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A viscous quantum hydrodynamics 
model based on dynamic density 
functional theory
Abdourahmane Diaw    & Michael S. Murillo

Dynamic density functional theory (DDFT) is emerging as a useful theoretical technique for modeling 
the dynamics of correlated systems. We extend DDFT to quantum systems for application to dense 
plasmas through a quantum hydrodynamics (QHD) approach. The DDFT-based QHD approach includes 
correlations in the the equation of state self-consistently, satisfies sum rules and includes irreversibility 
arising from collisions. While QHD can be used generally to model non-equilibrium, heterogeneous 
plasmas, we employ the DDFT-QHD framework to generate a model for the electronic dynamic 
structure factor, which offers an avenue for measuring hydrodynamic properties, such as transport 
coefficients via x-ray Thomson scattering.

Access to high-power laser sources, such as the Linac Coherent Light Source (LCLS)1, National Ignition Facility 
(NIF)2 and Omega Laser3, has opened the path to investigating essential properties of non-ideal plasmas such 
as ionization potential depression4, transport coefficients5 and ionization state6. Understanding the dynamical 
properties of non-ideal plasmas is critical for modeling and designing high energy-density science experiments, 
including inertial-confinement fusion7, cluster explosions8, laser-produced ion beams9, hypervelocity impacts10, 
in nanotechnology11,12 and astrophysics13.

Among all the approaches to modeling heterogeneous, non-equilibrium quantum systems, quantum hydro-
dynamics (QHD) is a computationally attractive approach with rich history in statistical mechanics. Shortly after 
the development of quantum mechanics, Bloch14 proposed the first QHD model by simply choosing the 
Thomas-Fermi pressure for the electrons in an otherwise classical hydrodynamics model. In 1964, Hohenberg 
and Kohn15 developed ground-state density functional theory for the inhomogeneous electron gas, which was 
immediately generalized to finite temperature by Mermin16. Combining the ideas of Bloch with DFT, Ying17 pro-
posed a new quantum hydrodynamic model via an adiabatic generalization of the density functionals. In Ying’s 
model, the pressure is represented by P[n(r,t)] with n(r,t) a time-dependent density described by the continuity 
equation. Ying’s QHD model includes explicitly all correlation and exchange effects included in the chosen energy 
functional. Using an alternate approach, Gasser and Jüngel18 derived QHD equations using the Schrodinger equa-
tion with Wentzel-Kramers-Brillouin (WKB) wave functions. This approach yields the classical momentum equa-
tion with the Bohm potential but it does not account for correlations. Correlations effects and quantum 
degeneracy can be included in an ad hoc manner in this model by replacing the Bohmian potential with quantum 
potentials12 or self-consistently through orbital-free density functional theory (OF-DFT)19,20. In yet another 
approach, using the moment expansion of the Wigner-Boltzmann equation, Gardner21 proposed a QHD model 
for semiconductor devices that extends the classical hydrodynamic model to include O( )2  quantum corrections. 
Similar results were obtained with the Wigner-Poisson system by Manfredi and Haas22 for a quantum electron 
gas. Following Levermore23, Degond and Ringhofer24 used a non-commutative version of the entropy externali-
zation principle to build a QHD model starting from the quantum Liouville equation. The moment equations are 
closed by a quantum Wigner distribution function that minimizes the entropy.

Despite these important advances, describing collisional processes in moderately coupled quantum plasmas 
remains a challenge10,22,25. Here, we explore an alternate approach based on a new formulation of quantum hydro-
dynamics (QHD). QHD approaches have the advantage of including equation-of-state and transport quantities 
more naturally than response-function approaches. Apart from these potential modeling advantages, QHD mod-
els of DSF therefore also provide access to experimental measurements of these quantities, thereby extending the 
utility of DSF. We develop a QHD framework based on the extension of the classical dynamical density functional 
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theory (DDFT)26–28, a variant of time-dependent density functional theory (TDDFT)29. DDFT provides a set of 
hydrodynamics equations by taking the velocity moments of Liouville equation and closes the system using den-
sity functional theory26–28. A fundamental assumption of this theory is that the equilibrium energy functional of 
the system can be used to guess the correlation energy functional when the system is out of equilibrium. While 
DDFT has found wide use in many-body classical systems30–32, we extend its use in quantum systems17 to viscous 
quantum systems, in general, and to DSF, specifically.

We apply the DDFT-QHD model to stationary, homogeneous and isothermal plasmas for which the dynamic 
structure factor (DSF) is well defined. While the DSF is of interest in its own right, it is also connected to x-ray 
Thomson scattering (XRTS) experiments; XRTS yields much essential information about plasmas, including den-
sity, temperature and atomic physics information (e.g., ionization state6, ionization potential depression4, etc.).

Results
Dense strongly coupled plasmas are characterized by large collisional contributions and degenerate electrons. 
These features make the DDFT-QHD approach a reliable tool for accurately describing the dynamical properties 
of these systems. For simplicity, here, we consider a quantum plasma comprising only electrons with density 
distribution n and mass m interacting through a pairwise Coulomb potential | − ′|v r r( ). We use atomic units (i.e., 

 πε= = = =e m 4 10 ) for the remainder of this work. The hydrodynamic equations for the electrons can be 
written generally as

∂
∂
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n
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nu uu( ) ( ) , (2)

which are continuity and momentum equations written in terms of a generalized force tensor  . Note that the 
continuity equation (1) and the left-hand side of (2) are generic, with the physical properties of the quantum 
electron gas entering through terms on the right-hand side of (2). In the DDFT approach17,28,33, it is assumed that 
the system is close enough to equilibrium that an adiabatic closure can be chosen for  ; that is, = n u[ , ]  . The 
primary assumption of this model is that the system is near equilibrium, a condition well satisfied in highly colli-
sional plasmas. Further, the equilibrium density is forced to be consistent with the thermodynamic ground state 
of the system by choosing the diagonal portion of the tensor to be of the form δ δΩ n n[ ]/ , where Ω is the free 
energy of the system. When Ω n[ ] is expressed using orbital-free density-functional theory (OFDFT), that portion 
of   is closed. The off-diagonal portion of   can be written in its long-wavelength form to yield a generalized 
Navier-Stokes equation of the form
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where η is the shear viscosity, and ξ is the bulk viscosity; all other symbols have their usual meanings. Provided η 
and ξ can be expressed in terms of n u( , ), the hydrodynamic equations are closed.

In DDFT, one writes the total free-energy functional as

Ω = + Ω + Ωn T n t n t n tr r r[ ] [ ( , )] [ ]( , ) [ ( , )], (4)H xc

where T n tr[ ( , )] is the free energy of the noninteracting system, Ω n tr[ ]( , )H  is the Hartree free-energy functional, 
and Ω n tr[ ]( , )xc  is the exchange-correlation (xc) functional. The Hartree term is exactly known and is an explicit 
function of space and time.

A key advantage to the DDFT approach to QHD is that all thermodynamic properties are included 
self-consistently through the total free energy Ω, for which a wide range of approximations are available34–37. 
In fact, this approach is very similar to the well-known generalized hydrodynamics, developed by Frenkel38, 
that extends the classical Navier-Stokes equation to describe the properties of both solid and liquid bodies. 
Furthermore, our DDFT-QHD approach can be connected with other approaches based on Bohmian dynam-
ics. If we set the viscous terms equal to zero in (3) and choose the gradient-corrected Thomas-Fermi (TF) 
functional for T[n], one recovers the well-known Bohmian QHD20 form; again, however, the DDFT approach 
enforces self-consistency of its form with the other terms in the free energy. The connection between DFT and the 
Bohmian potential will be briefly shown below.

Density fluctuations are not readily available in density-functional theories, and our DDFT-QHD approach 
suffers from this limitation. However, in equilibrium, the fluctuation-dissipation theorem allows us to connect the 
linear response of the system to density fluctuations. We write the DSF of the electrons as

ω
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where β is the inverse electron temperature and χ ωk( , )ee  is the susceptibility of the free electrons. A large body of 
literature39 focuses on the calculation of the system DSF ωS k( , ), with most work based on the Chihara40 
decomposition
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The quantities f k( ) and q k( ) are the Fourier components of the density of bound and free electrons. The first 
term of (6) corresponds to low-frequency electron-density fluctuations arising from ion dynamics and is propor-
tional to the ion-ion DSF ωS k( , )ii . The factor ωS k( , )ce  in the second term describes the contribution from core 
electrons41 and is modulated by the ion self-motion ω′S k( , )s . The third term is the free-electron DSF ωS k( , )ee  in 
the presence of a uniform ionic background. The quantity ωS k( , )ee  can be obtained from the standard Lindhard 
dielectric function within the random-phase approximation (RPA), or extended to include collisions as proposed 
by Mermin42. Thiele et al. generalized the Mermin form to include a dynamic collision frequency within the Born 
approximation43, and Arkhipov et al. generalized the Mermin form to two-component plasmas, including sum 
rules44.

The RPA results were also improved by including exchange and correlations through the local field corrections45–52.  
The ionic correlations contributions in a warm dense matter have been considered by Gregori and Gericke53. In 
this scheme, the strongly coupled effects of the ions are included through the different components of the mem-
ory function constrained by the sum rules54. This phenomenological approach has been applied successfully in 
Coulomb liquid54–57 community for systems where the memory functions have a Gaussian or exponential form. 
However, for more complex systems, the form of the memory becomes mathematically intractable. Schmidt and 
coworkers58 have proposed a hydrodynamic model that begins with moments of the Wigner-Poisson system with 
a collision term added. In such an approach you cannot describe correlations properly since the resulting pressure 
term is of an ideal gas. The DDFT-QHD approach we introduce here accounts for self-consistently many-body 
physics effects and also non-local hydrodynamic effects through the choice of the free-energy functional.

The linear susceptibility associated with a weak external potential δ ωv k( , )ext  that induces a disturbance 
δ ωn k( , ) in the electronic density ωn k( , ) is defined as
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Thus, the susceptibility can be determined by linearizing the quantum hydrodynamics equation and using (7). To 
do, we first expand the density and velocities about a uniform mean as

δ= +n t n n tr r( , ) ( , ), (8)0

δ=t tu r u r( , ) ( , ), (9)

which yields the linearized QHD equations in Fourier space:
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where δ δ= ΩV n nr( ) [ ]/ , and the tilde sign denotes the Fourier transform. By combining (10) and (11) and using 
(7), we obtain an expression for the electron susceptibility:
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where η η ξ= +(4 /3 )l  is the longitudinal viscosity. To proceed, we need to choose specific forms for the different 
contributions of the free-energy functional Ω[n]. The free-energy functional is typically chosen to ensure that an 
accurate equilibrium density is recovered, although exact analytical forms are generally not known. However, the 
contributions of the excess free-energy functional to the free energy of the system, Ω = Ω + Ωn n n[ ] [ ] [ ]ex H xc , can 
be expressed formally in terms of the direct correlation function ′| − |c r r( )ee  as follows59:

∫ ∫ ∫μ
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2
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2

where ∆ = −n n nr r( ) ( ) 0, and μex is the excess chemical potential. Once the pair potential v q( ) has been speci-
fied, the self-consistent contributions of the excess free-energy functional can be calculated using the 
direct-correlation function via path integral quantum Monte Carlo (PIMC) simulations60,61, integral equations62 
or analytical fits63. Let us now evaluate the free-energy functional of the non-interacting electron gas] T[n].

Many approximations for T[n]64–66, have been described in the literature- Thomas-Fermi (TF), Kirzhnits gra-
dient correction (TFK)65, von Weizsäcker funtional (vW)64, Perrot functional66 to name a few. Most of these 
models are based on an extension of the TF functional
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is the Fermi-Dirac integral of order p, α r( ) is the chemical potential normalized with the kBT and the electron 
density is given by

π β
α= .n Ir r( ) 2 [ ( )]

(16)2 3/2 1/2

We consider here the functional form for an electron gas based on the TF functional with the finite-temperature 
Kirzhnits gradient correction (TFK)65:
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Here, we introduced a coefficient γ that allows to capture a variety of results. First, the systematic gradient expan-
sion of Kirzhnits yields the prefactor γ = 1/9. Second, the von Weizsäcker result follows by a partial integration 
and γ = 1. The assumption in this gradient-correction expansion is that the error made by neglecting the third- 
and higher-order terms is very small. For high-density plasmas, interface-mixing problems or shock structures 
in which temperature and density gradients can be large, this expansion ceases to be valid. In such circum-
stances, it may be important to include higher-order terms for the thermal terms through higher gradient cor-
rections q in the TFK functional. The non-interacting free-energy functional T[n] can also be expressed in terms 
of the Lindhard function, which is exactly known, instead of using OFDFT66,67. Let us now show the connection 
between DFT and the Bohm description. The functional derivative of the kinetic energy functional (17) is given 
by20

δ
δ
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where ξ α α α= ′− −I I( ) ( )/ ( )1/2 1/2
2 , its derivative with respect to the density is denoted ξ α′( ). The first term of (18) is 

the Fermi pressure while the second term corresponds to the generalized Bohm potential in the finite-temperature 
regime, revealing the underlying connection between DFT and the Bohm description. The connection between 
DFT and the Bohmian picture has recently been discussed in a paper by Stanton and Murillo20 where a Kirzhnits65 
correction was used to get the “Bohm” term quite generally.

After linearizing and taking the Fourier transform of (13) and (17), the contributions of the non-interacting 
and interacting electron gases to the susceptibility become
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where the TF length and the parameter ν are given by
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respectively. Substituting (19) into (12), we find
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Here the frequency ω is in units of the electron plasma frequency, = | |q k a is the wave number, π=a n(3/4 )1/3 is 
the Wigner-Seitz radius, λ λ= a/F FT T

‐  is the Thomas-Fermi length in the units of the Wigner-Seitz radius, the 
viscosity is in units of ωn ap

2, and the coupling parameter, defined as the ratio of the potential energy to the average 
kinetic energy, is given by βΓ = a/ .

Substituting (21) into (5) yields the free-electron DSF
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Equation (22) is the main result of this work. The second factor is the usual Bose function. The denominator 
of the third factor includes quantum degenerate plasma effects through the direct correlation function C q( )ee , 
thermal effects with high-order gradient terms, and viscous damping through ηl. It is worth noting that when the 
degeneracy parameter θ ∼ Γr /s  is very large, electrons can be considered to be in a non-degenerate, classical state. 
If we then replace the exponential in the Bose function by its Taylor expansion, we recover the dynamic structure 
of non-degenerate electrons given by the Navier-Stokes model68.
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The form of the DSF obtained from this theory, without the dissipative effects, is connected to the approaches 
based on the local field corrections49. The direct correlation function which is the main ingredient of this 
approach is related to the local field correction (LFC) G q( ) as:

β
= − − .G k

v k
C k( ) 1 1

( )
( )

(23)ee

In the random phase approximation (RPA), the direct correlation function is given by β= −G k v k( ) ( )ee  con-
sequently the LFC vanishes, =G k( ) 0. Thus, the direct correlation function describes the strongly Coulomb cor-
relation and exchange effects beyond the RPA. Several approximations for the LFC45,46,49,69, has been proposed 
starting from the formulation of local field corrections due to Coulomb correlations and exchange effects by 
Hubbard45. Utsumi and Ichimaru49 formula has been widely used to investigated the static properties of systems 
at metallic densities. Holas, Aravind and Singwi70 have suggested an expression for the dynamical LFC in strongly 
coupled electron gas. Although, we can use existing analytical fits for the LFC to obtain the direct correlation 
function, we choose here to computed this quantity directly using Ornstein-Zernike equations with the 
hypernetted-chain approximation closure71. Furthermore, matter under extreme conditions of temperature and 
pressure undergoes large spatial gradients (i.e., shocks structure, interface problems, etc.). The heterogeneity can 
greatly altered the Thompson spectra with respect to the uniform case as recently discussed by Kozlowski and 
coworkers72. In our approach, the constitutive equations will relax to the correct DFT thermodynamic ground 
state, which other methods cannot guarantee. This means we have the full non-local correlations absent from 
most other approaches opening up the possibility of studying the cases for which the usual homogeneous and 
isotropic forms like ε ωk( , ) are not applicable. This can be done through the introduction of the inhomogeneous 
direct correlation function ′c r r( , )ee . In the next section we will focus on the characteristic features of our main 
result (22).

Discussion
Computing the DSF (22) requires knowledge of the viscosity and the direct correlation function. In the literature, 
the DSF is often expressed in terms of the local field correlation, and the latter quantity is evaluated using analyt-
ical fits52,73,74. The direct correlation function C q( )ee  can also be obtained directly through numerical simulations; 
that is the avenue pursued in this work, using hypernetted-chain calculations62,75, with a quantum statistical 
potential (QSP)76–78. We use QSP approach here to merely have easy access to results for which we can illustrate 
the DDFT method, which is the main point of the paper; other methods can be also used to get the structure 
information for the DDFT model. In fact, we see a strength of QSPs in this regard: the key quantity is the 
electron-electron c r( )ee , which is not accessible from DFT approaches. Electron-electron correlation functions are 
available from PIMC, however, and that provides validation for our input quantities. Jones and Murillo79 have 
shown the theoretical underpinnings of QSPs and reviewed their extension to fully degenerate quantum systems. 
Dutta and Dufty60 have compared compared QSP-based RDFs from the modified Kelbg QSP and PIMC and show 
that over an extremely wide range of physical conditions the QSP predictions are nearly perfect; it is only at very 
low densities that we can see a modest deviation. Here, we choose the QSP from the pioneering work of Hansen 
and McDonald76 since they yield results similar to the more complicated Kelbg potentials. Comparisons between 
Coulomb, HM and Kelbg potentials are shown in the online Supplementary Material. Next, we turn to the 

Figure 1.  Effects of the coupling parameter on the spectra. We show the variation in the DSF for different 
values of the coupling parameter Γ and the normalized wavelengths = | |q ak . The coupling parameter Γ ranges 
from 0.2 to 0.8, and rs ranges from 1.0 to 4.0. The dynamic structure factor ωS q( , )ee  is normalized by its 
maximum value. The two plasmon peaks are symmetric and the ratio of their amplitudes gives a measure of the 
electrons temperature.
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electronic viscosity is needed, which is determined by both electron-electron and electron-ion collisions. The 
electron viscosity is obtained by interpolating the zero-temperature viscosity proposed by Conti and Vignale80 
and the finite-temperature viscosity for classical plasmas by Stanton and Murillo33. When building this fit, we 
considered contributions only from electron-electron interactions. However, the electron viscosity should also 
take into account electron-ion81–83, contributions, which can be more significant than the electron-electron vis-
cosity in the regimes of interest. Please see the online Supplementary Material for a detailed description of the 
calculation of these two quantities.

Figure 1 shows the spectra of the DSF for different values of the wave number q, the coupling strength Γ and 
the density parameter rs. The free electron DSF is normalized by its maximum value. In Fig. 1a, the positions of 
the plasmon peaks (Stokes and anti-Stokes) and its amplitude remain almost unchanged when the quantum 
parameter rs increases from 1.0 to 4.0. The reason is, in this regime θ ( 1), the correlations and quantum degen-
eracy effects are negligible and consequently have no impact on the propagation of the plasmon. Furthermore, the 
width of the plasmon peak reduces when q and rs increase owing to the fact that the viscosity which acts to 
broaden the width of the peak is very sensitive to the density parameter rs. Figure 1a–c show that the position and 
width of the plasma peak vary strongly with Γ. These figures also display some of the standard features of the 
plasmons peaks; they are symmetric with respect to the zero frequency, and the difference between their ampli-
tudes gives a measure of the electron temperature through the detailed balance relation. It is worth noting that for 
large values of the coupling parameter and density, the plasmon peak is at a frequency smaller than the plasma 
frequency ωp.

For a given value of the wave number q, the peak of ωS q( , )ee  corresponds to the dispersion relation of the 
plasmon ω ω= q( )q . According to (22), the dispersion relation is approximately given by

ω ω
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ν η
≅
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.‐ ‐q n C q q q

q
3
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4 2 (24)

q p e F F
l2 2

2

0 e T
2 2

T
4 4

2 4

In the RPA limit, with a pure Coulomb potential, the direct correlation function is given by β= −C q v q( ) ( )ee . 
By substituting this result into (24) and setting the viscosity equal to zero, we recover the Bohm-Gross dispersion 
relation84 for an isothermal plasma. The dispersion relation of the plasmon is shown in Fig. 2 for = .r 1 86s  and for 
Γ = 1.0 and Γ = 0.7. The red triangles lines show the DDFT-QHD result (24), and the data points indicated with 
blue line corresponds to (24), with the viscosity set to zero, ηl = 0. From our basic result (24) we can explore sev-
eral limits that yield other models. For example, because the direct correlation function is related to the local-field 
correction through the relation β= − −c q v q G q( ) ( )[1 ( )]ee ee , we can neglect the three higher-order terms in (24) 
to obtain the local-field correction (LFC) result. We show this limit in Fig. 2 as a green line. Next, we can retain 
the second and third terms to example quantum corrections to the LFC result, and that model is shown as blue 
triangles. The full result, including viscosity is shown as the red line; note that the viscous correction is large, 
suggesting that the power series in q of (24) is probably not converged at the largest values of q in the plot.

The dispersion relation (24) implies that the width of the peak of the DSF is broadened by the viscosity. 
Therefore, by measuring the width of the peak of a spectrum, information about the electron viscosity can be 
inferred. We can obtain a good estimate of the width in the following way. We know the location of the peak from 
the dispersion relation (24). Near that peak, we know what ω is, and this information can be put into η ωq l peak

2  to 

Figure 2.  Plasmon dispersion relation. We show the frequency as a function of the wave number q for = .r 1 86s  
and (a) Γ = 1.0 and (b) Γ = 0.7. DDFT-QHD refers to (24), which accounts for strong correlations and viscosity. 
The label “DDFT-QHD: η = 0l ” corresponds to (24) with the viscosity set to zero. The green curve shows the 
local field correction dispersion relation.
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obtain the width of the DSF. This scaling gives the width in terms of both ηl and C q( )ee , which means that ηl cannot 
be determined without knowledge of the direct correlation function. However, by fitting the entire spectrum of 
the DSF, all quantities can be obtained: the density, the temperature, and the viscosity. The DSF spectra suggest 
that measurements at a few q values is best.

Concluding Remarks
A general framework for electron dynamics is provided with DDFT-QHD. Our model is the specific approxima-
tion of TDDFT in which the generalized-force functional is replaced by the equilibrium functional. We estab-
lished the connection between DDFT-QHD and DSF through the fluctuation-dissipation theorem, allowing for 
improved QHD models to be compared with experimental data. The predicted DSF spectrum exhibits strong cor-
relations and collisions that are built self-consistently into the model; this result differs from those obtained with 
more common Lindhard approaches42–44, in which collisions enter through a dynamic collision frequency43,44, or 
though local field corrections85. Our result suggests that the electronic viscosity can be determined experimen-
tally by measuring the electron DSF.

Our approach is a full hydrodynamics model that can be used to simulate non-equilibrium, heterogeneous 
dense plasmas72. For example, we could investigate shock physics, fluid instabilities, and large-scale experiments. 
Most other methods are based on stationary, homogeneous/isotropic approximations; this is explicit in functions 
such as χ ωk( , ). Thus, while our DDFT formulation of QHD is significantly beyond these simple linear response 
functions, we show here that we are able to make contact with the XRTS community and connect the scattering 
spectrum to transport coefficients in a direct way with a hydrodynamic approach.

Finally, our model still lacks an equation for the energy fluctuations. Past experience suggests54–57,86, that 
energy fluctuations might cause a zero frequency mode. This latter was experimentally measured in a liquid 
lithium by Sinn and coworkers87 confirming molecular dynamics simulations results performed by Canales, 
GonzÃ¡lez, and Padró86. Our DDFT-QHD approach would miss any mode originating from thermal fluctua-
tions54,58,88, because it is based on an isothermal assumption. We think this approach can incorporate an energy 
equation, but this is work in progress. In future work, it would be useful to include other transport quantities, 
such as the viscoelastic relaxation time and the thermal conductivity. Extension of this model to the full XRTS 
form factor with an electron-ion generalization of the DDFT-QHD equations89,90, is left for the future.
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