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Pharmaceuticals are highly bioactive compounds now known to be wide-

spread environmental contaminants. However, research regarding exposure

and possible effects in non-target higher vertebrate wildlife remains scarce.

The fate and behaviour of most pharmaceuticals entering our environment

via numerous pathways remain poorly characterized, and hence our con-

ception and understanding of the risks posed to wild animals is equally

constrained. The recent decimation of Asian vulture populations owing to a

pharmaceutical (diclofenac) offers a notable example, because the exposure

route (livestock carcasses) and the acute toxicity observed were completely

unexpected. This case not only highlights the need for further research, but

also the wider requirement for more considered and comprehensive ‘ecophar-

macovigilance’. We discuss known and potential high risk sources and

pathways in terrestrial and freshwater ecosystems where pharmaceutical

exposure in higher vertebrate wildlife, principally birds and mammals, may

occur. We examine whether approaches taken within existing surveillance

schemes (that commonly target established classes of persistent or bioaccumu-

lative contaminants) and the risk assessment approaches currently used for

pesticides are relevant to pharmaceuticals, and we highlight where new

approaches may be required to assess pharmaceutical-related risk.

1. Introduction
In line with the expansion and changing age structure of the human population,

total global spending on human medicine has increased by approximately

$50 Bn yr21 since 2007, and will reach approximately $1.2 Tn by 2017 [1]. Large

developing nations, such as China, India and Brazil, are promoting swift

growth in their pharmaceutical manufacturing, human healthcare [1] and inten-

sive agricultural sectors. Increasing use of pharmaceuticals in human and

veterinary medicine has led to a concurrent rise in ‘medicated’ discharges to

the environment and this presents a significant challenge to risk assessors and

regulators charged with environmental protection. A wide range of drugs have

now been detected in multiple environmental compartments globally [2–6].

It can be argued that the likelihood of pharmaceuticals causing widespread

acute effects in wild higher vertebrates is low. This is because extensive safety test-

ing is conducted during the development of modern human and veterinary drugs

and also because of the existence of regulatory and environmental protection

frameworks. However, a number of significant weaknesses remain with respect
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Figure 1. Pathways of pharmaceutical releases to freshwaters. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130570

2

to assessment of risk to wild vertebrates. Although there is con-

siderable testing of pharmaceuticals on some mammal species,

there is less on birds and data on pharmacokinetics and thera-

peutic doses in birds are limited. What data there are suggest

that there can be substantial differences in sensitivity and

toxicity between birds and mammals and, in fact, between

different mammal species [7–10]. In addition, the potential for

bioaccumulation or bioconcentration and resultant elevated

exposure in higher wildlife is not well characterized, particu-

larly for terrestrial systems [11,12]. Risk assessments also focus

on single pharmaceuticals, whereas wildlife will typically be

exposed to complex mixtures, and our understanding of how

pharmaceuticals interact with each other and affect toxicity is

limited [13,14]. Finally, regulatory frameworks that monitor

and restrict pharmaceutical emissions to the environment are

often absent or ineffectual in many developing countries [15]

and, even when in place, there may be a need to upgrade treat-

ment processes (at sewage treatment plants (STPs) for example)

to adequately curtail emissions of pharmaceuticals to the

environment [16,17].

Significant adverse effects in terrestrial and aquatic

organisms caused by pharmaceuticals have demonstrated

inadequacies in current risk assessment and regulatory pro-

cesses. Two of the most notable cases that have caused

global concern are (i) the near extirpation of Gyps vulture

populations in large parts of Asia following exposure to

non-steroidal anti-inflammatory drugs (NSAIDs) [18–20]

and (ii) the feminization of wild male fish from exposure to

synthetic oestrogen 17a-ethynyloestradiol (EE2), a common

ingredient in the human contraceptive pill [21,22], although

it is not known whether such endocrine effects likewise

occur in higher aquatic vertebrates. Furthermore, pharmaceut-

icals are designed to be highly bioactive, often for prolonged

periods at low doses. Therefore, although severe adverse effects

on wildlife have been detected, any effects of pharmaceuticals

on wild higher vertebrates are more likely to be chronic and

subtle. Such effects will be difficult to detect and quantify or

to attribute to a particular input. However, even basic monitor-

ing data on exposure and effects of pharmaceuticals in higher

wildlife are scarce [23].

Here, we review the current state of knowledge regarding

pharmaceutical contamination and effects in wild higher ver-

tebrates, specifically birds and mammals. There are few data

for birds and mammals but, given the severe impact of diclo-

fenac on Asian vultures, our aim is to draw attention to

potentially relevant exposure pathways. We examine which

exposure-mediating factors are incorporated in current risk

assessment processes and consider how exposure of wild
higher vertebrates to pharmaceuticals may best be detected.

The question underpinning this review is: can the current

systems used to detect exposure and assess risks to higher

vertebrates from chemicals (such as pesticides) be applied

to pharmaceuticals? Unless relevant to specific food chain

pathways (i.e. for piscivorous species), we do not consider

exposure in wild fish as this is covered comprehensively else-

where [4,13,21,22,24,25], nor do we review laboratory-based

exposures aimed at detecting specific compound–species

effects. Instead, we focus on environmentally relevant field

exposure situations, primarily for birds and mammals, in

freshwater and particularly terrestrial habitats worldwide.
2. Key exposure sources and pathways
Concern over the release of pharmaceuticals to the environment

has, until recently, focused on freshwaters, reflecting the fact that

human medicines almost invariably end up in aquatic systems

because of urinary and faecal excretion of prescription and rec-

reational drugs, and improper disposal of old medication [26].

Pharmaceuticals can enter freshwater systems through a

number of pathways (figure 1), the principal routes being the

discharge of liquid waste (domestic sewage, hospital or indus-

trial effluent) into aquatic habitats [16,27]. Research has tended

to centre on municipal STPs [16,28,29], principally in Europe

and North America, on hospitals [28,30] and on drug manufac-

turing facilities [15,29,31] which emit less volume but more

concentrated effluent. Aquaculture has also attracted attention

as a source of pharmaceutical inputs to freshwaters [32,33].

Untreated domestic, municipal and industrial sewage

effluent containing drugs can also enter freshwater via

misconnections, failed sewage pipework, combined sewer

overflows, septic tanks, or owing to a complete absence of

sewer and STP infrastructure. Recent data suggest that even

in high-income countries about 30% of wastewater is dis-

charged untreated, a figure that increases to about 92% in

low-income countries [34,35]. The standards for solid waste

management likewise vary considerably around the world

[36]. Pharmaceuticals are now a known component of landfill

leachate and can affect groundwater quality [37], but the wider

impacts of leachate on freshwater resources and food webs

have not been investigated. Landfill engineering is usually

absent in most low-income countries and disposal sites are

simply open dumps, with little to no leachate control or miti-

gation. In contrast, sanitary landfills in other regions (i.e. in

Europe, North and South America) may be fully lined and

engineered to prevent leachate impacting freshwater resources

[36]; leachate treatment plants may also be used.



Table 1. Potential terrestrial exposure pathways associated with different processes/practices.

process/practice possible exposure route/risk

landfill/municipal solid waste disposal

disposal of waste medication

— direct ingestion of medication/leachate by scavengers

— indirect ingestion by insectivores (e.g. birds/bats) consuming insects feeding on waste/leachate

— contamination of local freshwater resources and land by leachate containing drugs

animal waste disposal

disposal of ‘medicated’ animal carcasses

— carcass may contain medication administered before death—ingestion by scavengers (or carnivores)

— indirect ingestion by insectivores (e.g. birds/bats) consuming insects feeding on medicated carcasses

— sustained release bolus (long duration medication—as tablets) may be present within carcass

digestive tract

liquid waste processing

STP treatment of ‘medicated’ effluent

— STPs ‘attract’ certain species, e.g. insectivores or aquatic birds at trickling filters or tertiary treatment/

polishing lagoons (respectively)

— direct ingestion of wastewater and/or long-term dermal exposure in lagoons (aquatic birds and

mammals)

— indirect ingestion by insectivores (e.g. birds/bats) consuming invertebrates feeding on effluent (e.g. at

trickling filters) or emerging from lagoons

— potential bioaccumulation and food chain/trophic transfer within lagoon ecosystems

applying manure, slurry or STP biosolids/

effluent to land

re-use of ‘medicated’ waste in agriculture

— potential for persistence and/or bioaccumulation of certain compounds in soil and soil invertebrates

— food chain/trophic transfer in agricultural ecosystems

— direct ingestion by birds/mammals

— indirect ingestion by insectivores (e.g. birds/bats) consuming soil/aerial invertebrates

livestock/poultry production

‘medicated’ faeces deposition

— livestock/poultry receiving medication generate contaminated faeces and urine

— direct ingestion by soil and aerial invertebrates

— indirect ingestion by insectivores (birds/mammals, etc.)

— contact with residues in hair, wool, feathers and other material used as nesting or ingestion of this material

— direct ingestion by coprophagous vertebrates

— risk of high exposure if sustained release bolus (long duration medication—as tablets) in use

— intensive outdoor operations (e.g. feedlot CAFOs) may pose a particularly elevated risk
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In terms of risk from pharmaceuticals, the terrestrial habi-

tat has received far less attention compared with freshwaters.

In general, terrestrial inputs exist where liquid or solid waste

contaminated with drugs is deposited on land (table 1). Point

sources of emissions include carcass dumps and landfill sites

as well as STPs and other wastewater holding areas/lagoons

[38] that may provide habitat or substrate for the prey of

terrestrial predators. Agriculture is the other major source

by which pharmaceuticals are likely to be emitted to the

terrestrial environment, although inputs may lead to simul-

taneous contamination of freshwater habitats via surface

run-off and groundwater leaching [39–41]. Industrial agricul-

tural systems, such as concentrated animal feeding operations

(CAFOs), undertake confined, highly intensive rearing of ani-

mals in areas without vegetation (indoors on concrete or

outdoors on un-vegetated feedlots) and are an increasingly

common means in the USA and beyond of meeting global

demand for food. The operations rely heavily on the constant

administration of veterinary medication (antibiotics, steroids,

growth promoters and antiparasitics) and may represent impor-

tant sources of environmental contamination [42–44]. More

diffuse environmental inputs may arise from fertilization of agri-

cultural land with manure, slurry, biosolids and STP effluent.

Non-intensive livestock rearing may likewise result in diffuse

emissions through processes such as direct excretion of veterin-

ary products by animals, shedding/moulting of fur, feathers
and other similar material that may contain residues of veterin-

ary products, and through the death of medicated livestock in

areas where carcasses remain un-retrieved.

Exposure pathways for higher vertebrates may be directly

through ingestion of and contact with contaminated water,

through herbivory of contaminated forage, secondary exposure

through predation of contaminated invertebrates and lower

vertebrates, and direct exposure through coprophagy. While

the potential impact of pharmaceuticals on invertebrates, par-

ticularly coprophagous insect communities, has received

intense scrutiny [45–47], the exposure risks to higher ver-

tebrates within food webs largely remain to be investigated

[48]. For aquatic birds and mammals, foraging around STPs

is arguably the most important exposure route. Potential

exposure routes for terrestrial higher vertebrates are perhaps

more diverse and summarized in table 1.
3. Factors considered in risk assessment that
mediate exposure and effect

In general, there is lack of guidance when considering the key

factors affecting the exposure of wildlife to pharmaceuticals.

Given this, it may be useful to consider the existing, very

well developed, approaches used for estimating exposure

of birds and mammals to another group of anthropogenic
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compounds, plant protection products (PPPs). In Europe,

regulatory approaches for estimating acute and chronic

risks to birds and mammals from PPPs involve calculating

toxicity : exposure ratios (TERs). These estimate how much

the toxic dose (for example, an LD50) exceeds the estimated

exposure [49]. Broadly equivalent approaches are used else-

where and for other chemicals, although they may use

other ratios such as a risk characterization ratio (RCR)—

essentially, the inverse of a TER. A major factor when calcu-

lating a TER or RCR is estimating the exposure term. This

involves accounting for various factors that may modify the

uptake of PPPs by organisms. These are considered here to

examine whether similar factors are equally likely to

modify the risk of exposure to pharmaceuticals.

It is currently assumed that the only significant exposure

route for PPPs in birds and mammals is through ingestion

(oral exposure). Risk assessments are tiered, and an initial

screening tier uses relevant acute or chronic toxicity data, ‘indi-

cator’ species and worst-case estimates of exposure. If a PPP

fails the screening, first tier assessments are conducted using

‘generic focal species’ and more realistic estimations of dietary

exposure for acute and reproductive risk. These include

standardized approaches to assess risk from endocrine-

disrupting chemicals (EDCs), from metabolites, and from

bioaccumulation; three bioaccumulation food-chain scenarios

are used (earthworm to earthworm-eating birds and mam-

mals; fish to piscivorous bird/mammal; biomagnification in

food chains). Application of such approaches may be particu-

larly important for pharmaceuticals as the majority are

ionizable and, by their nature, readily metabolizable. Sub-

sequent higher test tiers for PPPs use specific focal species

and typically employ a range of refinement options tailored

towards realistic exposures for those species. Toxicity endpoints

can also be refined. For example, phase-specific reproductive

endpoints can be used to relate timing of exposure to that of

reproductive cycles in birds and mammals [50,51].

While the general framework for assessing PPP risk may be

applicable to pharmaceuticals, some of the refinements used to

reduce exposure from worst case to more realistic values may

not always be appropriate. Such refinements include (i) esti-

mating food intake rate for focal species based on allometric

equations of daily energy expenditure (DEE) and water flux

[52,53], (ii) bioaccumulation, and (iii) the fact that only a pro-

portion of ingested food is contaminated. Some scavengers,

for example, actively seek and feed communally on carcasses

and so it is possible that they predominantly feed on sick and

medicated animals. Hence refinement of risk based on an

assumption that only a proportion of ingested food is contami-

nated may not be appropriate. Scavengers also gorge at

carcasses and can eat more at one feed than would be predicted

just from estimates of intake based on DEE requirements [54].

Reliance on such estimates may therefore underestimate

exposure. Scavengers may also be selective in terms of the tis-

sues they consume. Preferential feeding on stomach contents

and soft tissues such as liver, kidney and heart is likely to

increase exposure and risk [55] and may occur at multiple

trophic levels, thereby enhancing bioaccumulation along food

chains. Clearly, oral exposure risk assessments need to account

for the pharmacokinetics of the compound, although for

pharmaceuticals even the most basic parameters such as

half-lives are inadequately characterized in higher vertebrate

wildlife species. Risk assessments also need to consider the

feeding preferences and general ecology of the species of
interest because these may alter and even enhance exposure

risk. This is true for PPPs as well as for pharmaceuticals,

although refinement stages for PPPs are usually predicated

on the expectation that they will reduce (rather than enhance)

estimated risk.

PPP risk assessments for birds and mammals do not cur-

rently account for dermal or inhalation exposure, although it

has been argued that dermal uptake may sometimes be a sig-

nificant exposure route [56], and the potential for inhalation

during spray applications is clear [57]. Dermal exposure to

PPPs, and equally pharmaceuticals, may arise from contact

with contaminated water, while moving across contaminated

soil or while dust/puddle bathing. Species such as small

mammals, that not only forage on contaminated soil but

also burrow into it, may be at particular risk, as may aquatic

vertebrates that come into contact with contaminated water.

The potential for inhalation exposure of pharmaceuticals by

higher wildlife is less obvious, except perhaps for dust inhal-

ation associated with treatments in intensive livestock rearing

[58]. The Environmental Protection Agency in the USA is

developing models for assessing PPP exposure via both

dermal and inhalation routes in birds [59] and these may

prove a useful starting point should either or both routes be

considered important for pharmaceuticals.

As well as considering whether approaches used in PPP

exposure assessments can be applied to pharmaceuticals, it

is also relevant to ask whether the TER toxicity endpoints

are appropriate when assessing risks from pharmaceuticals.

Current toxicity assessments used in PPP risk assessments

for birds and mammals use endpoints that are directly related

to mortality and reproduction. These are obviously two key

parameters that directly impact population dynamics and

can be assessed to some extent in laboratory tests. However,

the current range of toxicity endpoints used for PPPs has

been criticized as too limited for birds but overabundant

and too detailed for mammals; the consequence is that it is

often difficult to extrapolate realistically from the laboratory

to the field [60]. If pharmaceuticals are indeed most likely

to have subtle physiological, immunological, behavioural

and neurological effects in wild higher vertebrates, such

effects could have both direct and indirect impacts on long-

term survival and on behavioural phases of the reproductive

cycle. Some or possibly many such effects may commonly go

undetected using the standardized PPP tests currently under-

taken in artificially controlled conditions on laboratory-bred

species. There may well be a need to review likely effects

associated with the most prevalent classes of pharmaceuticals

released to the environment and to develop new toxicity end-

points that are both appropriate to detecting such effects and

are relevant in terms of impacting populations. Any such devel-

opments would be equally likely to increase the robustness of

risk assessments for PPPs and all other chemicals.
4. Evidence of exposure and effects of
pharmaceuticals on higher wildlife

Few field data have been gathered on exposure to, and effects

of, pharmaceuticals in higher vertebrate wildlife. The studies

conducted to date can be broadly separated as those consid-

ering impacts associated with (i) STPs and freshwater, and

(ii) terrestrial systems.
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(a) Impacts on higher vertebrates associated with waste
water irrigation and sewage treatment plants

The use of sewage water for irrigation poses a potential risk

to wildlife. We are not aware of specific studies on wild

higher vertebrates but there have been incidences of hyper-

oestrogenism in cattle fed alfalfa that was irrigated with

untreated sewage water containing phytoestrogens [61]. Inter-

estingly, studies on alfalfa that was irrigated with water

containing oestrogenic contaminants (17b-oestradiol and oes-

trone) concluded that alfalfa growth was increased when

irrigated with water containing lower oestrogen concentrations

and suppressed when the water contained high concentrations

[62]. This suggests that the effects of oestrogens can and do

cross between plants and animals, but no details were dis-

cussed on the concentrations of oestrogens that resulted in

variable growth of the alfalfa, or on the amounts of affected

alfalfa that were consumed by the cattle.

Several studies have now investigated risks to birds feed-

ing on invertebrates exposed to STP effluent at trickling

filters. These have indicated that invertebrates living on and

emerging from STP trickling filters have the potential to

bioaccumulate/bioconcentrate certain pharmaceutical EDCs

[63,64]. Adult male starlings (Sturnus vulgaris) experimen-

tally exposed to environmentally relevant levels of various

EDCs displayed altered immune function and changed

development that affected behaviours such as singing [65];

reduced growth and depressed immunocompetence were

also observed in the nestlings [66]. Additional species of ver-

tebrate wildlife likely to be exposed through the food web

include those that take insects on the wing (such as swallows

(Hirundinidae), swifts (Apodidae) and bats (Chiroptera)).

The population-level consequences of such exposure, and

the specific role played by synthetic pharmaceuticals as

opposed to natural and non-pharmaceutical-EDCs, remain

to be elucidated.

With regard to general contamination of freshwater habi-

tats, informative data are now available on the impacts of

certain pharmaceuticals and pharmaceutical-EDCs, such as

EE2, in some species, particularly fish [22,67–69]. Published

research on exposure and effects in mammals or birds that

share the same freshwater habitat or that could feed on

medicated prey is, however, extremely rare. A study to evalu-

ate bioaccumulation potential of pharmaceuticals in the diet

of ospreys (Pandion haliaetus), a well-known sentinel of

environmental pollution, has been reported to date as a

conference abstract [70]. This study used an integrated mod-

elling approach to estimate potential pharmaceutical doses

to nestling ospreys and also measured the concentrations of a

range of pharmaceuticals in water, prey fish and nestling

osprey plasma to confirm the validity of the model. Of 18 phar-

maceuticals detected in water, only the antihypertensive

diltiazem was detected in nestling plasma; levels were below

the human therapeutic concentrations in all 47 nestlings that

were analysed. Studies on another freshwater sentinel, the

Eurasian otter (Lutra lutra), indicates that oral and/or

dermal exposure to diclofenac and ibuprofen is taking place in

the UK [71]. Renal lesions observed during carcass necropsies

have prompted recommendations that future studies examine

exposure of otters to nephrotoxic agents such as NSAIDs

[72]. In general, top predators are likely to be most susceptible

to pharmaceuticals that bioaccumulate and bioconcentrate

in prey.
(b) Impacts on higher vertebrates associated
with terrestrial systems

The clearest example of widespread exposure and effect

relates to the impact of the NSAID diclofenac on vultures,

as described in detail in this special issue [18]. Carcass

dumps are now well recognized as a critical exposure path-

way for pharmaceuticals to vultures in Asia [18], and there

are current similar concerns about the susceptibility of scav-

engers (vultures and kites) to antibiotics (and to NSAIDs

and antiparasitics) when feeding at muladares (small carcass

dumps) in Spain. There have been some studies that indicate

the occurrence of various adverse effects on egg develop-

ment, immunocompetence and disease prevalence, but all

relevant data regarding these Spanish carcass dumps have

now been retracted from publication. As such, the real picture

in Spain specifically remains unclear. Further investigation of

the potential for exposure and effects of pharmaceuticals in

vultures in Spain (a very important stronghold for vultures

in Europe) and in Africa is merited. Studies in Spain are par-

ticularly warranted given: (i) the 2013 approval of diclofenac

for veterinary use in that country [73], (ii) the fact that some

carcasses provided at muladares, managed feeding stations

and at captive breeding and rehabilitation centres, are

known to originate from intensive operations such as large

pig rearing facilities where animals are heavily medica-

ted, and (iii) a concern that risk assessments seem poorly

developed for scavengers, as already highlighted in §3.

Antiparasitics are also widely used on livestock making

them, in effect, pharmaceuticals. Many, such as organophos-

phates, carbamates and pyrethroids, were developed as

agrochemicals and so, unlike most pharmaceuticals, their

adverse effects in non-target wildlife are relatively well

described. Antiparasitic applications of famphur, fenthion,

diazinon and propetamphos to lambs, cattle and pigs have

been linked to bird of prey poisonings in Canada, USA and

the UK [74]. Because of concerns about infectious diseases

such as foot and mouth disease virus, carcasses of small dom-

estic ruminants are no longer left to be ‘incorporated into

nature’, and slaughterhouse remains are meant to provide safe

food sources for vultures. Lower limbs of lambs collected

from a Spanish slaughterhouse have been shown to contain

up to 618 ng g21 of diazinon and 1008 ng g21 of cypermethrin

[52]. These portions of carcasses are currently being offered at

vulture feeding stations in the Pyrenees. Although the estimated

dose of diazinon was considered below the acute avian LD50 for

these compounds, chronic effects (induced hypothermia or

behavioural impairment [75]) cannot be ruled out.

Scavengers can also be poisoned by feeding on euthanized

animals. Residues of barbiturates in carrion have been found to

exceed the lethal dose for a spectrum of scavengers [76,77], and

there have been reports of secondary barbiturate poisoning

[78]. In some parts of the USA, landfills are legal areas for

dumping the carcasses of euthanized animals, and free living

bald eagles (Haliaeetus leucocephalus) and golden eagles

(Aquila chrysaetos) are known to have died of barbiturate poi-

soning; in northern climates, late winter—early spring has

been the most common time to find poisoned raptors and scav-

engers as carcasses are thawing during a time of low food

availability [79]. While poisoning of large-bodied animals in

areas with moderately high human populations is likely

to be detected, as on Vancouver Island (Canada), where

29 bald eagles were intoxicated after feeding on a euthanized
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(sodium pentobarbital) cow [55], incidents in more remote areas

may not be detected. Furthermore, incidents involving smaller,

less conspicuous animals are more likely to go unnoticed, as is

evident from mortality incident monitoring schemes; for

example, submissions of mammals to the UK Wildlife Incident

Investigation Scheme are dominated by large species like red fox

(Vulpes vulpes) and badger (Meles meles) [80]. Such biases mask

the true extent of exposure and poisoning of wildlife by PPPs,

pharmaceuticals or any other toxicant.

There is also a notable dearth of information regarding

risks to terrestrial wildlife from diffuse pharmaceutical sources,

such as fertilization of agricultural land with slurry and biosol-

ids. Studies on agricultural animals suggest potential exists for

effects. Testosterone and oestrogen, used as growth promoters

in chicken production have, for example, caused endocrine dis-

ruption in cattle fed rations containing chicken manure. One-

quarter to one-third of heifers fed chicken manure silage did

not reach puberty and animals already past puberty developed

cystic ovaries and stopped cycling after one month of exposure

[81]. The likelihood of such effects occurring in wildlife would

depend, among other things, on how much feeding took place

in a fertilized area and the persistence of pharmaceuticals

in soil. The one specific study that we are aware of has again

only been reported to date as a conference abstract [82].

In a seven year experimental study in which triclocarben-

and triclosan-contaminated biosolids were applied to fields,

concentrations of these two antimicrobials were measured in

biosolids, soils, earthworms and the eggs of American kestrels

(Falco sparverius) and European starlings (S. vulgaris). Kestrel

and starling egg morphometrics and nesting success were

also tracked. The antimicrobials were detected in biosolids,

soil, earthworms and the eggs of both avian species. Concen-

trations were higher in samples from the experimental than

the control site for starling eggs, soil and worms, but not kestrel

eggs. Nesting success was lower on the experimental than con-

trol site for kestrels but not starlings. This study provides

evidence that antimicrobials from biosolids can be transferred

to eggs of secondary and tertiary consumers and begs more

research on the food-chain transfer and biological impacts of

pharmaceuticals in terrestrial higher vertebrates.
5. How are exposure and effects detected in
wildlife for other contaminants of concern?

Once released into natural habitats, pharmaceuticals can be

considered just another class of environmental contaminant.

While few monitoring studies have examined exposure and

effects of pharmaceuticals in higher wild vertebrates, various

programmes currently investigate uptake and effects of toxic

metals, pesticides, biocides and organic pollutants in higher

vertebrates. Some primarily measure exposure (and limited

effects), whereas others are specifically tailored to determine

effects, typically mortality, and their cause [83–86].

A number of schemes that focus on vertebrate exposure to

pollutants also measure contaminants in dietary items. This

approach forms the basis for regulatory assessment of risk, as

described in §3, but there are challenges in terms of detecting

and measuring exposure to diffuse pollutants. This is because

environmental concentrations of such compounds may often

be low with typically high spatio-temporal variability [87].

An alternative is to measure contaminants in sentinel species

that are representative of particular trophic pathways. Such
species are often apex predators that can bioaccumulate, and

in some cases bioconcentrate, pollutants. Tissue concentrations

then rise above analytical detection limits and this can be critical

in terms of clearly identifying the presence and effects of con-

taminants within a system. A range of predatory birds and

mammals have been used as sentinels [84,88,89]. Typically

long-lived species with large foraging ranges, sentinel species

can integrate exposure both temporally and spatially, thereby

smoothing small-scale variability and aiding detection of

large-scale and long-term trends. Furthermore, large vertebrate

predators are often seen as charismatic species. Data regarding

such species tend to excite public and stakeholder interest, and

this can be important when the discovery and collection of dead

wildlife relies on citizen science, hunters or other representative

groups within a community [90–92].

The exposure of higher vertebrates to a range of contaminants

has typically been demonstrated using a residue monitoring

approach. Tissue residues are by definition indicative of the

bioavailable fraction of the environmental concentration and

the favoured types of samples include various body tissues,

blood, eggs, hair, feathers and other substances such as preen

oil [84,88–91]. Exposure studies can be critical in identifying

key factors that drive exposure [93–96], can relate measured

residues to levels known to cause adverse effects [97], and

measure effects directly using biomarkers [98–101]. We are

not aware of any current long-term wildlife monitoring

schemes that target pharmaceutical residue analysis, though

pleas have been extended [23,48].

Some national monitoring schemes have an effects-based

approach, particularly regarding poisoning [83,85]. Such

mortality incident monitoring schemes are intended to detect

significant adverse effects, ostensibly mortality, caused by

authorized PPPs and, in some cases, other approved toxicants.

Effects brought to light by such schemes would often not

have been foreseen during the risk assessment and author-

ization process and their occurrence in turn may trigger

review of authorizations and amendments to risk assessment

processes. Such schemes are also used to detect and investigate

the misuse and illegal abuse of pesticides and have, for

example, identified significant predatory bird and mammal

mortality owing to a wide range of poisons, chemicals,

pesticides and biocides [74,85,102].

The key question here is whether exposure and mortality

incident monitoring schemes can be used to accurately con-

sider exposure/effects of pharmaceuticals in wild higher

vertebrates, or are bespoke stratagems needed? Detection of

mortality alone is relatively crude and, as indicated in §4,

pharmaceuticals may well induce more subtle changes in

exposed wildlife. Given the general absence of data, deter-

mining the current prevalence and extent of exposure in

wildlife would arguably be the first priority. Monitoring

schemes that rely upon apex predators as sentinels may

best detect exposure to pharmaceuticals that have high bioac-

cumulation potential. Such schemes should perhaps focus

pharmaceutical monitoring on species that are insectivorous

and/or vermivorous in terrestrial systems, piscivorous in

freshwater habitats or general scavengers as these three path-

ways are the likely major exposure routes; this would also be

compatible with monitoring for pesticide exposure [74].

Development of techniques to measure trace residues of phar-

maceuticals in non-destructive samples, such as feathers,

hair, wool and faecal matter [43,48,54,71] can facilitate moni-

toring without capture of, or disturbance to, animals, and
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may be an ideal means to detect exposure to pharmaceuticals

that have short half-lives and would be unlikely to be

detected in physiologically active tissues. For example, feath-

ers and wool can be gathered from nest sites and hair can

be collected using hair tubes (small mammals) and hair-

snagging stations (large mammals). Such samples can be

analysed for DNA (to distinguish species/individuals) and

chemical residues. These techniques may be particularly

important when species are secretive and hard to capture,

and can be used to gather large numbers of samples at rela-

tively low cost. They are already being used to monitor

exposure and, in some cases, effects associated with pesti-

cides and pollutants [84,103] and are likely to be equally

useful for monitoring pharmaceuticals [48].
.R.Soc.B
369:20130570
6. Discussion
It is often difficult to predict the complete life cycle of a chem-

ical in the environment at a national or regional scale because of

economic, social and cultural differences. However, if pharma-

ceuticals are to be developed for use in a safe manner, the

possibility that they may reach non-target wild higher ver-

tebrates should be considered. In the European Union (EU)

for example, active PPP ingredients are authorized by a

pan-EU body (the European Food Safety Authority), but prod-

uct authorizations and associated risk mitigation strategies

remain the preserve of national entities. Such an approach

can incorporate regional life cycle assessments and risks

factors and implement associated mitigation. Regulations for

pharmaceuticals should work in a similar manner.

The impact of diclofenac on vultures in Asia in particu-

lar has demonstrated the need for national or regional

ecopharmacovigilance strategies to support regulatory risk

assessment. The existence of exposure and mortality incident

monitoring schemes in some regions, such as Western Europe

and North America, provides a good platform for ecophar-

macovigilance, although programmes are needed elsewhere.

Information on the national/regional scale of pharmaceutical

use is required if monitoring schemes are to establish

adequate analytical screening methods. These should be

linked to modelling approaches that are designed to identify

which compounds/classes of compounds are most likely to

persist in the environment and bioaccumulate, thereby facili-

tating the targeting of analytical effort. Exposure monitoring

schemes that use apex predators will be best suited to moni-

toring less polar, more persistent compounds, but may need

to include additional sentinel species that scavenge or feed on

invertebrates, the latter representing an exposure pathway

that is relatively poorly covered by existing schemes [84]. In

contrast to exposure monitoring programmes, mortality inci-

dent monitoring schemes usually examine mortalities in a

wider range of species, including those from lower trophic

levels. Although we have argued that mortality is a crude

means of assessing any impact of pharmaceuticals, mortality

monitoring schemes could facilitate ecopharmacovigilance by

greater use of the carcasses of animals they receive. This

would require a widening of remit, so that schemes under-

took (or made carcasses available for) screening of samples

to determine if there has been exposure to pharmaceuticals;

currently, analyses are often limited to compounds suspected

to be the cause of death and wider analyses are not under-

taken. Such engagement, particularly using species from
lower trophic levels, would be especially useful for investi-

gating exposure (and possibly pinpointing inputs) to less

persistent and less bioaccumulative compounds that are un-

likely to be detected by monitoring schemes using apex

predators. Successful national and regional ecopharmacovigi-

lance would best be served by coordination between different

schemes, even though they may have different aims and

stakeholder perspectives. Models to improve collaboration

and knowledge exchange between diverse exposure and

mortality monitoring schemes already exist and have

proven successful [104].

This review has also highlighted that, while existing gen-

eric risk assessment procedures for chemicals should be

applicable to pharmaceuticals, major modifications may be

necessary. Exposure scenarios may not adequately assess cer-

tain critical pathways, such as those applicable to scavengers.

The toxicity endpoints, and in some cases, the test species, cur-

rently used in risk assessment are also unlikely to detect the

more subtle chronic effects that pharmaceuticals may exert

on wildlife. Developing new sensitive tests and endpoints,

and demonstrating their value for assessing likely impacts on

populations, is challenging, but such work would benefit risk

assessment not only for pharmaceuticals, but also PPPs and

other environmental contaminants generally.

A slightly tangential, but highly relevant issue related to

drug exposure in higher wildlife is that of exposure to antibiotics,

antibiotic-resistant genes and multi-drug-resistant microbes.

Antibiotic-rich effluents are of particular concern as they have

been shown to promote the development of antibiotic-resistant

microbes in the environment, which could have unpredict-

able and wide reaching consequences for human and wildlife

health [15,105]. Antimicrobial drug use is also especially

common in intensive livestock operations, including CAFOs

[38,44], and residues may enter the terrestrial environment by

various routes. Furthermore, inhalation of CAFO aerosols may

facilitate the transfer of multi-drug-resistant bacterial pathogens

from farmed animals to exposed humans [42,106], highlighting

the potential importance of inhalation pathways, which have not

previously been considered vis a vis the impacts of pharmaceuti-

cals on the environment. Overall, the primary concern regarding

antibiotics is not so much direct effects on wildlife, but rather

that wildlife could play a role in the transfer of antibiotic-

resistant microbes between humans and the environment

[105–110]. While worthy of note, a comprehensive review of

this complex, and likely increasingly important, issue is outside

the scope of this paper.

In conclusion, the increasing use of medication bya burgeon-

ing human population and its agricultural livestock ensures an

ongoing and likely increasing release of pharmaceuticals to the

environment. This, coupled with other pressures, such as

human demographic change leading to the development of

super-cities, increased intensification of food production and

climate-induced hydrological changes, may alter our ability to

limit, regulate and dilute pharmaceutical discharges to the

environment [111]. It is notable that two of the most import-

ant wildlife ecotoxicological cases recently associated with

environmental pollutants (widespread vulture declines and

feminization of fish) are directly related to the use and disposal

of pharmaceuticals rather than to other drivers. Existing frame-

works and platforms can be used to help us improve our

knowledge of current and future environmental concentra-

tions and effects of pharmaceuticals. The development and

application of that knowledge is now a priority.
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