regulated genes were
associated with poor prognosis, such as transforming growth
factor alpha, heparin-binding EGF-like growth factor, integrin
subunit alpha 2, P2Y2 receptor, G protein-coupled receptor 87,
and mucin 1. On the other hand, YAP-inhibitory pathway
components were associated with a favorable prognosis, such
as STE20-related kinase adaptor/liver kinase B1, protein kinase
July 2021 | Volume 11 | Article 700315
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A/large tumor suppressor, and tuberous sclerosis complex/
mammalian target of rapamycin complex 1.
BIOLOGICAL ROLE OF YAP/TAZ
IN CANCER CELLS

There is accumulating evidence that YAP and TAZ promote
proliferation and growth of PDAC cells. Treatment of PDAC
cells with YAP-targeting small interfering RNA oligonucleotides
significantly reduced tumor growth (65). It has been reported
that eukaryotic translation initiation factor 5A–pseudopodium-
enriched atypical kinase 1 signaling regulates YAP and TAZ
expression and pancreatic cancer cell growth (71). Disrupting
this signaling in pancreatic cancer cells inhibited YAP/TAZ
protein expression, reducing the expression of stem cell-
associated transcription factors and tumor sphere growth (71).

In human PDAC cells, YAP functions as a downstream
effector of the crosstalk between insulin/IGF-1 receptor and G
protein-coupled receptor systems (72). Stimulation with insulin
and the G protein-coupled receptor agonist neurotensin induced
rapid YAP nuclear import and markedly augmented the mRNA
levels of YAP/TEAD-regulated genes, including CTGF and
Cyr61. The growth-promoting agonists regulated YAP activity
via PI3K and protein kinase D in PANC-1 and MiaPaCa-2 (72),
human cell lines that correspond to the squamous/quasi
mesenchymal/basal-like sub-type of PDAC. It is of great
interest that YAP function has been associated with this PDAC
sub-type, considered the most clinically aggressive form.

The epithelial-to-mesenchymal transition (EMT) is a
developmental regulatory program defined by the phenotypical
transition from an epithelial to a mesenchymal cell state. The
EMT is an essential step for metastasis and confers resistance to
therapy (73). Active YAP promotes pancreatic cancer cell
moti l i ty , invasion, and tumorigenesis in a mitotic
phosphorylation-dependent manner and contributes to the
EMT in pancreatic cancer cells by several mechanisms,
Frontiers in Oncology | www.frontiersin.org 7
including hyperactivation of AKT signaling (66, 67, 74, 75).
YAP/TAZ also interact with nuclear factors such as ZEB1 (29)
and SMADs (76, 77), both of which are important EMT
regulators. TGF-b is a well-known EMT inducer in cancer
cells. TGF-b enhances YAP nuclear localization and stabilizes
YAP activity, and TGF-b-induced EMT and YAP activity are
both blocked by inhibition of AKT signaling in PDAC cells (78).
Xie et al. (67) focused on TAZ activation in pancreatic cancer
cells and examined its functional roles in the EMT. Aberrant
expression and activation of TAZ in pancreatic cancer cells
promoted the EMT via down-regulation of E-cadherin and up-
regulation of vimentin expression. In contrast, depletion of TAZ
in pancreatic cancer cells suppressed the EMT phenotype (67).

PDAC is characterized by a high degree of chemoresistance.
Gemcitabine has been the standard chemotherapeutic agent in
PDAC since 1997 (79). Several mechanisms of YAP-induced
chemoresistance have been proposed. One mechanism suggests
that YAP overexpression induces the EMT in pancreatic cancer
cells by activating the AKT cascade, which can cause resistance to
gemcitabine (74). Another proposed mechanism involves
microRNA, since microRNA 181c was overexpressed in PDAC
samples and correlated with poor prognosis. microRNA 181c
directly repressed MST1, LATS2, salvador homolog 1, and MOB
kinase activator 1, leading to YAP and TAZ activation, and
gemci tabine res i s tance in v i t ro and in v ivo (80) .
Isoprenylcysteine carboxylmethyltransferase (ICMT) is the
catalytic enzymes in the three step prenylation processing that
posttranslationally modifies substrate proteins including RAS
isoforms. Suppression of ICMT inhibits cancer stem cell self-
renewal and chemoresistance of mutant KRAS pancreatic cancer
cells with TAZ protein degradation (81). On the other hand,
expression of constitutively active KRASG12V restores TAZ
protein level and the self-renewal ability of pancreatic cancer
cells. Thus, mutant KRAS plays a major role in TAZ expression
and cancer stem self-renewal in pancreatic cancer cells, and
ICMT has potential as a pharmacological target in the treatment
of mutant KRAS pancreatic cancer cells (81).
TABLE 1 | YAP/TAZ expression and functional relevance in human pancreatic cancers.

Reference Number Target Location Positive ratio Outcomes

Diep et al. (65)
64 YAP1 Primary 77% Not available

Yang et al. (66)
38 YAP Primary 61% Not available
25 YAP Metastatic site 72% Not available

Xie et al. (67)
57 TAZ Primary 82%* Not available

Salcedo Allende et al. (68)
64 YAP1 Primary 90.62% Poor OS

Rozengurt et al. (69)**
176 YAP mRNA Primary 20% Poor OS

Zhou et al. (70)***
176 YAP1 mRNA Primary 50% Poor OS
July 2021 | Volume 11 | A
*Weak, moderate, and strong expression of TAZ were identified as positive.
**A published interactive open-access database (www.proteinatlas.org/pathology) was used.
***The cohort of The Cancer Genome Atlas (TCGA) was used.
OS, overall survival.
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BIOLOGICAL ROLE OF YAP/TAZ IN THE
TUMOR MICROENVIRONMENT

An important feature of human and murine PDAC is an
extensive desmoplastic stroma (82) that increases the stiffness
of the extracellular matrix (ECM) surrounding epithelial cancer
cells (83). The Hippo/YAP pathway has been recognized to play
a critical role in mechano-transduction (84, 85) and in sensing
ECM stiffness (86). High stiffness leads to inhibition of the Hippo
tumor suppressive pathway while enhancing the activity of YAP/
TAZ. The stroma contains cancer-associated fibroblasts (CAFs),
immune cells, endothelial cells, and the ECM. Pancreatic stellate
cells are resident mesenchymal cells of the pancreas that
represent the major source of CAFs. It has been found that
YAP and TAZ are expressed at high levels in activated pancreatic
stellate cells in PDAC, as well as in chronic pancreatitis (87).

Transglutaminase 2 secreted by pancreatic cancer cells
promotes cross-linking of collagen, which activates CAFs and
stimulates their proliferation, and results in higher collagen
production by CAFs and further stiffening of the stroma. In
turn, such a stiff tumor microenvironment conveys mechanical
signals to cancer cells, leading to activation of YAP/TAZ and
tumor progression (88). Environmental stimuli, including
obesity and metabolic syndrome, also enhance the promotion
of invasive PDAC (89, 90).

PDAC is characterized by a profound inflammatory reaction
and an immunosuppressive state (91). Pancreatic tumors are
associated with immune dysfunction, partly mediated by the
recruitment of immunosuppressive cells, such as tumor-associated
macrophages and myeloid-derived suppressor cells (92, 93). These
cells are recruited to the tumor microenvironment and can inhibit
T-cell activity. YAP has been identified as a critical regulator of
the immunosuppressive microenvironment in PDAC. YAP
inactivation prevented recruitment of myeloid-derived suppressor
cells while in turn supporting infiltration of antigen-presenting
macrophages and T-cell activation, thereby promoting apoptosis of
tumor cells (30). Although T-cell activity is critical for tumor
immunity, T-cell fate is governed by Hippo signaling (94–96).
Geng et al. reported that TAZ induces Th17 cell differentiation
and suppresses the differentiation of immunosuppressive regulatory
T-cells (95). Ni et al. reported that immunosuppressive activity of
regulatory T-cells was dependent on YAP expression in melanoma,
and the anti-tumor immunity was enhanced in the absence of YAP
(97). In hepatocellular carcinoma, YAP mediates the migration
of macrophages in vitro and in vivo (98). Thus, YAP/TAZ are
capable of regulating the biological activity and function of T-cells
and macrophages, which is crucial for tumor immunity. They
thereby participate in immune escape by suppressing normal
immunological activity.

Whole-genome and whole-exome sequencing of PDACs have
revealed a mean mutation load of 1.8 and 1.1 mutations per
megabase, respectively, and only 5% of PDACs displayed a
hypermutated phenotype (99). The identification of
hypermutated PDACs is important because these tumors are
sensitive to immunotherapy (99). Furthermore, the prevalence of
microsatellite instability was found to be around 5% in many
solid tumors, while in PDAC it was only 2% (100). These DNA
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mismatch repair (MMR)-deficient tumors carried high neo-
antigen load and displayed considerably improved responses to
programmed cell death 1 blockade (100). These authors reported
that solid tumors with MMR deficiency are responsive to
immune checkpoint blockade with pembrolizumab.
Pembrolizumab has subsequently been approved by the FDA
for solid tumors with MMR deficiency, regardless of tissue of
origin (101). Furthermore, the clinical benefit of pembrolizumab
was confirmed in patients with microsatellite instability high
MMR-deficient non-colorectal cancers including pancreatic
cancer (102). Thus, immunotherapy is a rapidly progressing
field in cancer treatment. Among the immunotherapy
modalities, immune checkpoint inhibition has displayed
considerable success in several solid tumors, but there is still
no significant benefit in PDAC.

In cancers other than PDAC, there is accumulating evidence
that YAP/TAZ play a pivotal role in PD-L1 expression.
Overexpression of constitutively active YAP or TAZ by the
deletion of MST1/2 or LATS1/2 enhances PD-L1 expression in
breast and lung cancer cell lines (103). Furthermore, PD-L1
expression is also induced by YAP in BRAF inhibitor-resistant
melanoma, and the relationship between YAP and PD-L1
expression was validated in human clinical melanoma tissues
(104). In human non-small cell lung cancer, YAP regulated PD-
L1 at the transcriptional level, suggesting that YAP has potential
as an immunotherapeutic target (105). Lee et al. found that YAP
regulates PD-L1 by directly binding to the PD-L1 promoter and
that YAP/PD-L1 signaling modulated tumor cell proliferation
and migration in EGFR–TKI-resistant lung adenocarcinoma, and
also that YAP down-regulation inhibited PD-L1 expression (106).
It is worth further exploring the role of YAP/TAZ in tumor
immunotherapy. Thus, targeting YAP/TAZmay be an alternative
approach for combination with immunotherapy in cancer cells
and the tumor microenvironment.
THERAPEUTIC TARGETING OF THE
HIPPO SIGNALING PATHWAY IN PDAC

According to the abovecollectedevidence, it is reasonable todevelop
drugs that target YAP and TAZ activities in PDAC. As indicated
above, tumor cells with YAP activation can evade the requirement
for KRAS mutant expression in PDAC (63). YAP is a key element
notonlydownstreamofRasbut also as analternative route tobypass
the need of this oncogene for tumor relapse. Recently, the
KRASG12C inhibitor Sotorasib is effectively developed for solid
cancers (107). In 11 PDAC patients withKRASG12Cmutation, one
patient had a confirmed partial response, 9 had stable disease, and
one had progressive disease in response to Sotorasib (107). Even if
Ras could be effectively inhibited by this new therapy, YAP
amplification offers a potential pathway to induce tumor
recurrence. Recent studies suggest novel approaches to inhibit
YAP/TAZactivitywithdrug repositioning in clinicaluse, including
statins. Statins, which have been used to treat dyslipidemia and
prevent heart diseases, selectively inhibit 3-hydroxy-
methylglutaryl (HMG) CoA reductase (108), the rate-limiting
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enzyme in the generation of mevalonate. Accelerated mevalonate
biosynthesis through mutant p53 (109–111) and AKT/mTORC1
(111) has been reported in cancers. Themevalonate pathway plays
an important role in the generation of lipids and lipid
intermediates, including farnesyl pyrophosphate, geranylgeranyl
pyrophosphate, and cholesterol. In preclinical studies (112, 113),
statins delayed the progression of PDAC in mice harboring
KRASG12D mutation. Statins were identified as potential YAP
inhibitors by screens of molecules that changed the nuclear/
cytoplasmic distribution of YAP (114). In our previous study,
statin treatment suppressed cancer cell growth via TAZ down-
regulation in hepatocellular carcinoma (115). Several
epidemiological studies have indicated that statin use correlates
with favorable oncologic effects in PDAC (116–124), especially in
males (119, 120). A large study demonstrated that statins were
associatedwith a significantly reduced PDAC risk (by 34%), with a
stronger effect in males (119). The beneficial effects of statins
depend on the type of statins used, with several reports showing
positive associations with lipophilic (and not hydrophilic) statins
and reduced cancer risk (125–128). On the other hand, Hamada
et al. reported that regular statin use was not associated with
pancreatic cancer risk in two large prospective cohort studies in the
U.S (129). Nevertheless, Hamada et al. also reported increased
survival in PDAC patients with regular pre-diagnosis use of statins
(130). Recently, a meta-analysis of PDAC risk that included more
than 3 million participants and 170,000 PDAC patients has been
published (131). This study indicates a significant decrease in
PDAC risk with statin use, thus reinforcing the conclusion that
statin administration is associated with beneficial effects in PDAC
patients. In addition to their potential efficacy in primary
prevention and interception, statins may improve the outcome
for patients after surgical removal of their primary PDAC (116,
117, 132), indicating a possible role for statins in the prevention of
PDAC recurrence. Collectively, accumulating evidence from
epidemiological and preclinical studies indicates a protective
effect of statins in PDAC. Of the evaluated treatments in PDAC,
verteporfin (133, 134) has a direct effect on Hippo signaling by
inhibiting YAP–TEAD interactions. Erlotinib (135), FG-3019
(CTGF antagonism) (136), BIS 1 (135), LY3009120 (133) and
ICMT small molecule inhibitor (81) indirectly affect YAP and/or
TAZ signaling. Although the mechanism is not fully clarified for
several natural substances, curcumin (32, 137), resveratrol (138),
Stichopus japonicus acidic mucopolysaccharide (139), and
pseudolaric acid B (140) have been reported to target YAP/TAZ
signaling. Also, in our previous study, curcumin, a major
component of turmeric and an old Indian spice, successfully
suppressed TAZ/YAP expression and exerted anticancer effects
in hepatocellular carcinoma cell lines (32). In the future, direct or
indirect pharmacological modulation of YAP/TAZ expression
may become promising approaches to fight this deadly disease.
CONCLUSIONS

The Hippo pathway is an evolutionarily conserved signaling
pathway in mammals, and YAP and TAZ are key downstream
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regulators in the Hippo pathway that play a crucial role in the
development of the normal pancreas and of PDAC in GEMMs.
Furthermore, YAP and TAZ play a crucial role in the
development of PDAC by both KRAS-dependent and KRAS-
independent bypass mechanisms. Also in PDAC progression,
aberrant transcriptional activity of YAP and TAZ has a pivotal
role in malignant behavior, including cell growth, EMT, and
drug resistance. Besides, YAP/TAZ play a tumor-promoting
role in the tumor microenvironment. PDAC features an
extensive desmoplastic stroma, and the stroma contains CAFs
and immune cells. YAP promotes CAF activation and
subsequent fibroinflammatory responses, and the resultant
high stiffness enhances the malignant behavior of PDAC with
high activity of YAP/TAZ. In addition, YAP acts as a critical
regulator of the immunosuppressive microenvironment in
PDAC. YAP/TAZ have potential as a therapeutic target not
only for cancer cells, but also for the tumor microenvironment
in PDAC. Thus, accumulating evidence supports the biological
importance of YAP/TAZ in the development and progression of
PDACs, and the regulation of YAP/TAZ signaling is
increasingly recognized as a therapeutic target. In the near
future, direct or indirect pharmacological modulation of YAP/
TAZ may become promising therapeutic approaches in PDACs.
On the other hand, complete deletion of YAP in knockout mice
induced embryonic lethal ity at E8.5 due to severe
developmental defects (141). Although TAZ knockout mice
show only partial lethality, with 20% of the mice remaining
viable, the survivors develop renal cysts and lung emphysema
(142–144). Since YAP/TAZ has so many important
physiological functions, as evidenced by YAP-null and TAZ-
null mice, careful targeting of the YAP/TAZ signaling pathway
to minimize systemic effects is clearly a highly desirable goal in
PDAC treatment. Anti-YAP/TAZ strategies to selectively block
aberrant YAP/TAZ signal activation are attractive and rational.
Biomarker analysis to identify aberrant YAP/TAZ signal
activation may therefore be the next step to establish an
efficient therapeutic approach.
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