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Background: Cancer-related deaths are primarily attributable to lung cancer, of

which non-small cell lung cancer (NSCLC) is the most common type. Molecular

targeting therapy and antitumor immunotherapy have both made great strides in

the treatment of NSCLC, but their underlying mechanisms remain unclear,

especially from a metabolic perspective.

Methods: Herein, we used a nontargetedmetabolomics approach based on liquid

chromatography-mass spectrometry to analyze themetabolic response of NSCLC

patients to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)

or PD-1/PD-L1 inhibitors. Multiple analyses, including principal component analysis

(PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) and

pathway analysis, were used for metabolic data analysis. Additionally, differential

metabolites were analysed and identified by publically available and integrated

databases.

Results: After treatment with EGFR-TKIs or PD-1/PD-L1 inhibitors, glutamate/

glutamine, phenylalanine, n-acetyl-L-leucine, n-acetyl-D-tryptophan, D-n-valine,

arachidonic acid, and linoleic acid levelswere significantly increased in patientswith

NSCLC, whereas carnitine, stearyl carnitine, palmitoyl carnitine, linoleic carnitine,

and palmitic acid levels were markedly decreased. Compared with newly

diagnosed, untreated patients, there were three shared metabolic pathways

(phenylalanine metabolism, glycerophospholipid metabolism, and D-glutamine

and D-glutamate metabolism) in the EGFR-TKIs or PD-1/PD-L1 inhibitor-treated

groups, all of which were related to lipid and amino acid metabolism. Moreover,
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there were significant differences in lipid metabolism (glycerophospholipid

metabolism and phosphatidylinositol signaling) and amino acid metabolism

(tryptophanmetabolism) between the EGFR-TKI and PD-1/PD-L1 inhibitor groups.

Conclusion: Our results show that EGFR-TKIs and PD-1/PD-L1 inhibitors

induce changes in carnitine, amino acids, fatty acids, and lipids and alter

related metabolic pathways in NSCLC patients. Endogenous metabolism

changes occur due to drug action and might be indicative of antitumor

therapeutic effect. These findings will provide new clues for identifying the

antitumor mechanism of these two treatments from the perspective of

metabolism.

KEYWORDS

non-small cell lung cancer, epidermal growth factor receptor-targeted therapy, PD-1/
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1 Introduction

There were 19.29 million new cancer diagnoses in 2020,

of which 2.2 million were lung cancers. Lung cancer accounts

for 11.4% of the total cancer diagnoses, making it the second

most common cancer worldwide (Sung et al., 2021).

Additionally, 1.8 million people died of lung cancer in

2020, accounting for 18.0% of total cancer deaths (Sung

et al., 2021). Lung cancer is the leading cause of cancer-

related death. Among men, lung cancer is the most common

cancer in 36 countries and the leading cause of cancer

mortality in 93 countries (Sung et al., 2021). With global

population growth, aging, and changing lifestyles, the

burden of lung cancer is increasing.

Lung cancers are divided into two categories: non-small cell

lung cancer (NSCLC) and small cell lung cancer. NSCLC is the

most common type, accounting for approximately 80–85% of all

lung cancer cases, and has the highest mortality rate (Singh et al.,

2021). The current treatment of NSCLC is not only focused on

surgical treatment, chemotherapy, radiotherapy, and

comprehensive treatment but includes molecular targeted

therapy and antitumor immunotherapy (Ghini et al., 2020;

Wang et al., 2021). Epidermal growth factor receptor (EGFR)

is the most common driver gene mutation of NSCLC, with

approximately 35% of Asian patients and 60% of patients with

lung adenocarcinomas (Pi et al., 2018; Yoon et al., 2020). EGFR

tyrosine kinase inhibitors (EGFR-TKIs) are the most widely used

targeted therapies and are remommended as first-line treatment

for NSCLC patients with EGFR activating mutations (National

Comprenhensive Cancer Network, 2017; He et al., 2021). These

drugs improve progression-free survival and overall survival

compared to conventional chemotherapy and are associated

with fewer severe adverse events (Singh et al., 2021).

Antitumor immunotherapy is another effective and safe

treatment for NSCLC. Immune checkpoint inhibitors are the

most studied immunotherapies for NSCLC (Herzberg et al.,

2017; Xiong et al., 2021). Immunotherapy differs from

traditional chemotherapy and targeted therapy as it kills

the tumor by overcoming immunosuppression and

reactivating the patient’s own immune cells (Alexander

et al., 2020). The immune checkpoint molecules PD-1 and

its ligands, PD-L1 and PD-L2, are key therapeutic targets

(Robert, 2020).

Tumorigenesis and development are closely related to

metabolism (DeBerardinis and Chandel, 2016). Metabolic

reprogramming is associated with tumorigenesis and is an

important hallmark of cancer. Therefore, tumors are not only

genetic diseases but also metabolic diseases (Hanahan and

Weinberg, 2011). Mutations in tumor-related genes cause

changes in multiple signaling pathways in cells, which

reshapes the metabolism of tumor cells to enhance their

survival and growth ability (Nagarajan et al., 2016). EGFR-

TKIs and PD-1/PD-L1 inhibitors can inhibit tumor growth

through a variety of signaling pathways, but evidence of their

effect on metabolic pathways is limited. Therefore, exploring

the effects of EGFR-TKIs and immunotherapy on metabolic

pathways in NSCLC would be useful to elucidate the

mechanism of these two new therapies and provide strong

evidence for clinical treatment selection from the perspective

of metabolism. Metabolomics has been widely applied to

quantify the changes in metabolites in cells, tissues, and

entire organisms with the aim of studying the dynamic

changes in endogenous metabolites and reflecting metabolic

pathways and shifts in biological processes (Johnson et al.,

2016). Therefore, this study aimed to clarify the metabolic

changes in patients’ serum after treatment with EGFR-TKIs

and PD-1/PD-L1 inhibitors and identify metabolic

reprogramming mechanisms, thus providing new evidence

for targeted therapy and antitumor immunotherapy in

NSCLC.
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2 Materials and methods

2.1 Study design and participants

Between November 2020 and November 2021, 120 patients

with pathologically diagnosed NSCLC were enrolled in this

study: 35 patients had not yet received preoperative surgery,

radiotherapy, or chemotherapy (A group), 47 patients were

treated with EGFR-TKIs (B group), and 50 patients were

treated with PD-1/PD-L1 inhibitors (C group). Healthy

volunteers without a known chronic or major disease and

who were not undergoing any treatment were matched for

age, sex, and smoking status with the enrolled patients (HC

group). Patients with symptoms associated with bacterial

infection, such as fever, increased leukocyte and neutrophil

counts, and inflammation indicated by lung imaging or

microculture, were excluded from the study to avoid any

influence of bacterial infection on the serum metabolome.

2.2 Sample collection and preparation for
metabolomics

Blood samples in B and C groups were collected after

2–3 treatment cycles with EGFR-TKIs or PD-1/PD-

L1 inhibitors. Briefly, all serum samples were collected in

the morning after an overnight fast. Whole blood (5 ml) was

collected in sterile coagulation BD vacuum blood collection

tubes. The tubes were gently shaken and centrifuged at

3,000 rpm for 10 min at room temperature. The

supernatant (serum) was collected in 1.5-ml microfuge

tubes and stored at −80°C until further analyses.

After thawing on ice, small metabolites from a 100-

μlaliquot of serum was extracted by vortex-mixing with

300 μl of a methanol:acetonitrile (1:1 v/v) solution. The

mixture was vortexed, sonicated, and then incubated

at −20°C for 30 min. After centrifugation at 13,000 ×g at

4°C for 15 min, the supernatants were filtered through a

0.22-µm microporous membrane and carefully transferred

to a sample bottle for LC-MS/MS analysis. Aliquots of all

serum samples (10 µl) were pooled as part of the system

adjustment and quality control (QC) process to prepare QC

samples. The QC samples were treated in the same manner as

the analytical samples.

2.3 Metabolite detection

Metabolomics analysis was perfomed on an ultra-

performance liquid chromatography (UPLC) system

(Agilent1290 Infinity II; Agilent Technologies Inc., CA,

United States) connecting to a high-resolution tandem mass

spectrometer (TripleTOF 5,600 Plus; AB SCIEX, Framingham,

MA, United States). An ACQUITY HSS T3 column (100 ×

2.1 mm, i. d. 1.8 µm; Waters, Milford, United States) were

equipped for reversed-phase separation. The mobile phase

consisted of solvent A (water, 0.1% formic acid) and solvent B

(acetonitrile, 0.1% formic acid) with a gradient as previously

described (Xu et al., 2021). The column temperature was

maintained at 30°C and the flow rate was 0.30 ml/min.

For MS analysis, data acquisition was performed in full scan

mode combined with independent data acquisition (IDA)-based

auto-MS2 mode. Parameters of mass spectrometer were set as

follows: m/z range: 80–1,000 (+) and 80–1,000 (−), ionspray

voltage floating: 5500 V (+) and -4500 V (-), declustering

potential: 80 V (+) and -80 V (−), collision energy: 10 V (+)

and -10 V (-), interface heater temperature: 550oC (+) and 550oC

(−), curtain gas: 35 psi, ion source gas 1 and ion source gas 2:

55 psi (+) and 55 psi (−). The m/z range of IDA analysis was set at

50–1,000 in both positive ion mode and negative mode, the

collision energy was 35 V in positive ion mode and −35 V in

negative ion mode, and collision energy spread was 15 V in both

positive and negative ion modes.

During the entire period, the mass accuracy was calibrated

after every six samples. Additionally, the purpose of introducing

QCs every 10 samples in analytical sequence is to evaluate the

reliability of large-scale metabolomics analysis.

2.4 Metabolomics analysis and annotation

Analysis of raw data obtained from UPLC-TOF/MS was

conducted using the qualitative analysis software Analyst TF

(version 1.7.1, AB SCIEX) for peak identification and

comparison. As part of the metabolomics data processing

workflow, peak picking, quality assessment, missing value

imputation, normalisation, transformation, and scaling were

performed. The details was present as below: 1) XCMS

algorithm is applied to extract peaks using One-Map/PTO

software (www.5omics.com) developed by Dalian

ChemDataSolution Information Technology Co. Ltd. 2) Data

quality is analyzed based on QC samples’ stability after peak

extraction. The proportions of RSDs of mass spectrometry

characteristics below 50% should account for more than 80%.

QC calibration is performed using the MetNormalizer method

based on support vector regression analysis. 3) The 80/20 rule is

employed to eliminate metabolic features with non-zero values

exceeding 20% in any category. Missing values are filled with the

minimum value in the data. 4) A normalization process is

required for that concentration of metabolites varies between

individual organisms or during sample collection. To eliminate

or reduce this heterogeneity, each metabolite is divided by the

total concentration of the sample, so as to correct the influence of

individual differences or other factors on the absolute

concentration of metabolites. 5) In the data analysis, auto

scaling and pareto scaling are used (scaling is used to
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eliminate variation in metabolite concentration orders of

magnitude). Auto scaling is performed on the characteristic

variables during principal component analysis (PCA) and

partial least squares-discriminant analysis (PLS-DA), while

pareto scaling is performed on the characteristic variables

during orthogonal partial least squares-discriminant analysis

(OPLS-DA).

The standard database (containing information of

1,550 metabolic standards), and custom databases including

METLIN (http://metlin.scripps.edu/), Kyoto Encyclopedia of

Genes and Genomes (KEGG) (http://www.kegg.jp/kegg/

pathway.html), LipidMaps (https://www.lipidmaps.org/),

Human Metabolome DataBase (HMDB) (https://hmdb.ca/),

MassBank (https://massbank.eu/), and PubChem Database

(https://pubchem.ncbi.nlm.nih.gov/) were used to validate,

match, and annotate the processed molecular weights of the

metabolites for accurate metabolite characterization. Notably,

according to the definitions of metabolite identification as

described by Schrimpe-Rutledge (Schrimpe-Rutledge et al.,

2016), all the metabolites determined here would be

considered as putative identification (Level 2), which lack the

reference standard acquisition but used MS/MS data in

combination of precursor m/z and retention time to derive

the structural information.

SIMCA 15.0.2 (Umetrics AB, Umea, Sweden) was used to

perform multivariate analyses. An unsupervised, nontargeted

PCA was conducted using LC-MS/MS data, allowing for the

visualization of holistic metabolome variation among groups and

monitoring of stability over time. Significantly different

metabolites were identified using OPLS-DA. Model

parameters R2 and Q2 were used to assess model validity and

avoid overfitting by supplying information about interpretability

and predictability. OPLS-DA was applied to compute variable

importance in projection (VIP). In a single-dimension statistical

analysis, p-values were estimated through paired Student’s

t-tests. The t-test, in conjunction with the OPLS-DA method,

was used to determine the difference in metabolites between

groups (while fulfilling VIP >1 and p < 0.05).

2.5 Statistical analysis

Statistics were conducted utilizing SPSS 25.0 (International

Business Machines Corp., Armonk, NY, United States). Means

and standard deviations of normally distributed data were

calculated and reported. ANOVA was used for comparisons

among multiple groups in the case of homogeneity of

variance, followed by LSD t-test; otherwise, Welch’s t-test and

Dunnett’s T3 test were adopted. A median (interquartile range)

[M (P25, P75)] is calculated for non-normally distributed data.

Comparing differences between groups was performed using the

independent-sample Kruskal–Wallis test. A chi-square test was

used to compare count data among groups Statistical significance

was set at p < 0.05.

TABLE 1 The clinical characteristics of the enroled participants.

Characteristics A (n = 35) B (n = 47) C (n = 50) HC (n = 50) χ2, P

Male/Female 25/10 30/17 40/10 38/12 5.370, 0.157

Age (years) 57.00 (52.00, 63.00) 57.00 (52.00, 66.00) 58.00 (53.00, 61.00) 54.50 (50.75, 58.00) 7.572, 0.056

Weight (Kg) 65.00 (60.00, 72.50) 61.00 (56.00, 67.00)a 60.00 (54.00, 67.00)a 67.00 (62.00, 70.00)b,c 17.979, <0.001
Type (n) — — — — —

Squamous carcinoma 8 4 8 — —

Adenocarinoma 17 27 34 — —

Large cell carcinoma 2 2 1 — —

NA 8 14 7 — —

Tumor stage (n) — — — — —

Ⅰ 3 3 2 — —

Ⅱ 3 2 4 — —

Ⅲ 5 6 9 — —

Ⅳ 14 23 26 — —

NA 10 13 9 — —

Metastasis (n) 19 31 39 — —

CEA (ng/ml) 3.76 (1.27, 27.82) 3.66 (2.36, 26.82) 3.92 (1.27, 10.64) 1.25 (1.00, 1.87)a,b,c 20.250, <0.001
NSE (μg/L) 7.67 (5.65, 9.78) 8.62 (6.32, 10.90) 7.56 (5.41, 9.95) 5.94 (5.32, 7.67)a,b,c 21.682, <0.001
proGRP (ng/ml) 0.04 (0.03, 0.06) 0.06 (0.03, 0.205) 0.04 (0.03, 0.07) 0.05 (0.04, 0.06) 5.385, 0.146

Note: A, NSCLC, patients without any anticancer treatment; B, NSCLC, patients treated with EGFR-TKIs; C, NSCLC, patients treated with PD-1/PD-L1, inhibitors; HC, healthy control.
aCompared with the A group, p < 0.05; bCompared with the B group, p < 0.05;cCompared with the C group, p < 0.05.
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3 Results

3.1 Population and clinical characteristics

Characteristics of the study population are presented in

Table 1. Forty-seven patients (group B) treated with EGFR-

TKIs were analyzed, 29 of whom were treated with EGFR-

TKIs as first-line therapy and 18 of whom were treated with

EGFR-TKIs as second- and third-line therapy after cytotoxic

chemotherapy. Twenty-four enrolled patients received PD-1/

PD-L1 inhibitors alone as first-line treatment when their

tumors had a PD-L1 expression greater than or equal to 50%,

and 26 patients received PD-1/PD-L1 inhibitors as second- or

third-line treatment after platinum failure regardless of the PD-

L1 expression value. No significant differences in sex or age were

identified among the patient groups. There were more men than

women. Weight loss was observed in the EGFR-TKI and PD-1/

PD-L1 inhibitor groups (B and C groups). Compared to the HC

group, NSCLC patients had higher levels of CEA and NSE,

whereas there was no difference in proGRP among the groups.

3.2 Multivariate statistical analysis of
metabolites

Liquid chromatography-mass spectrometry is a method

that is commonly used to analyze metabolomic data and

generate the mass-to-charge ratio for metabolomic analysis

of biological samples. Processed data comprising retention

time, exact mass, and peak intensity from the three subgroups,

including the untreated group (group A), the EGFR-TKI-

treated group (group B), and the PD-1/PD-L1 inhibitor-

treated group (group C), were subjected to multivariate

statistical analysis.

PCA plots showed a clustering of QC samples (Figures

1A,B), and correlation heatmaps present strong correlations

between QC samples (Figures 1C,D), indicating the

satisfactory stability and repeatability of the analytical

system. However, no distinct classifications were achieved

for the A vs B, A vs C, or B vs C comparisons in either the

positive or negative ion modes, indicating no effective

separation of the principal components.

As OPLS-DA is more discriminatory than PCA, it was

further used to explore the different metabolic profiles.

Distinct clustering in the A vs B, A vs C, and B vs C

comparisons was observed in both the positive and

negative ion modes, indicating a clear separation of the

three patient cohorts (Figures 1E,F and Figure 2). Model

evaluation used OPLS-DA’s R2X, R2Y, and Q2 (cumulative)

parameters. Table 2 list these modeling parameters within

each comparison. The high Q2 values of the OPLS-DA model

showed its high accuracy. Overfitting of the supervised

OPLS-DA models was examined by performing

200 random permutations. Positive and negative ions had

FIGURE 1
Multivariate statistical analysis in A, B, C and HC groups. (A,B) PCA score plots with QC samples; (C,D) Correlation analysis of QC samples in the
ESI+ and ESI− scan modes. (E,F) OPLS-DA score plots of A, B, C and HC groups in the ESI+ and ESI− scan modes.
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Q2 distributions with Y-intercepts lower than zero,

indicating the reliability of OPLS-DA (Figure 2).

Therefore, the PCA and OPLS-DA models showed

significant distinctions among the A vs B, A vs C, and B

vs C comparisons and were highly effective in characterizing

serum metabolites.

FIGURE 2
Plots of OPLS-DA score and permutation testing for A vs. B (A), A vs. C (B), B vs. C (C) comparisons in the ESI+ and ESI− scanmodes. The criterion
for evaluating whether there is overfitting in the OPLS-DA model is that the regression line at a blue Q2 point crosses or is less than 0 from the
abscissa.

TABLE 2 Comparisons among groups under ESI+ and ESI- scan modes using PLS-DA and OPLS-DA analysis models.

Scan mode Analysis model Group R2X R2Y Q2

ESI+ PLS-DA 4 group 0.27 0.95 0.95

OPLS-DA 4 group 0.33 0.65 0.57

A vs. B 0.55 0.90 0.90

A vs. C 0.54 0.89 0.88

B vs. C 0.36 0.42 0.31

ESI- PLS-DA 4 group 0.23 0.99 0.99

OPLS-DA 4 group 0.38 0.77 0.574

A vs. B 0.75 0.96 0.96

A vs. C 0.69 0.96 0.96

B vs. C 0.50 0.59 0.52

Note: A, NSCLC, patients without any anticancer treatment; B, NSCLC, patients treated with EGFR-TKIs; C, NSCLC, patients treated with PD-1/PD-L1, inhibitors; HC, healthy control.
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FIGURE 3
Differential metabolite heat maps in ESI+ (A) and ESI− (B) scanmodes. The columns represent samples, the rows represent metabolites, and the
relative content of the metabolites is displayed by color. The heat map shows differential metabolites among A, B, C, and HC groups.

TABLE 3 List of statistically significant metabolites in A vs B and A vs C comparisons.

Metabolites B vs. A C vs. A

VIP Log2(FC) P Trend VIP Log2(FC) P Trend

Carnitine L-Carnitine 1.77 -0.70 <0.001 ↓ 1.94 -0.89 <0.001 ↓
(R)-Stearoylcarnitine 1.55 -0.76 <0.001 ↓ 1.25 -0.59 <0.001 ↓
L-Palmitoylcarnitine 1.57 -1.11 <0.001 ↓ 1.35 -1.01 <0.001 ↓
Linoleyl carnitine 2.01 -2.05 <0.001 ↓ 1.80 -1.96 <0.001 ↓

Amino acids L-Glutamine 1.65 2.02 <0.001 ↑ 1.61 2.28 <0.001 ↑
D-Glutamate 2.00 0.81 <0.001 ↑ 1.90 0.83 <0.001 ↑
L-Phenylalanine 2.05 0.85 <0.001 ↑ 1.90 0.81 <0.001 ↑
N-Acetyl-L-leucine 1.26 0.69 <0.001 ↑ 1.14 0.59 <0.001 ↑
N-Acetyl-D-tryptophan 1.41 1.39 <0.001 ↑ 1.38 1.01 <0.001 ↑

Fatty acids Arachidonic acid 1.82 1.67 <0.001 ↑ 1.99 1.73 <0.001 ↑
Hypogeic acid 1.09 0.66 <0.001 ↑ 1.18 0.67 <0.001 ↑
9-Oxohexadecanoic acid 1.99 -0.77 <0.001 ↓ 2.00 -0.96 <0.001 ↓

Lipids PI 16:1 1.67 2.21 <0.001 ↑ 1.81 1.91 <0.001 ↑
Lyso PE 20:1 1.76 1.80 <0.001 ↑ 1.85 1.50 <0.001 ↑
Lyso PC 20:1 1.60 1.37 <0.001 ↑ 1.73 1.14 <0.001 ↑
PA 31:8 1.48 4.16 <0.001 ↑ 2.02 4.13 <0.001 ↑
PS 23:4 1.65 3.54 <0.001 ↑ 1.28 3.35 <0.001 ↑
PC 34:2 1.67 -0.82 <0.001 ↓ 1.17 -0.66 <0.001 ↓
PC 29:2e 2.36 4.25 <0.001 ↑ 2.38 4.20 <0.001 ↑
SM d35:3 2.53 5.46 <0.001 ↑ 2.42 5.45 <0.001 ↑

Note: A, NSCLC, patients without any anticancer treatment; B, NSCLC, patients treated with EGFR-TKIs; C, NSCLC, patients treated with PD-1/PD-L1, inhibitors; HC, healthy control.

VIP, variable influence on projection; FC, fold-change.
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TABLE 4 List of statistically significant metabolites in B vs C comparison.

Metabolites B vs. C

VIP Log2(FC) P Trend

Amino acids N-Acetyl-D-tryptophan 1.15 0.38 0.044 ↑
L-Kynurenine 1.57 -0.27 0.027 ↓
L-Isoleucine 1.26 0.96 0.045 ↑
Arachidonoyl Glycine-d8 1.45 -0.43 0.044 ↓

Lipids PI 38:3 1.38 0.35 0.018 ↑
PI 38:5 1.47 0.32 0.012 ↑
PE 38:4 2.54 0.64 <0.001 ↑
PC 38:4 1.53 0.37 0.020 ↑
LysoPE 18:0 2.38 0.33 <0.001 ↑
LysoPC 18:3 2.19 0.49 <0.001 ↑

Note: A, NSCLC, patients without any anticancer treatment; B, NSCLC, patients treated with EGFR-TKIs; C, NSCLC, patients treated with PD-1/PD-L1, inhibitors; HC, healthy control.

VIP, variable influence on projection; FC, fold-change.

FIGURE 4
The normalized peak intensity of 20 representative differential metabolites among A, B, C, and HC groups. p** < 0.01; p*** < 0.001.
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3.3 Differential metabolite analysis and
identification

Databases, publically available and integrated, were used for

qualitative identification. Using the positive and negative ion

modes, 754 and 697 metabolites were identified, respectively.

Subsequently, 97 and 87 different metabolites in the A vs B and A

vs C comparisons were selected using a fold-change

threshold >1.5 or <2/3, VIP >1, and Student’s t-test threshold

p < 0.05. Thirty-four different metabolites in the B vs C

comparison were selected using a fold-change

threshold >1.2 or <2/3, VIP >1, and Student’s t-test threshold

p < 0.05. There was clear clustering in heat maps of

25 representative differential metabolites detected in both

positive and negative modes between groups A, B, C, and HC

(Figure 3), consistent with the OPLS-DA results.

The most abundant classes of metabolites for the A vs B and

A vs C comparisons were carnitines, amino acids, fatty acids, and

lipids (Table 3), whereas for the B vs C comparison, the most

abundant classes were fatty acids and lipids (Table 4). In the A vs

B and A vs C comparisons, the levels of most carnitines

decreased, whereas the levels of essential amino acids

increased. Fatty acids and lipids were both increased and

decreased because of their wide variety. Twenty significantly

altered metabolites were identified based on the screening criteria

(FC > 1.5 or <2/3, VIP >1, and p < 0.05). Semi-quantitative

analysis of these representative differential metabolites showed

that after treatment with EGFR-TKIs or PD-1/PD-L1 inhibitors,

the levels of the metabolites were closer to those in the HC group

(Figure 4), which proved the effectiveness of the treatment.

Notably, some glycerophosphatide (mainly PC and PA) levels

in the treatment groups did not return to normal, and an increase

of arachidonic acid in B and C groups was still observed as

compared with healthy individuals (data not shown).

Ten significantly altered metabolites were identified in the B

vs C comparison based on FC > 1.2 or <2/3, VIP >1, and p < 0.05.

The main differentially regulated metabolites between the two

groups were amino acids and lipids. Among them, tryptophan

and its metabolite kynurenine, phosphatidylinositol,

phosphatidylethanolamine, phosphatidylcholine,

lysophosphatidylethanolamine, and lysophosphatidylcholine

changed significantly.

3.4 Perturbed pathways identified in group
comparisons

We next examined the metabolic pathways enriched among

the differential metabolites. Pathway impact values refer to the

cumulative percentage from the matched metabolite nodes and

the maximum importance of each pathway is 1. The results of

metabolic pathway analysis showed that the perturbed pathways

were mainly enriched in 1) phenylalanine metabolism,

glycerophospholipid metabolism, D-glutamine and

D-glutamate metabolism, and phenylalanine, tyrosine, and

tryptophan biosynthesis for the A vs B comparison; 2) linoleic

acid metabolism, phenylalanine metabolism,

glycerophospholipid metabolism, and D-glutamine and

D-glutamate metabolism for the A vs C comparison; and 3)

glycerophospholipid metabolism, tryptophan metabolism, and

phosphatidylinositol signaling system for the B vs C comparison

(Figure 5 and Table 5).

There were three shared metabolic pathways in the A vs B

and A vs C comparisons, all of which were related to lipid and

amino acid metabolism. The two groups shared many of the

same differential metabolites and thus shared the same

enriched metabolic pathways. Although both EGFR-TKIs

and PD-1/PD-L1 inhibitors can regulate tumor lipid

metabolism, our results suggest that the mechanisms of

lipid metabolism regulation may differ, leading to

significant differences in lipid metabolism between the two

treatments. As expected, the enriched metabolic pathways in

the B vs C comparison included the tryptophan metabolic

pathway. Moreover, glycerophospholipid metabolism was the

most significantly altered metabolic pathway in all three

comparisons, suggesting that lipid metabolism plays an

important role in tumor development.

4 Discussion

The incidence and mortality of lung cancer, especially

NSCLC, are very high. Although there are many treatments

for NSCLC, the underlying mechanisms of the treatment

effects remain unclear. In this study, we used a nontargeted

metabolomics approach based on liquid chromatography-mass

spectrometry to analyze the metabolic response of NSCLC

patients to EGFR-TKIs or PD-1/PD-L1 inhibitors in an

attempt to provide new clues to identifying the antitumor

mechanism of these two treatments from the perspective of

metabolism.

Many studies have shown that EGFR-TKIs and PD-1/PD-

L1 inhibitors can affect tumor metabolism (Chang et al.,

2015; Zhang et al., 2021). EGFR-TKIs inhibit tumor growth

by blocking the activation of EGFR in cancer cells and the

downstream MAPK (RAS/RAF/MEK/ERK) and PI3K/AKT/

mTOR signaling pathways. They inhibit cell proliferation

and tumor-induced angiogenesis while promoting apoptosis

(Singh et al., 2021). It has been reported that the

overactivation of the MAPK and PI3K/AKT pathways is

related to the reprogramming of specific metabolic

processes, including increasing glucose uptake through

glucose transporter 1, enhancing glutamine replenishment

by activating glutamate pyruvate aminotransferase 2, and

cellular lipid reprogramming (Koundouros and

Poulogiannis, 2020). Besides, PD-1/PD-L1 inhibitors were

Frontiers in Pharmacology frontiersin.org09

Yan et al. 10.3389/fphar.2022.949745

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.949745


originally designed to reactivate the host antitumor immune

response by blocking the PD-1/PD-L1 immune checkpoint.

However, there is increasing evidence that immune

checkpoint inhibitors can affect the metabolic fitness of

tumor and T cells. For example, the expression of PD-L1

and B7-H3 (also known as CD276) in tumor cells can

stimulate aerobic glycolysis in tumor cells by activating

the PI3K/AKT/mTOR pathway (Li et al., 2019a; Stirling

et al., 2022). Conversely, the interaction of PD-1 with PD-

L1 or PD-L2 can impair the metabolic reprogramming of

T cells by inhibiting the similar pathway (Wang et al., 2022).

Therefore, these studies provide theoretical support for us to

explore the mechanisms of these two emerging treatment

methods for NSCLC from the perspective of metabolism. To

the best of our knowledge, there has been no metabolomic

study in NSCLC patients for comparing the EGFR-TKIs and

PD-1/PD-L1 inhibitors.

Our PCA score chart showed that under the positive and

negative ion modes, the clusters of the EGFR-TKI- and PD-1/

PD-L1 inhibitor-treated groups tended to be close to the

cluster of the HC group and were significantly separated

from the cluster of the primary lung cancer group,

indicating that EGFR-TKIs and PD-1/PD-L1 inhibitors

have definite antitumor therapeutic effects on NSCLC. The

OPLS-DA score charts showed good differentiation between

the groups. Compared with the newly diagnosed, untreated

lung cancer group, there were significant changes in carnitine,

amino acids, fatty acids, and lipids in the EGFR-TKI- and PD-

1/PD-L1 inhibitor-treated groups. The treatment groups had

two similar significantly altered metabolic pathways:

glutamine and D-glutamate metabolism and glycerol

phospholipid metabolism. We believe that this may be

related to the action of therapeutic drugs on the same

signaling pathway (such as PI3K/AKT/mTOR) and the

FIGURE 5
Summary of metabolic pathways analyzed in A vs. B (A), A vs. C (B) and B vs. C (C) comparisons.

TABLE 5 Significantly altered metabolic pathways in A vs B, A vs C and B vs C comparisons.

Comparison Pathway name KEGG.id -log(P) Impact Hits

A vs B Phenylalanine metabolism hsa00360 1.84 0.60 2

Glycerophospholipid metabolism hsa00564 7.27 0.51 9

D-Glutamine and D-glutamate metabolism hsa00471 2.75 0.50 2

Phenylalanine, tyrosine and tryptophan biosynthesis hsa00400 1.35 0.50 1

A vs C Linoleic acid metabolism hsa00591 2.93 1 2

Phenylalanine metabolism hsa00360 1.67 0.59 2

Glycerophospholipid metabolism hsa00564 8.12 0.53 10

D-Glutamine and D-glutamate metabolism hsa00471 2.58 0.50 2

B vs C Glycerophospholipid metabolism hsa00564 10.77 0.41 8

Tryptophan metabolism hsa00380 0.84 0.11 2

Phosphatidylinositol signaling system hsa04070 1.34 0.10 2

Note: A, NSCLC, patients without any anticancer treatment; B, NSCLC, patients treated with EGFR-TKIs; C, NSCLC, patients treated with PD-1/PD-L1, inhibitors; HC, healthy control.
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utilization of the same therapeutic drugs (such as platinum) in

the early treatment stage. After treatment with EGFR-TKIs or

PD-1/PD-L1 inhibitors, glutamate/glutamine, phenylalanine,

n-acetyl-L-leucine, n-acetyl-D-tryptophan, D-n-valine,

arachidonic acid, and linoleic acid levels were significantly

increased in patients with NSCLC, whereas carnitine, stearyl

carnitine, palmitoyl carnitine, linoleic carnitine, and palmitic

acid levels were markedly decreased. The levels of these

metabolites in the two treatment groups were similar to

those in the HC group, which is consistent with the results

of the PCA.

Lung cancer cells require glutamine to meet their

metabolic needs. As a nitrogen source, glutamine directly

or indirectly after conversion to glutamate contributes to

many anabolic processes in cancer, such as the biosynthesis of

amino acids, nucleotide bases, and hexosamine. It also plays

an important role in redox homeostasis. In addition, in a

process known as glutamine decomposition, glutamine is

converted to α-ketoglutaric acid, which serves as the

energy and carbon source that supplements intermediates

of the tricarboxylic acid cycle (Tang et al., 2022; Vanhove

et al., 2019). EGFR phosphorylates ELK1 through the MEK/

ERK pathway, which can activate GDH1 transcription and

glutamine degradation, providing a new perspective for

changes in glutamine metabolism in tumor cells (Yang

et al., 2020). In addition, as mentioned earlier, the

interaction between PD-1 and PD-L1 or PD-L2 inhibits

the PI3K/AKT/mTOR pathway and blocks metabolic

reprogramming of T cells, including glutamine hydrolysis.

In our study, EGFR-TKIs and PD-1/PD-L1 inhibitors

reduced glutamine decomposition, which may be related to

the inhibition of the MEK/ERK and/or PI3K/AKT/mTOR

pathways. Further, the level of glutamine increased

significantly in our treatment groups, indicating a reduced

consumption of glutamine after treatment, which may also

reflect the reduction in glutamine addiction in tumor cells

after treatment (Euceda et al., 2017).

Essential amino acids (tryptophan, methionine, valine,

lysine, isoleucine, phenylalanine, leucine, threonine, and

histidine) not only provide raw materials for the synthesis

of biological macromolecules such as proteins, lipids, and

nucleic acids but can also be used as signaling molecules to

induce the activation of the mTOR pathway (Hosios et al.,

2016). Driven by RAS/RAF/MEK/ERK and PI3K/AKT/mTOR

signaling, proliferating cells import nutrients, such as amino

acids, thus activating mTORC1, inducing transcriptional

reprogramming of MYC and other transcription factors,

and promoting the expression of growth signal-related

genes and protein and ribosome synthesis (Stine et al.,

2022). We speculate that EGFR-TKIs and PD-1/PD-

L1 inhibitors block PI3K/AKT/mTOR signaling, which

blocks the absorption of essential amino acids by tumor

cells, resulting in increased phenylalanine, n-acetyl-

L-leucine, and n-acetyl-D-tryptophan. In addition, the

increase in phenylalanine may be closely related to cell

cycle arrest in the G1 phase. Previous studies have shown

that the EGFR-TKIs gefitinib and lapatinib can block cell cycle

progression (Konecny et al., 2006; Rusnak et al., 2001). This

also demonstrates the effectiveness of EGFR-TKIs in EGFR-

mutated NSCLC.

Arachidonic acid, linoleic acid, and palmitic acid are

involved in fatty acid metabolism. Fatty acids can

participate in the structural synthesis of phospholipids on

the membrane of cancer cells and promote the transduction

of important signals. Cancer cells also utilize ATP produced

by fatty acid β-oxidation as an energy source (Koundouros

and Poulogiannis, 2020). Carnitine is an essential energy

substance involved in the β-oxidation of fatty acids (Longo

et al., 2016); the rate-limiting step of β-oxidation is the

carnitine shuttle (Li and Zhao, 2021). Our study found

that carnitine levels were decreased after treatment with

EGFR-TKIs or PD-1/PD-L1 inhibitors. This may inhibit

the β-oxidation of fatty acids, leading to the abnormal

metabolism of fatty acids (arachidonic acid, linoleic acid,

and palmitic acid) and reducing the energy uptake of tumor

cells. These results suggest that EGFR-TKI or PD-1/PD-

L1 inhibitor treatment may improve the effect of

antitumor therapy by restoring endogenous fatty acid

homeostasis. The significantly differentially regulated

metabolites in these patients, including arachidonic acid,

linoleic acid, and glutamate, are all involved in

inflammation and oxidation. It has been suggested that

EGFR-TKIs or PD-1/PD-L1 inhibitors may also play a

therapeutic role in NSCLC through anti-inflammatory and

antioxidant mechanisms (Liao et al., 2012).

Metabolomic profiling of tumor and plasma samples from

NSCLC patients has indicated alterations in the lipid

composition. Lipids are used as energy sources and cellular

components (in the form of phospholipids) for rapidly

proliferating cancer cells (Kowalczyk et al., 2021).

Glycerophospholipid metabolism is highly related to the

development and progression of cancer (Yang et al., 2022).

A review of 12 articles showed that the phosphatidylcholine,

phosphatidylethanolamine, phosphatidylinositol, cardiolipin,

phosphatidylserine, phosphatidylglycerol, ceramide,

lysophosphatidylethanolamine, lysophosphatidylcholine,

and lysophosphatidylglycerol levels were significantly

different between NSCLC and normal tissues (Jianyong

et al., 2021), which was consistent with what we observed

in the serum of NSCLC patients. After treatment with EGFR-

TKIs or PD-1/PD-L1 inhibitors, the levels of various glycerol

phospholipids tended to decrease to levels similar to those in

the HC group, indicating that these two treatments may block

the dysregulation of lipid metabolism in tumor cells to a

certain extent to exert antitumor therapeutic effects. In

addition, changes in lipid composition can alter the
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properties of the cell membrane and affect its function,

including material exchange and signal transduction (Lin

et al., 2017). The interference of EGFR-TKIs or PD-1/PD-

L1 inhibitors on the metabolism of glycerophospholipids or

glycerol esters in patients with NSCLC suggests that small-

molecule targeted drugs or immunotherapies may also inhibit

the malignant proliferation of tumor cells by interfering with

cell membrane stability. Our results also suggest that lipid

differentials may be good biomarkers for tumorigenesis,

development, and prognosis.

There were significant differences in lipid metabolism

(glycerophospholipid metabolism and phosphatidylinositol

signaling) and amino acid metabolism (tryptophan

metabolism) between the EGFR-TKI and PD-1/PD-

L1 inhibitor groups. The therapeutic mechanisms of the two

treatments are not identical, which leads to differences in the

levels and downstream effectors of various glycerophospholipids.

We also found that PD-1/PD-L1 inhibitor treatment affected

phosphatidylinositol signaling more than EGFR-TKI treatment.

Phosphatidylinositol is a lipid signaling molecule that is the main

regulator of cell signaling (Hammond and Burke, 2020). When

PD-1 binds to PD-L1, downstream T cell activation is blocked by

the phosphorylation of phosphatidylinositol-3-kinase.

Conversely, blocking the PD-1/PD-L1 signaling pathway can

inhibit the phosphatidylinositol-3-kinase/AKT signaling

pathway and promote T cell activation. Therefore,

phosphatidylinositol signaling may be more related to PD-1/

PD-L1 inhibitor therapy. Futhermore, the conversion of

tryptophan to kynurenine can also significantly affect the

response to immunotherapy in cancer (Li et al., 2019b).

Tryptophan in the tumor microenvironment can be

metabolized to kynurenine by indoleamine-2,3-dioxygenase.

Kynurenine inhibits T cell activation, which allows tumor cells

to evade immune systemmonitoring and clearance. In our study,

the level of kynurenine was slightly increased in the PD-1/PD-

L1 inhibitor group. We speculate that this might be related to

PD-1/PD-L1 inhibitor resistance in some patients with NSCLC

(Lei et al., 2020). This suggests that inhibiting the tryptophan-

kynurenine pathway through the administration of indoleamine-

2,3-dioxygenase inhibitors may benefit NSCLC patients who are

resistant to PD-1/PD-L1 inhibitors (Kotecki et al., 2021).

Compared with healthy controls, patients treated with

EGFR-TKIs and PD-1/PD-L1 inhibitors had abnormal

glycerophosphatide metabolism. Some glycerophosphatide

(mainly PC and PA) levels in the treatment groups did not

return to normal, so the metabolic pathway of

glycerophosphatide still differed from healthy individuals.

In addition, a different metabolism of arachidonic acid was

observed. Arachidonic acid metabolism is involved in

inflammation and lipid oxidation processes. Tumor cells

maintain their proliferation by metabolizing arachidonic

acid. The arachidonic acid metabolic chain may be

inhibited by EGFR-TKIs or PD-1/PD-L1 inhibitors, making

it unable to produce pro-inflammatory and pro-tumor

substances (such as eicosanoids) through key enzymes in

the arachidonic acid metabolic network, thus causing a

raise of the arachidonic acid (Koundouros et al., 2020).

Consequently, treatment and healthy groups exhibit

different arachidonic acid metabolic pathways. In addition,

we noted that there were no significant differences in amino

acid-related metabolic pathways (such as alanine, aspartic

acid and glutamate metabolic pathways) between the

healthy group and the treatment groups, suggesting that

therapeutic drugs may restore endogenous amino acid to

normal levels by regulating amino acid metabolism in

NSCLC patients.

Altogether, our results show that EGFR-TKIs and PD-1/PD-

L1 inhibitors induce changes in carnitine, amino acids, fatty

acids, and lipids and alter related metabolic pathways in NSCLC

patients. Changes in endogenous metabolism are caused by drug

action and may be related to the effects of antitumor therapy.

However, our research has some limitations. First, the sample

size was small, so a large, multicenter study is necessary to reduce

sampling error. Second, some of the included patients had

different degrees of concomitant drug use in the early

treatment stage, which inevitably affected metabolic pathways

to some extent. Third, the types of EGFR-TKIs and PD-1/PD-

L1 inhibitors were not completely consistent, which also led to

slightly inconsistent results and needs to be standardized in

further studies.
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