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Purpose: Age-related hearing loss (ARHL), associated with the function of speech

perception decreases characterized by bilateral sensorineural hearing loss at high

frequencies, has become an increasingly critical public health problem. This study aimed

to investigate the topological features of the brain functional network and structural

dysfunction of the central nervous system in ARHL using graph theory.

Methods: Forty-six patients with ARHL and forty-five age, sex, and education-matched

healthy controls were recruited to undergo a resting-state functional magnetic resonance

imaging (fMRI) scan in this study. Graph theory was applied to analyze the topological

properties of the functional connectomes by studying the local and global organization

of neural networks.

Results: Compared with healthy controls, the patient group showed increased local

efficiency (Eloc) and clustering coefficient (Cp) of the small-world network. Besides, the

degree centrality (Dc) and nodal efficiency (Ne) values of the left inferior occipital gyrus

(IOG) in the patient group showed a decrease in contrast with the healthy control group. In

addition, the intra-modular interaction of the occipital lobe module and the inter-modular

interaction of the parietal occipital module decreased in the patient group, which was

positively correlated with Dc and Ne. The intra-modular interaction of the occipital lobe

module decreased in the patient group, which was negatively correlated with the Eloc.

Conclusion: Based on fMRI and graph theory, we indicate the aberrant small-world

network topology in ARHL and dysfunctional interaction of the occipital lobe and parietal

lobe, emphasizing the importance of dysfunctional left IOG. These results suggest that

early diagnosis and treatment of patients with ARHL is necessary, which can avoid the

transformation of brain topology and decreased brain function.

Keywords: age-related hearing loss, brain function, functional magnetic resonance imaging, graph theory,

small-world network
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INTRODUCTION

With the increasingly serious aging of the world population, age-
related hearing loss (ARHL), the third most common disease of
the elderly, has attracted more and more attention (Loughrey
et al., 2018; Slade et al., 2020). ARHL, associated with the function
of speech perception decreases, is characterized by bilateral
sensorineural hearing loss at high frequencies function (Lee et al.,
2010; Rutherford et al., 2018; Sharma et al., 2021). The function
of speech perception decreases shows slowed central processing
of acoustic information in noisy environments (Gates and Mills,
2005; Yamasoba et al., 2013; Li et al., 2017). These problems not
only contribute to the seriously decreased quality of life but also
lead to social isolation and falls and shorten the life span of
patients (Kamil et al., 2016). However, less is known about the
exact neuropathological mechanism of ARHL and its relationship
with cognitive impairment.

Although impaired inner ear function is the main cause
of ARHL, it is increasingly recognized that ARHL is also
related to structural and functional changes in the central
auditory pathway and other areas of the central nervous system
(Kazee et al., 1995; Spongr et al., 1997; Salvi et al., 2002;
Ouda et al., 2015). With the further application of functional
magnetic resonance imaging (fMRI) which was based on blood
oxygen level dependent (BOLD) in central nervous system
abnormalities of ARHL, some studies have found that hearing
loss devoted to the disrupted functional networks such as
limbic network (SCLN), default mode network (DMN), executive
control network (ECN), attention network (AN), and visual
network (VN) (Chen et al., 2018, 2020; Xing et al., 2020, 2021a,b;
Ren et al., 2021). In addition, experiments have found abnormal
structural and functional visual centers similar to the auditory
center in ARHL (Schulte et al., 2020; Wei et al., 2021), proving
that the dysfunction caused by hearing loss involves the whole
brain (Benetti et al., 2021).

Recent studies using magnetic resonance spectroscopy (MRS)
have shown decreased neurotransmitters such as gamma-
aminobutyric acid (GABA) in ARHL related to age and speech in
noise, indicating that the reduction of neurotransmitters in the
auditory system is related to functional impairment (Gao et al.,
2015; Dobri and Ross, 2021). Many fMRI studies and animal
experiments have linked the decline of cognition with functional
abnormalities in ARHL, as well as dementia and depression
(Chen et al., 2020; Choi et al., 2021; Ren et al., 2021; Shen et al.,
2021). However, the causal relationship between the degeneration
of peripheral auditory system, such as inner ear structure, and
the declined function of central auditory system and cognitive
function in patients has not been clear (Rutherford et al., 2018;
Bowl and Dawson, 2019; Ralli et al., 2019).

Graph theory provides a theoretical framework for analyzing
the topology of brain networks by studying the local and
global organization of neural networks. At present, it has been
widely used to study the properties of complex networks (Lv
et al., 2018; Sporns, 2018; Hallquist and Hillary, 2019). In
the graph theory model, the human brain is characterized
as a large-scale network consisting of nodes and edges,
defined brain regions as nodes while edges as an anatomical

connection or functional correlation between two nodes
(Medaglia, 2017). The brain network can be divided into
different modules to separate functionally related neurons
and observe the connection and flow of information. These
modules not only complete different functions independently
but also participate in the integration of whole brain function
jointly through the core nodes. Interestingly, the information
transmission of our brain network reflects low cost and
efficiency. It exhibits characteristics of the small-world network,
which means small networks of highly connected nodes in
clusters with a few connections working together to carry
out specific tasks or perform specific cognitive function
(Van Den Heuvel et al., 2008; Wang et al., 2012).

Some specific properties of graph theory include characteristic
path length, clustering coefficient, node degree and degree
distribution, centrality, and modularity (Sporns et al., 2004;
Reijneveld et al., 2007; Stam and Reijneveld, 2007), which can
provide important new insights into the structure and function of
networked brain systems including structure, development, and
diseases. Therefore, in this study, we first used resting-state fMRI
to construct the brain functional networks of patients with ARHL
and analyze the topological features of their brain networks using
graph theory.

MATERIALS AND METHODS

Subjects
We recruited 91 subjects (all right-handed and educated for
at least 8 years) through community health screening and
newspaper advertisements, including 46 ARHL patients and 45
age, sex, and education-matched healthy controls (HCs). Hearing
loss was assessed by the speech-frequency pure tone average
(PTA) of thresholds at the frequencies of 0.25, 0.5, 1, 2, 4,
and 8 kHz. The PTA value of 25 dB HL was accepted as the
normal hearing threshold limit. Inclusion criteria of the ARHL
were average PTA > 25 dB HL in the better hearing ear and
age ≥50 years. Tympanometry was performed with a Madsen
Electronics Zodiac 901 Middle Ear Analyzer (GN Otometrics) to
confirm normal middle-ear function. A summary of the mean
hearing thresholds of both ears in all subjects is shown in
Figure 1.

Exclusion criteria were ear diseases that affect hearing
thresholds, including tinnitus, hyperacusis, and Meniere’s
diseases. To minimize the potential confounding factors,
the following factors were excluded: ototoxic drug therapy,
otologic surgery, noise exposure, alcoholism, brain injury, stroke,
Alzheimer’s disease, Parkinson’s disease, major depression,
epilepsy, neurological or psychiatric disorders that could affect
cognitive function, major medical illness (e.g., anemia, thyroid
dysfunction, and cancer), MRI contraindications, or severe
visual loss.

All subjects underwent a battery of neuropsychological tests.
The neuropsychological status of the subjects was established
using the Mini Mental State Exam (MMSE), Montreal Cognitive
Assessment (MoCA), auditory verbal learning test (AVLT),
complex figure test (CFT), digit span test (DST), trail-making
test (TMT) A and B, clock-drawing test (CDT), verbal fluency
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FIGURE 1 | Mean hearing thresholds of age-related hearing loss (ARHL) patients and healthy controls (HCs). The hearing thresholds were significantly higher in ARHL

than HCs (*p < 0.001, 1,000–8,000Hz). Data are presented as mean ± SD.

test (VFT), digit symbol substitution test (DSST), Self-Rating
Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). It
took about 1 h for each subject to complete all of the tests in a
fixed order.

All the subjects provided written informed consent before
their participation in the study protocol. Approval for the study
was obtained from the Research Ethics Committee of Nanjing
Medical University.

MRI Acquisition
A 3.0 T MRI scanner (Ingenia, Philips Medical Systems,
Netherlands) with an 8-channel receiver array head coil was
used to scan. Foam padding and earplugs were used to reduce
head motion and scanner noise. The subjects were required to
close their eyes, lie down quietly, stay awake, not think about
anything special, and avoid any head motion during the scan.
Structural images were acquired with a three-dimensional turbo
fast echo (3D-TFE) T1WI sequence with high resolution as
follows: repetition time (TR)/echo time (TE) = 8.1/ 3.7ms;
slices = 170; thickness = 1mm; gap = 0mm; flip angle
(FA) = 8◦; acquisition matrix = 256 × 256; field of view
(FOV) = 256mm × 256mm. The structural sequence took
5min and 29 s. Functional images were obtained axially using
a gradient echo-planar imaging sequence as follows: TR =

2,000ms; TE = 30ms; slices = 36; thickness = 4mm; gap
= 0mm; FOV = 240mm × 240mm; acquisition matrix
= 64 × 64; and FA = 90◦. The fMRI sequence took
8min and 8 s.

Data Preprocessing
Data preprocessing used Statistical Parameter Mapping 12
(http://www.fil.ion.ucl.ac.uk/spm) and the Graph Theoretical
Network Analysis Toolbox for Imaging Connectomics
(2.0.0A http://www.nitrc.org/projects/gretna/) (GRETNA).
The processing pipeline included the following stages: (1)
Removing the first 10 volumes because of patients to adjust
to the environment and signal adjustment from the MRI.
(2) Slice timing, corrected and realigned, was performed for
the remaining 220 images. Any subjects with a head motion
>2.0mm translation or a 2.0◦ rotation in any direction were
excluded. (3) The remaining dataset was normalized to the 3D-
T1 data by the diffeomorphic anatomical registration through
exponentiated lie algebra methods (reslicing voxel size as 3 ×

3 ×3mm 3). (4) Detrending and filtering (0.01–0.08Hz) were
performed in turn. Subsequently, several nuisance signals were
regressed from the data including head motion, the global mean,
and signals from white matter and the cerebrospinal fluid.

Functional Connectivity Matrix and Graph
Construction
The GRETNA software was used to construct the network (He
et al., 2008; Zhang et al., 2011). First, automated anatomical
labeling (AAL) atlas was applied to obtain 90 cortical and
subcortical regions of interest in the whole brain, and each was
taken for a network node(Tzourio-Mazoyer et al., 2002). Next,
the mean time series was obtained for each region, and the partial
correlations of the mean time series between all pairs of the nodes
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(representing their conditional dependencies by excluding the
effects of the other 88 regions) were regarded as the edges of the
network (Jin et al., 2011; Zhang et al., 2011; Tao et al., 2013). This
process generated a partial correlation matrix (90 × 90) for each
subject, which was converted to a binary matrix according to a
predefined threshold. If the absolute partial correlation between
regions i and area j exceeded the threshold, then entry a ij = 1;
otherwise, a ij= 0.

The networks of individual subjects were different in the
number of edges (Wen et al., 2011). To resolve this discrepancy, a
range of sparse thresholds S to the correlation matrix was used to
ensure that each graph had the same number of edges. For each
participant, S was defined as the fraction of the total number of
edges remaining in the network. The minimum value of S was
set so that the average node degree of the threshold network was
2log(N), where N was the number of nodes. The threshold range
generated by this process was 0.06 S 0.4, and the interval was 0.01.
The networks generated by this threshold strategy could estimate
the sparse properties of small-worldness and the smallest possible
number of false edges (Watts and Strogatz, 1998; Zhang et al.,
2011). For the brain networks at each sparsity level, we calculated
both the global and node network parameters.

Brain Functional Network Analysis
For the brain function network, the global topological structure
of the brain function network and the regional properties
of each node were characterized by calculating the global
network parameters and the regional node parameters. The
node parameters examined included Bc (betweenness centrality),
Dc (degree centrality), Ne (nodal efficiency), nodal clustering
coefficient, nodal local efficiency, and nodal shortest path. The
global parameters examined included small-world parameters
including Lp (characteristic path length), Cp (clustering
coefficient), γ (normalized clustering coefficient), λ (normalized
characteristic path length), and δ (small-worldness), and the
network efficiency parameters included Eglob (global efficiency)
and Eloc (local efficiency) (Watts and Strogatz, 1998; Eisensehr
et al., 2001).

Statistical Analysis
We calculated the area under the curve (AUC) for each network
metric. The AUC for a general metric g was calculated over the
sparsity range from S1 to Sn with an interval of 1S, here S1 =

0.10, Sn = 0.34, and1S= 0.01. The AUC provided a summarized
scalar for the topological characterization of brain networks,
which is independent of a single threshold selection and sensitive
to topological alterations in brain disorders (Wang et al., 2009;
Zhang et al., 2011). The AUC value of each global parameter
in the two groups, as a comprehensive evaluation of the index,
was compared by a two-sample t-test. p < 0.05 was statistically
significant. The Bonferroni correction was used for multiple
brain regions between the two groups in node parameters.

For modular analysis, the network and node module in
metric comparison of Gretna software was used to compare
the functional connections within each module and between
any two modules by a two-sample t test. The whole brain
network is divided into six sub-modules, namely, the frontal lobe

TABLE 1 | Demographics of the ARHL and HCs.

ARHL (n = 46) HCs (n = 45) p-value

Age (year) 62.657 ± 0.45 61.273 ± 0.71 0.264

Sex (male: female)

Education level (years)

PTA (Left, dB HL)

21/25

10.742 ± 0.03

33.034 ± 0.18

21/24

10.671 ± 0.68

16.262 ± 0.92

0.853

0.991

<0.001*

PTA (Right, dB HL)

PTA (Both, dB HL)

33.656 ± 0.38

33.043 ± 0.88

16.093 ± 0.27

16.182 ± 0.34

<0.001*

<0.001*

Data are represented as mean±SD, *p-value < 0.001.

ARHL, age-related hearing loss; HCs, healthy controls; PTA, puretone audiometry.

TABLE 2 | Neuropsychological scores of the ARHL and HCs.

ARHL (n = 46) HCs (n = 45) p-value

MMSE 28.891 ± 0.30 28.841 ± 0.30 0.864

MoCA 25.701 ± 0.70 26.221 ± 0.80 0.154

AVLT 33.597 ± 0.53 35.477 ± 0.29 0.230

CFT 34.451 ± 0.71 34.641 ± 0.58 0.566

CFT-delay 16.843 ± 0.53 17.283 ± 0.64 0.559

TMT-A 69.702 ± 0.97 68.622 ± 1.29 0.809

TMT-B 175.005 ± 1.21 153.474 ± 9.39 0.044*

CDT 3.480 ± 0.55 3.530 ± 0.55 0.633

DST 11.151 ± 0.59 11.822 ± 0.17 0.096

VFT

DSST

14.374 ± 0.05

69.917 ± 0.94

15.303 ± 0.64

69.049 ± 0.90

0.252

0.645

SAS 36.835 ± 0.93 35.936 ± 0.59 0.499

SDS 38.599 ± 0.06 37.028 ± 0.41 0.396

Data are represented as mean ± SD, *p < 0.05.

ARHL, age-related hearing loss; HCs, healthy controls; MMSE, Mini Mental State Exam;

MoCA, Montreal Cognitive Assessment; AVLT, auditory verbal learning test; CFT, complex

figure test; DST, digit span test, TMT-A, trail making test-Part A; TMT-B, trail making test-

Part B; CDT, clock drawing test; VFT, verbal fluency test; DSST, digit symbol substitution

test; SDS, Self-Rating Depression Scale; SAS, Self-Rating Anxiety Scale.

module, prefrontal lobe module, subcortical module, temporal
lobe module, occipital lobe module, and parietal lobe module.
The Bonferroni correction was used for multiple comparison
correction. p < 0.05 was statistically significant. In addition,
SPSS 19.0 statistical software was used to analyze the Spearman’s
correlation between the functional connection in or between
modules and the global and node parameters. p < 0.05 was
statistically significant.

RESULTS

Demographic and Cognitive
Characteristics
The demographic characteristics of ARHL and HCs were
presented in Table 1. We observed no significant differences
between the ARHL group and HCs in terms of age, sex, and
education level. Besides, no significant difference was revealed in
PTA between the left and right ear of the ARHL patients and
HCs. The cognitive status of both groups was summarized in
Table 2. Patients with ARHL performed significantly poorer on
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FIGURE 2 | (A) The intra-modular interaction of occipital lobe module decreased in the patient group (p = 0.002). (B) The inter-modular interaction of parietal occipital

lobe module decreased in the patient group (p < 0.001).

FIGURE 3 | The degree centrality (Dc) and nodal efficiency (Ne) of the left inferior occipital gyrus (IOG.L) in the ARHL patient group showed a decrease compared with

the healthy controls group (p < 0.001).

TMT-B score (p< 0.05). Significant differences in other cognitive
performances were not observed.

Modular Analysis
Compared with the HCs group, the intra-modular interaction
of the occipital lobe module decreased in the patient group (p
= 0.002, Bonferroni correction) (Figure 2A). Besides, the inter-
modular interaction of the parietal occipital lobe module also
decreased in the ARHL group (p < 0.001, Bonferroni correction)
(Figure 2B).

Nodal Level Analysis
The degree centrality (Dc) of the left inferior occipital
gyrus (IOG) in the patient group showed a decrease in
contrast with the HCs (p < 0.001, Bonferroni correction)
(Figure 3). Furthermore, the nodal efficiency (Ne) of
the left IOG in the patient group showed a decrease
in contrast with the HCs (p < 0.001, Bonferroni
correction) (Figure 3). However, the betweenness
centrality (Bc) showed no differences between the
two groups.
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FIGURE 4 | (A) The local efficiency (Eloc) of the patient group was higher than the healthy controls (p = 0.013). (B) The clustering coefficient (Cp) of the patient group

was higher than the control group (p = 0.019).

Global Level Analysis
Compared with the HCs group, the local efficiency (Eloc) of
the ARHL group was higher (p = 0.013, p<0.05) (Figure 4A).
But the global efficiency (Eglob) showed no difference between
the two groups. Otherwise, the clustering coefficient (Cp) of
the patient group was higher than the control group (p =

0.019, p<0.05) (Figure 4B). As for other parameters including
normalized clustering coefficient (γ), normalized characteristic
path length (λ), the characteristic path length (Lp), and small-
worldness (σ), there were no difference between both groups.

Correlation Analysis
The decreased intra-modular interaction of the occipital lobe
module and decreased inter-modular interaction of the parietal
occipital lobe module in the ARHL group were positively
correlated with the Dc (p < 0.001, p = 0.003) (Figures 5A,D)
and Ne (p < 0.001, p = 0.001) (Figures 5C,E). The decreased
intra-modular interaction of the occipital lobe module in the
ARHL group was negatively correlated with the Eloc (p = 0.020)
(Figure 5B). However, the decreased inter-modular interaction
of the parietal occipital lobe module in the ARHL group showed
no correlation with the Eloc (p = 0.056). Similarly, the decreased
intra-modular interaction of the occipital lobe module and the
decreased inter-modular interaction of the parietal occipital lobe
module in the ARHL group also showed no correlation with
the Cp (p= 0.301, 0.605).

DISCUSSION

The occipital lobe not only plays an important role in
integrating information of visual sense, auditory sense, and
other information gathered by sensory systems but also connects
visual information with brain processing systems of speech
and other executive functions (Wu et al., 2020). The parietal
lobe is essential to process sensory information, including
integration, perception, digital cognition, speech understanding,

decision-making, and spatial consciousness (Critchleey, 1953;
Bisley and Goldberg, 2010). We found that the intra-modular
interaction of the occipital lobe module and the inter-modular
interaction of the parietal occipital module decreased in the
patient group, indicating the disrupted function of the occipital
lobe and parietal lobe. This was similar with previous studies
(Zhang et al., 2021). One of the reasons may be the cross-modal
functional reorganization due to a variety of sensory processing
abnormalities caused as a result of hearing loss (Luan et al.,
2019; Wei et al., 2021). The cross-modal plasticity is an internal
ability of the brain, which represents a compensation mechanism
when a specific sensory pattern is deprived (Benetti et al., 2021).
Conjectured in this experiment, parietal and occipital resources
of ARHL are occupied to compensate for hearing loss. However,
excessive occupied resources for a long time may cause the
functional change or even decline of the parietal occipital lobe.
Therefore, early diagnosis and treatment of ARHL is necessary to
decrease the negative impact on other brain regions (Glick and
Sharma, 2017).

The IOG participates in the related processes of visual
processing such as correlated gradients of spatial and face-
part selectivity due to typical face-directed gaze behavior (De
Haas et al., 2021). As a simple measurement of connectivity
between a single node and all other nodes in networks, the DC
represents the importance of a node (Telesford et al., 2011). The
NE measures how efficiently information is exchanged over the
network (Ottet et al., 2013). The decrease of Dc and Ne of the left
IOG was positively correlated with the intra-modular interaction
of the occipital lobe module and the inter-modular interaction
of the parietal occipital module, indicating that the left IOG is a
core node for information transmission within the occipital lobe
and between the parietal occipital lobe (De Haas et al., 2021). In
other words, the dysfunction of the left IOG plays an important
role in the integration of whole brain function and further affects
the connection between the occipital lobe and the parietal lobe.
It is suggested that the study of the dysfunction of occipital and
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FIGURE 5 | The correlation analysis of modular analysis with nodal and global parameters. (A) The decreased intra-modular interaction of the occipital lobe module in

the patient group was positively correlated with the Dc (p < 0.001). (B) The decreased intra-modular interaction of occipital lobe module in the patient group was

negatively correlated with the Eloc (p = 0.020). (C) The decreased intra-modular interaction of occipital lobe module in the patient group was positively correlated with

the Ne (p < 0.001). (D) The decreased inter-modular interaction of parietal occipital lobe module in the patient group was positively correlated with the Dc (p = 0.003).

(E) The decreased inter-modular interaction of parietal occipital lobe module in the patient group was positively correlated with the Ne (p = 0.001).

parietal lobes in ARHL in the future should focus on the IOG. For
the treatment of ARHL, the abnormality of occipital and parietal
lobes may improve with the IOG targeted.

While a small-world network between them has smaller Lp
and larger Cp, which support the differentiation and integration
of information with high efficiency (Van Den Heuvel and
Hulshoff Pol, 2010). To a certain extent, the small-world
network has the ability to resist disease attacks (Achard and
Bullmore, 2007). The increased Cp represents the imbalance of
differentiation and integration of the small-world network in the
patient, which tends to the topology of a regular network and
easier disease attacks. The information transmission speed of the
regular network is lower than the random network in the brain
level, which indicates that the topology transformation of the
small-world network in ARHL may decrease the connectivity of
the whole brain, and then lead to brain cognitive impairment
(Van Den Heuvel and Hulshoff Pol, 2010; Lv et al., 2018).
Therefore, early treatment of patients with hearing loss is
necessary to prevent the transformation of topology and the
decline of cognitive function.

The increase of Cp and Eloc represents the improvement
of local network information processing efficiency of patients
(Lv et al., 2018). We speculate that the decrease of DC and
NE in the left IOG results in the decreased interaction within
the occipital module and between the parietal occipital module,

and the brain mobilizes more resources to solve this problem
leading to improved local network information processing
ability. Although this compensation mechanism can alleviate
the dysfunction of local brain areas, the consumption of more
resources may decrease the information processing ability of
the global brain level, resulting in the abnormalities of other
brain areas (Fornito et al., 2015). The transformation of small-
world network topology may be the result of ARHL and the
compensation mechanism. Interestingly, there was no difference
in Eglob and Lp between the two groups, indicating no significant
change in the information processing ability of the global
brain level, which may be the cause of the pathogenesis of
ARHL and insufficient sample size. On the contrary, it may
be that sufficient brain information processing ability allows
compensatory changes.

LIMITATION

First, this experiment is a cross-sectional study. A small sample
size may lead to inaccurate results. Second, although earplugs
have been used, the noise during MRI scan would have a certain
impact on this experiment. Finally, our interpretation of the
results is subjective to a certain extent because of few articles
on graph theory and ARHL. Sufficient samples and multiple
experiments are essential for ARHL.
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CONCLUSION

Based on resting-state fMRI and graph theory, this experiment
found decreased intra-modular interaction of the occipital
lobe module and decreased inter-modular interaction of the
parietal occipital lobe module. We prove the transformational
topology of the small-world network in ARHL, which may cause
the decline of global brain connectivity and brain cognitive
impairment. These results suggest that early diagnosis and
treatment of patients with ARHL is necessary, which can
avoid the transformation of brain topology and decreased
brain function. Our research suggested that the disorder of
brain network topology may play a pivotal role in cognitive
impairment of ARHL, which may be a potential imaging
biomarker for early clinical diagnosis, prevention, and treatment
of ARHL.
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