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Alain Gey1,4, Sebastian Kobold5,6, Elizabeth Fabre1,7

and Eric Tartour1,4,8*
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CXCR6 is a receptor for the chemokine CXCL16, which exists as amembrane or

soluble form. CXCR6 is a marker for resident memory T (TRM) cells that plays a

role in immunosurveillance through their interaction with epithelial cells. The

interaction of CXCR6 with CXCL16 expressed at the membrane of certain

subpopulations of intratumor dendritic cells (DC) called DC3, ideally positions

these CXCR6+ T cells to receive a proliferation signal from IL-15 also presented

by DC3. Mice deficient in cxcr6 or blocking the interaction of CXCR6 with its

ligand, experience a poorer control of tumor proliferation by CD8+ T cells, but

also by NKT cells especially in the liver. Intranasal vaccination induces CXCL16

production in the lungs and is associated with infiltration by TRM expressing

CXCR6, which are then required for the efficacy of anti-tumor vaccination.

Therapeutically, the addition of CXCR6 to specific CAR-T cells enhances their

intratumoral accumulation and prolongs survival in animal models of

pancreatic, ovarian and lung cancer. Finally, CXCR6 is part of immunological

signatures that predict response to immunotherapy based on anti-PD-(L)1 in

various cancers. In contrast, a protumoral role of CXCR6+T cells has also been

reported mainly in Non-alcoholic steatohepatitis (NASH) due to a non-antigen

specific mechanism. The targeting and amplification of antigen-specific TRM
expressing CXCR6 and its potential use as a biomarker of response to

immunotherapy opens new perspectives in cancer treatment.
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Introduction

CXCR6 was initially described as a co-receptor for HIV (1)

expressed on human memory T cells (2, 3). It is also detected on

natural killer (NK) cells (3), NKT cells (4), dendritic cells (DC)

(5), alveolar macrophages (6) and innate lymphoid cells (ILC)

(7). CXCR6 induction is slow (8 days) after activation (8, 9). IL-

15 or antigen exposure followed by TGFb induce CXCR6 (10)

and this effect can be further increased by IL-21 (11).

CXCR6 does not appear to be required in the functionality of

CD8+T cells (12–14).

Its unique ligand CXCL16 can exist both in a transmembrane

and soluble form (2, 15, 16). Membrane CXCL16 acts as an

adhesion molecule, whereas its proteolytically cleaved, soluble

form acts as a chemoattractant (17). CXCL16 is expressed by

epithelial cells, endothelial cells (18) and immune cells such as DC

(19, 20).

Several previous studies and reviews highlighted the up-

regulation of CXCL16 and/or CXCR6 by tumor cells and their

role in tumor growth, migration and invasiveness (21–30). The

authors found that CXCL16 is involved in the viability and

invasion of tumor cells (22, 31), while the expression of CXCR6

by cancer cells triggers oncogenic pathways associated with

cancer progression and metastasis (23, 31). Therefore, in this

review, we decided to restrict our focus on the role of CXCR6

expressed by T cells in a tumor context.
CXCR6 a marker to define TRM

Resident memory T cells (TRM) are a population of T cells

mainly present in tissues and defined usually by the expression

of CD103, CD49a and CD69. The CD103 marker interacts with

E-cadherin expressed by epithelial cells which explains the role

of these cells in immunosurveillance of epithelial tissues (32–34).

CXCR6 is a core marker of TRM in various cancers (6, 35–

38). In ovarian and lung cancer, at the protein level, CXCR6 was

predominantly expressed on CD8+ TRM as compared with

intratumoral effector CD8+ T cells or circulating T cells (14, 39).
CXCR6: Role in the differentiation,
localization and survival of CD8+ T
cells in tissues

Role of CXCR6 in the differentiation of T
cells in tissues

During T cell differentiation program, precursor cells

(TCF1+) are primed in the lymph node and then migrate into

tissues, where they continue their differentiation. CXCR6 is

poorly expressed by these TCF1+cells. It may explain why in
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studies using CXCR6+ and CXCR6− CD8+ T cells, the expression

of CXCR6 does not appear to be critical for priming CD8+ T cells

in lymphoid organs (13, 40). Interleukin-12 promotes loss of

TCF-1 and conversion of progenitor into effector CD8+ T cells

(41). CX3CR1 is induced following the TCF-1+ to TCF-1-

conversion and characterizes the most highly functional and

proliferative CD8+ T cell subsets (42, 43). These CX3CR1+

TCF1-Tbet+ CD8+ T cells are also called transitory CD8+ T

cells in mice. They are found in lymph nodes and tissues.

CXCR6 up-regulation immediately precedes or accompanies

loss of TCF-1 expression in tumor-reactive PD-1+ CD8+T

cells, whose specificity is infered by the expression of PD1, a

marker enriched within anti-tumor T cells (Figure 1).

Cxcr6 deficiency in mice neither affects TCF1+CD8+ T cells

in lymph node or tumor microenvironment (TME), nor the

CX3CR1 population in lymph nodes. However, it inhibits the

expansion of this transient CX3CR1 population in tissues and

tumors and the survival of TCF1- populations (40). These

elegant works on the role of CXCR6 in T cell differentiation

focusing on anti-tumor T cells, do not specify its impact on the

differentiation of exhausted T cells and TRM. Nevertheless, in the

absence of CXCR6, the expression of Tim-3 - a marker of

exhaustion - (34) on T cells, is decreased (40) as well as TRM

in the TME (12).
CXCR6 dictates the interaction of T cells
with dendritic cells and their
subsequent survival

CXCR6 positions CD8+ cytotoxic T cells in a distinct

perivascular niche of the tumor stroma that is populated by

CCR7+ DC named DC3 expressing the CXCR6-ligand CXCL16

and trans-presenting the cytokine IL-15 (40). DC3s trans-

present IL-15 to CXCR6+ TCF-1- effector CD8+ T cells to

sustain their survival in the TME and avoid AICD (activation-

induced-cell-death) (40). In vitro, IL-15 expanded CXCR6hi

TCF-1- cells (40) (Figure 1).

DC3 express CCR7, IL12Rb, Fascin1 (44, 45) and represent

the DC population with the highest expression of CXCL16,

CXCL15 and IL-15Ra (40). In humans, this DC3 population has

been observed in the TME of breast cancer patients and

promotes resident memory CD8+ T cell differentiation via a

TGFb signaling (see below) (46). CXCR6+ CD8+ T cells

transferred into mice lacking IL-15 or DC do not survive (40).
Role of CXCR6 in the positioning and
survival of CD8+ TRM in tissues

In mice, CD8+ T cells lacking expression of CXCR6 formed

reduced numbers of skin TRM cells, but comparable numbers in

the spleen with regards to wild type mice (47).
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CXCR6 also positions tumor reactive CD8+ TRM with

CXCL16+ DC clusters in the skin of melanoma-associated

vitiligo, which favor their persistence (48).

In an ovarian cancer model, CXCR6-deficient mice have less

TRM in the tumor (14).

It has also recently been shown that the CXCR6–CXCL16

axis plays a role in the seeding of airway TRM from lung

interstitium (49, 50).
CXCR6 expressing CD4+ T cells,
NKT and MAIT

In mouse and human, CXCR6 is more expressed in CD8+ T

cells than in CD4+ T cells (40). In the Cancer Genome Atlas

(TCGA) database, CXCR6 in tumor tissue correlated highly with

CD8 expression and less with expression of CD4 and NK cells (40).

It has been reported that CXCR6+ CCR6+ CD4+ subset is

enriched for conventional TH17 molecules (IL-17A, IL-23R,

RORgt) and cytotoxic signatures (51, 52), while the CCR6-

CXCR6+ CD4+ T cells expressed IFNg and GM-CSF, which

correspond to a T cell population derived from TH17 cells (52).

CXCR6 plays an essential role in NKT cell development,

maturation, homeostatic distribution, glycolipid-induced

effector responses, and infiltration into the liver (53, 54). The

accumulation of CXCR6+ NKT cells in the liver is driven by up-

regulated CXCL16 on hepatic sinusoidal endothelial cells, which

is induced by gut microbiome-modified bile acids (55). Thus
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CXCR6-deficient mice show profoundly reduced numbers of

NKT cells in the liver (53). In addition to regulating NKT cell

homing, CXCR6 and CXCL16 have been shown to play a critical

role in NKT cell activation in response to glycolipid antigens

(15, 53).

MAIT cells are predominantly CXCR6+ but do not require

CXCR6 for accumulation in lungs after an infection. However,

CXCR6 does contribute to long-term retention of MAIT cells in

the airway lumen (56).
Role of CXCR6+ T cells in cancer

Tumor proliferation control

In different preclinical models of melanoma, the absence of

CXCR6 led to an acceleration of tumor growth (40, 57). In terms

of mechanism, CXCR6 was not essential for extravasation of

blood-borne CD8+ T cells into tumor tissue (40). Experiments

involving the transfer of T lymphocytes expressing or not

CXCR6, or blocking the CXCL16-CXCR6 interaction, have

shown the requirement of CXCR6-CD8+T cells for the anti-

tumor function of these T cells (12, 40, 57–59).

In different preclinical liver cancer models, the role of NKT

and CD4+ T cells producing INFg and TNFa has also been

reported. Thus, in a model of hepatocarcinogenesis, cxcr6-

deficient mice had significantly more senescent hepatocytes.

NKT and CD4+ T cells promote the removal of senescent
FIGURE 1

Origin and differentiation of CXCR6+ T cells. CXCR6+ T cells are scarcely present in the lymph node and CXCR6 weakly expressed by both the
progenitor (TCF1+) or the transitory (TCF1-, CX3CR1+) T cell population. In the tumor microenvironment, the transitory T cells express CXCR6
which allows them to interact with the dendritic cell subpopulation (CCR7+ DC3) which expresses the membrane form of CXCL16. This contact
promotes the interaction of IL-15 also expressed on the membrane of DC3 with the bg chain of IL-15R expressed on CXCR6+ T cells. IL-15
induces the proliferation of CXCR6+ T cells and promotes their survival in the tumor microenvironment.
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hepatocytes to prevent hepatocarcinogenesis, and this process

required CXCR6 (60).
Role in the control of metastases

Loss of CXCR6 expression on NKT-cells resulted in

increased liver metastasis in a murine model (61). Cxcr6-

deficient mice or CXCL16 neutralizing Ab resulted in an

enhanced metastasis to the liver by B16 melanoma cells or

Lewis Lung tumor cells (61). In another preclinical model of

lung metastases from breast cancer, it has been shown that

CXCR6- T effectors are the major subset preferentially egressing

the tumor to form distant CXCR6+ TRM, whereas intratumoral

CXCR6+ T cells are retained in the tumor (62). Breaking

CXCR6-mediated retention in the tumor by anti-CXCL16

treatment resulted in more T cells egressing to the distant lung

tissue and a decrease metastatic tumor burden (62).
Improvement of CAR-T cell therapy

Although CAR-T cell therapy in solid tumors has recently

shown its feasibility and clinical signs of effectiveness (63, 64), the

efficacy of adoptive cell therapy for solid tumors is hampered by the

low infiltration of the tumor after transferred T cells. Recently, it

could be shown that T cells expressing a chimeric antigen receptor

(CAR) encoding mesothelin and co-transfected with CXCR6

enhanced the efficacy of adoptive cell therapy for pancreatic

tumors (65). In mouse models, the addition of CXCR6 to CAR-T

cells also enhanced their intratumoral accumulation and sustained

their antitumoral activity. Survival was prolonged only when the

CAR-T cells co-expressed CXCR6 (65). These results were also

reproduced in an ovarian cancer mouse model (65).

Administration of CAR-T cells targeting murine ROR1 – a

tumor antigen overexpressed in breast and lung cancer - after

lymphodepletion with cyclophosphamide (Cy) transiently

controlled lung tumor growth but infiltrated tumors poorly

and lost function, as observed in human. Adding oxaliplatin

(Ox) to the lymphodepletion regimen activated tumor

macrophages to express T cell-recruiting chemokines, resulting

in improved CAR-T cell infiltration (66).

At day 2 post-transfer, Ox/Cy enhanced accumulation of

CAR-T cells in tumors excised from KPROR1 mice, and this

accumulation was partially CXCR6-dependent, as CXCR6−/−

CAR-T cells showed poorer tumor infiltration compared to

their wild type counterparts (66).
Role in cancer vaccine efficacy

Previous works of our group showed that intranasal vaccination

preferentially elicits TRM (67–69). As a continuation of this work,
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we showed that CXCR6 was preferentially expressed by CD8+ TRM
after intranasal vaccination in mice with a vector targeting DC (70)

and also on intratumoral CD8+ TRM derived from human lung

cancer (12). We also demonstrated that vaccination of cxcr6-

deficient mice induces a defect in the lung recruitment of

antigen-specific CD8+ T cells, mostly in the TRM subsets,

responsible for a partial loss of cancer vaccine efficacy (12).

Interestingly, intranasal, but not intramuscular vaccination

induced higher and more sustained concentrations of CXCL16,

compared to other chemokines, in the bronchoalveolar lavage fluid

and pulmonary parenchyma (12).
Role in immunogenicity of radiotherapy

Ionizing radiation appears to increase both in mouse and

human the expression of CXCL16 in tumor cells (71) and

specifically in breast, colon and prostate cancer (59), favoring

the recruitment of effector cells at the tumor site

Cxcr6-deficient mice showed reduced infiltration of tumors

by activated CD8+ T cells and impaired tumor regression

following treatment by local irradiation of the tumor (59).
Pro-tumoral role of CXCR6+ T cells

In prostate cancer, inflammatory cytokines derived from the

adjacent infiltrating CXCR6-positive T cells stimulate the

production of CXCL16 by cancer cells and CXCL16 enhances

the growth of CXCR6-expressing cancers and primary T

cells (72).

In mice model of Non-alcoholic steatohepatitis (NASH),

which causes severe and chronic liver inflammation leading to

hepatocarcinoma (HCC), an indispensable role of T cells in liver

immunopathology was demonstrated.

CXCR6+ CD8+ T cells showed killing of cells in an MHC-

class-I-independent fashion after signaling through P2X7

purinergic receptors activated by ATP (11).

The exposure of CXCR6+ CD8+ T cells to ATP led to rapid

upregulation of FasL and the death of hepatocytes. The blocking

of FasL prevented auto-aggression by CD8 T cells in vitro and

after adoptive transfer in vivo, and ameliorated liver damage in

NASH mice (11).
Role of CXCR6+ T cells in clinical
response and side effects of
anti-PD-1 immunotherapy

In a preclinical model of melanoma and colorectal cancer,

anti-PD-1 treatment significantly increased CXCR6 expression

on infiltrating CD8+ T cells (57). Interestingly, the percentages of

intratumoral CD8+ T cells and cytokines production, as well as
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the efficacy of therapy, were rapidly decreased in cxcr6−/− mice

treated with PD-1 blockade therapy (57).

In contrast, when given prophylactically in a mice model of

NASH, anti-PD1 treatment led to an increase in the incidence of

NASH induced HCC and in the number and size of tumor

nodules, which correlated with increased hepatic PD1+ CXCR6+

CD8+ T cells and TNF+ T cells (73). The increase in HCC

triggered by anti-PD1 treatment was prevented by depletion of

CD8+ T cells or TNF neutralization (73). These results may seem

contradictory to the clinical data on the efficacy of anti-PD1 in

liver cancer. In fact, a meta-analysis of 1,600 patients revealed

that immunotherapy based on PD-1-PD-L1 blockade did not

improve survival in patients with non-viral HCC (73).

CXCR6+ T cells have also been implicated in the side effects of

immunotherapy. Thus, a striking accumulation of CXCR6+ CD8+ T

cells with highly cytotoxic and proliferative states is observed in

checkpoint inhibitor-induced colitis (74). Interestingly,

administration of an anti-CXCL16 mAb reduced inflammation in

a chemically induced experimental colitis model (75).
CXCR6, a prognostic and predictive
biomarker for cancer immunotherapy

In most cancers (melanoma, head and neck cancer, lung

adenocarcinoma, and breast cancer), patients with high CXCR6

expression had a greater survival probability (40). An exception

concerns liver cancer, where CXCR6 and its cognate ligand

CXCL16 have been associated with higher HCC invasiveness,

poor prognosis and predictor of recurrence (18, 28).

The good prognosis related to CXCR6 expression is

associated with CD8+ T cell infiltration often corresponding to

a TRM phenotype.

Similarly, high expression of CXCR6 in colorectal cancer was

associated with a good prognosis and positively correlated with

the expression of CD8 in tumor (57).

Analysis of The Cancer Genome Atlas (TCGA) for ovarian

cancer revealed CXCR6 expression to be associated with CD103

and increased patient survival (14).

Interestingly, CXCR6 constitutes 1 of 18 genes that are

developed and validated as a clinical grade biomarker to

predict the response to anti-PD-1 therapy in various cancers

(76, 77).
How to elicit CXCR6+ T cells

To induce CXCR6+ T cells in the lungs and head and neck

tissue, we have shown that the nasal route of immunization

appears to be the most effective in different experiments (12).

These T cells had a phenotype of CD8+ TRM. Similar results on

the value of this mucosal route of immunization have been

reported by different groups (78–80) (Figure 2).
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This mucosal CD8+ T cell response can be maintained for

several months. Interestingly, not all mucosal routes are

equivalent in inducing these CXCR6+ T cells. For example, the

oral route of immunization induces mainly the chemokine

CCR9 but not CXCR6 (79). We and other groups have shown

that this nasal immunization, but not the systemic routes (s.c or

IM) induced CXCL16 in the lungs likely produced by epithelial

cells and DC and promoting their interaction with CXCR6+ T

cells (12, 78, 80). This induction of endogenous production of

CXCL16 may explain conflicting results of CXCL16

administration as a vaccine adjuvant (12, 78, 79).

The subcutaneous route results in a small increase of CXCR6

in lymph node T cells (81). Parenteral routes are poorly effective

in inducing these CXCR6+ T cells in the lungs (78).

In vitro, DC3 are able to induce CD8+ TRM expressing

CXCR6 and promote their expansion (40). Some adjuvants

(IL-15, 4-1BBL, Notch inhibitors, …) known to increase CD8+

TRM could be evaluated for their ability to induce CXCR6

(69) (Figure 2).
Discussion and conclusion

CXCR6 can be considered as a new class of chemokine

receptor, whose main role could be to allow the positioning of T

cells in close interaction with cells expressing CXCL16 at the

membrane such as DC3, and so to promote T cell differentiation.

The adhesion role of CXCL16 known for many years, has been

strengthened recently and the CXCL16-CXCR6 interaction

seems to participate in a synapse including IL-15 and IL-15Ra
to promote tissue T cell differentiation, particularly toward a

TRM phenotype (40, 48).

An ambivalent role of CXCR6+ T cells in tumor control has

been reported. Thus, in many models, CXCR6+ CD8+ T cells of

resident phenotype participate in the control of primary tumor

proliferation and metastasis (12, 57, 62). On the contrary, in

NASH models with significant chronic inflammation, CXCR6+

P2X7+ T cells are able to destroy hepatocytes in a non-MHC-

restricted manner which distinguishes them from classical CD8+

TRM (11, 73).

This ambivalent role of CXCR6+ T cells in the regulation of

tumor growth has also been established for other subpopulations

of T cells such as TH17 (82–84) and for myeloid cell

subpopulations (85–87). It may be explained by differences in

fine phenotype and function for the same immune sub-

population and may also depend on the tumor stage and the

acute or chronic inflammatory context (88).

The mucosal nasal route of immunization preferentially

induces these CXCR6+ T cells in the nasal and pulmonary

mucosa as already reported for TRM which also express

CXCR6 (12, 78, 79). The induction of CXCL16 by this

immunization route may explain this specific recruitment of

CXCR6+ T cells by this mucosal pathway.
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In most models, these CXCR6+ T cells belong to the

subpopulation of TRM. However, NKT cells also express

CXCR6, which seems to play a major role in the development

of these cells, especially in the liver. CXCR6+ NKT cells regulate

hepatocarcinogenesis and metastasis formation and control

hepatitis (53–55).

Finally, from a clinical perspective, CXCR6 expression in

CAR+ T cells has improved their efficacy in various preclinical

solid tumors and might indicate a track to translation of the

approach (65, 66). Anti-PD-1 antibodies which increase TRM

also modulates CXCR6 (57) and in fact, molecular signatures

including CXCR6 appear to predict response to immunotherapy

(76, 77), underpinning the high relevance of the pathway.
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