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ABSTRACT

Objective: The aim of this study was to investigate the effects of 2 anti-malarial drugs, 
chloroquine (CQ) and hydroxychloroquine (HCQ), on inhibition of vascular smooth muscle 
cell (VSMC) proliferation both in vivo and in vitro via Adenosine monophosphate-activated 
protein kinase (AMPK) activation.
Methods: Protein and mRNA levels were determined by western blot analysis and real-
time reverse transcription-polymerase chain reaction in primary rat VSMCs treated with 
CQ and HCQ, respectively. Cell proliferation was measured by flow cytometry and cell 
counting. Mice carotid arteries were ligated and treated with CQ or HCQ every other day for 
3 weeks. Pathological changes of carotid arteries were visualized by both microscopy and 
fluorescence microscopy.
Results: CQ and HCQ increase AMPK phosphorylation in VSMCs. Both CQ and HCQ 
decrease platelet-derived growth factor-induced VSMC proliferation and cell cycle 
progression in an AMPK-dependent manner. In addition, CQ and HCQ inhibit Smad3 
phosphorylation and VSMC proliferation induced by transforming growth factor-β1. 
Moreover, CQ and HCQ diminished neointimal proliferation in a mouse model of carotid 
artery ligation-induced neointima formation.
Conclusion: The results demonstrated that CQ and HCQ inhibit cell proliferation and cell 
cycle progression in VSMCs via the AMPK-dependent signaling pathway. Carotid artery 
ligation-induced intima thickness was reduced in mouse arteries treated with CQ or HCQ, 
suggesting a role for antimalarial drugs in treating atherosclerosis and restenosis.

Keywords: Chloroquine; Hydroxychloroquine; Vascular smooth muscle;  
AMP-activated protein kinase; Intima formation

INTRODUCTION

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a critical event in 
development and progression of various vascular diseases including atherosclerosis, 
hypertension, and restenosis after coronary intervention.1-5 Phenotypic changes of VSMC of 
contractile type into synthetic type by cytokines, growth factors, and environmental factors 
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increase proliferation and migration of VMSC and cause vascular diseases.1,6 Thus, inhibition 
of VSMC proliferation may protect against vascular diseases.

The anti-malarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) are quinoline-
based drug and inhibit late autophagy by increasing lysosome pH.7,8 In addition to the anti-
malarial effects of CQ and HCQ, they have been used in treatment of cancer.9 Additionally, 
CQ and HCQ treatment has a demonstrated protective effect on autoimmune diseases such 
as systemic lupus erythematosus and rheumatoid arthritis.10,11 A previous study shows that 
HCQ treatment protects against cardiovascular disease in rheumatoid arthritis patients,6,12 
and CQ has been shown to prevent progression of experimental pulmonary hypertension and 
associated cancer.13 In a recent study, CQ induced a switch in tumor-associated macrophages 
from M2 to M1 macrophages.14 However, the effects of CQ and HCQ in VSMC proliferation 
and neointima formation have not been addressed.

Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine kinase 
composed of α, β, and γ subunits and serves as an intracellular energy sensor and regulator.15 
AMPK plays a key role in maintaining the balance between anabolic and catabolic programs 
for cellular homeostasis in response to metabolic stress.16,17 AMPK activates p21, which 
arrests cell cycle and suppresses cell proliferation,18 and inhibits VSMC proliferation and 
migration.19,20 The importance of AMPK in cardiovascular function has been demonstrated 
in a number of studies using statins and metformin, a variety of drugs that at least partially 
convey cardiovascular protection through activation of AMPK.21

Transforming growth factor-β1 (TGF-β1) is a cytokine acting canonically via Smad signaling to 
exert effects in a wide range of cell types.22,23 TGF-β is considered anti-proliferative,1,24 but other 
findings suggest that TGF-β and downstream Smad signaling stimulate growth in primary 
VSMCs.25-28 In recent reports, the proliferative capacity of TGF-β in VSMCs has been suggested to 
involve Smad2/3 phosphorylation and p27, a cyclin-dependent kinase inhibitor.27,28 Although anti-
malarial drugs have been reported to play a role in suppression of cell proliferation, little is known 
about their molecular mechanism. Thus, this study investigated whether CQ and HCQ have 
protective effects on cardiovascular diseases through AMPK signaling both in vitro and in vivo.

MATERIALS AND METHODS

1. Reagents and antibodies
Recombinant human TGF-β1 was purchased from R&D Systems (Minneapolis, MN, USA). 
HCQ sulfate was purchased from Thermo Fisher Scientific (Waltham, MA, USA). CQ 
phosphate was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Compound 
C was purchased from Calbiochem (San Diego, CA, USA). Anti-phospho-AMPK, anti-
AMPK, anti-LC3, anti-phospho-Smad2, and anti-phospho-Smad3 antibodies were from Cell 
Signaling Technology (Danvers, MA, USA), and anti-p27 and anti-Smad3 antibodies were 
from Santa Cruz Biotechnology. Anti-Cyclin D and anti-Collagen I were from Merck-Millipore 
(Temecula, CA, USA). Anti-Collagen III was from Fitzgerald Industries International (Acton, 
MA, USA). Anti-tubulin was from Sigma-Aldrich (St. Louis, MO, USA).

2. Cell culture
Primary rat VSMCs were isolated from Sprague-Dawley rat thoracic aorta. The cells were 
cultured in 50% fetal bovine serum (FBS)-Dulbecco's Modified Eagle Medium (DMEM) 
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with 1% antibiotics-antimycotics in a CO2 incubator. VSMCs were maintained in DMEM 
supplemented with 10% FBS, 50 U/mL penicillin, and 50 μg/mL streptomycin at 37°C in a 
95% air-5% CO2 atmosphere. VSMCs from passages 4 and 7 were used for the experiments.

3. Carotid artery ligation model
Male mice were ligated at 8 weeks of age. Specific pathogen-free C57BL/6 mice were obtained from 
Samtaco (Seoul, Korea). Anesthesia was induced by intraperitoneal (i.p.) injection of avertin (15 
mg/kg). The left common carotid artery (LCA) was exposed by blunt dissection. Three of 4 caudal 
branches of the LCA (left external carotid, internal carotid, and occipital artery) were ligated with 
6-0 silk suture.29 After surgery, mice were treated with CQ (50 mg/kg, i.p.) or HCQ (50 mg/kg, i.p.) 
every other day for 3 weeks. All animals were anesthetized and perfused with PBS followed by 4% 
paraformaldehyde. Both left and right carotid arteries were excised and embedded in paraffin. 
Lumen diameter, lumen area, neointima area, media area, and total vessel area were measured 
using NIH Image J (National Institutes of Health, Bethesda, MD, USA). All animal experiments were 
handled in accordance with the protocol (#YUMC-AEC2018-005) approved by the Institutional 
Animal Care and Use Committee at Yeungnam University College of Medicine, Daegu, Korea.

4. Histology and Immunohistochemical staining
In ligated LCA, cross sections at predefined proximal distances from the ligation site 
were analyzed. In non-ligated right common carotid artery (RCA), section distance to the 
bifurcation of internal and external carotid arteries was analyzed. Blocks were sectioned at 
5 μm intervals using a microtome. Slides were dewaxed with xylene, dehydrated, and then 
stained with hematoxylin and eosin.

5. Western blotting
VSMCs were washed twice with cold PBS and lysed with lysis buffer supplemented with 
1 mmol/L phenylmethyl sulfonyl fluoride and 0.01 mmol/L protease inhibitor cocktail. 
Cell lysates were incubated on ice for 15 minutes and then centrifuged at 17,000 g for 15 
minutes at 4°C. Protein concentrations in samples were determined using supernatants and 
a Bradford assay. Proteins were separated by sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis and transferred to polyvinylidene difluoride membranes, which were blocked 
in 5% skim milk and immunoblotted with primary antibodies and then with corresponding 
secondary antibodies. Signals were visualized using electrochemiluminescence detection 
regents (EMD Millipore, Billerica, MA, USA) according to the manufacturer's instructions.

6. MTT assay
TGF-β1-induced proliferation was quantified by the MTT assay. Briefly, VSMCs were cultured 
on 24-well plates; when up to 80% confluent, the medium was replaced with serum-free 
DMEM. Cells were then pretreated with CQ and HCQ (10 μM) and stimulated with TGF-β1 (1, 
2 ng/mL) for 72 hours. MTT reagents were added for 4 hours at 37°C and removed by washing 
with PBS followed by eluting with dimethyl sulfoxide. Proliferation was measured using a 
microplate reader (Bio-Rad, Hercules, CA, USA) at 570 nm.

7. Flow cytometric analysis
Cells were trypsinized and fixed in 95% ethanol followed by staining with propidium iodide 
(PI) (50 μg/mL) for 30 minutes at 37°C. PI stained cells were filtered using a 5 mL polystyrene 
round bottom tube fitted with a cell-strainer cap prior to flow cytometry. All flow cytometry 
measurements were obtained using a FACSCalibur (Becton Dickinson, San Jose, CA, USA). 
Cell cycle analysis was performed using CellQuest Pro software (Becton Dickinson).
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8. Cell count
VSMCs were cultured on 12-well plates; when up to 80% confluent, the medium was 
changed to serum-free DEME overnight. Cells were then pretreated with CQ or HCQ (10, 
20 μM) for 2 hours and incubated with platelet-derived growth factor (PDGF; 10 ng/mL) for 
indicated times (1, 2, or 3 days). Cell proliferation was determined by cell counting with a 
hematocytometer.

9. Statistical analysis
Data in the bar graphs are presented as mean±standard deviation. Statistical significance 
of differences was performed with Student's t-test, and p<0.05 was considered statistically 
significant.

RESULTS

1. Anti-malarial drugs induce AMPK activation in primary rat VSMCs
To investigate the effects of anti-malarial drugs in AMPK activation in VSMCs, we examined 
the effects of CQ and HCQ on AMPK phosphorylation in primary rat VSMCs. Rat VSMCs were 
treated with CQ or HCQ for 1 hour and then subjected to immunoblotting with anti-phospho-
AMPK antibody. As shown in Fig. 1, CQ and HCQ increased AMPK phosphorylation in a dose-
dependent manner, suggesting that CQ or HCQ activate the AMPK signaling pathway in VSMCs.

2. Anti-malarial drugs inhibit cell proliferation and cell cycle progression in 
rat VSMCs

To investigate the anti-proliferative effects of CQ and HCQ on cell proliferation, rat VSMCs 
were pretreated with CQ or HCQ (10, 20 μM) for 2 hours and stimulated with 10 ng/mL 
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Fig. 1. Anti-malarial drugs increase AMPK phosphorylation in primary rat VSMCs. Primary rat VSMCs were 
treated with CQ or HCQ at the indicated concentrations for 1 hour. Phosphorylation of AMPK was determined by 
immunoblotting with anti-phospho-AMPK antibody. Amount of protein was normalized to total amount of AMPK 
and tubulin expression. Bar graphs present the densitometric quantification of western blot bands. Results are 
expressed as mean±standard deviation and are representative of 3 independent experiments. 
AMPK, adenosine monophosphate-activated protein kinase; VSMC, vascular smooth muscle cell; CQ, 
chloroquine; HCQ, hydroxychloroquine; p-AMPK, phospho-adenosine monophosphate-activated protein kinase. 
*p<0.05; †p<0.01 compared with controls.



PDGF for 1, 2, or 3 days. CQ or HCQ inhibited the cell proliferation induced by PDGF in rat 
VSMCs (Fig. 2A).

Since cell proliferation was associated with cell cycle progression, we investigated the effects 
of CQ and HCQ on cell cycle. For cell cycle analysis, serum-starved VSMCs were pretreated 
with CQ or HCQ for 2 hours and then incubated with 10 ng/mL PDGF for 24 hours (Fig. 2B). 
Cyclin D, which is a regulator of cell cycle progression increased by PDGF, was decreased 
by both CQ and HCQ. Also, we observed cell cycle arrest and confirmed that CQ and HCQ 
increased G2/M phase arrest but not G0/G1 phase arrest (Fig. 2C). These results indicate that 
CQ and HCQ affect VSMC proliferation and cell cycle progression.

3. Anti-malarial drugs inhibit TGF-β1-induced Smad3 phosphorylation and 
cell proliferation in rat VSMCs

Recent studies have demonstrated that TGF-β1 increases VSMC proliferation through Smad3 
signaling.27,28 In addition, it has been reported that AMPK inhibits TGF-β1-induced VSMC 
proliferation.30 To investigate the effects of CQ and HCQ in TGF-β1, Smad3 phosphorylation 
and cell proliferation were examined in VSMCs treated with TGF-β1 (Fig. 3A). CQ and HCQ 
both inhibited TGF1-β1-induced Smad3 phosphorylation. In addition, CQ and HCQ induced 
AMPK phosphorylation in the presence or absence of TGF-β1 (Fig. 3A). A cell viability assay 
and cell counting analysis showed that TGF-β1-induced VSMC proliferation decreased 
following treatment with CQ or HCQ (Fig. 3B and C). These results indicate that CQ or HCQ 
inhibit TGF-β1-induced VSMCs proliferation via Smad3 and AMPK pathways.
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Fig. 2. Anti-malarial drugs inhibit PDGF-induced cell proliferation and cell cycle progression in rat VSMCs. (A) Rat VSMCs were pretreated with CQ or HCQ (10, 20 
μM) for 2 hours and then incubated with PDGF (10 ng/mL) for indicated times (1, 2, or 3 days). Cell proliferation was determined by cell counting. (B) Serum-
starved rat VSMCs were pretreated with CQ or HCQ (20, 40 μM) for 2 hours and then incubated with PDGF (10 ng/mL) for 24 hours. Protein expression of cyclin D 
was determined by immunoblotting with anti-cyclin D antibody. Amount of protein was normalized to tubulin expression. Bar graphs present the densitometric 
quantification of western blot bands. Results are expressed as mean±standard deviation and are representative of 3 independent experiments. (C) Serum-
starved rat VSMCs were pretreated with CQ or HCQ (20, 40 μM) for 2 hours and then incubated with PDGF (10 ng/mL) for 24 hours. For cell cycle analysis, cells 
were detached, stained with PI, and subjected to flow cytometry. Results are representative of 3 independent experiments that yielded similar results. 
PDGF, platelet-derived growth factor; VSMC, vascular smooth muscle cell; CQ, chloroquine; HCQ, hydroxychloroquine. 
*p<0.05; †p<0.01 compared with cells treated with PDGF.



4. Anti-malarial drugs attenuate carotid artery ligation-induced neointimal 
hyperplasia in vivo

The partial ligation model of the carotid artery was used to evaluate the effect of CQ or 
HCQ on smooth muscle cell proliferation in vivo. Morphometric analysis of carotid arteries 
3 weeks after ligation of the LCA indicated that CQ and HCQ decreased neointima width 
compared with vehicle control (Fig. 4A). However, media width was not valid. In addition, 
there was no significant decrease in intima width of the non-ligated RCA. VSMC proliferation 
mainly contributes to neointima formation in a carotid artery ligation model. Collagen I and 
collagen III expression was increased in LCA compared with RCA, and CQ and HCQ inhibited 
ligation-induced collagen I and collagen III expression in LCA (Fig. 4B). These results show 
that CQ and HCQ inhibited carotid artery ligation-induced VSMC proliferation.

DISCUSSION

In the present study, we investigated the effects of CQ and HCQ, anti-malarial drugs, in 
abnormal proliferation of VSMCs and neointimal hyperplasia. The major findings of the 
present study were that CQ and HCQ activate AMPK and inhibit PDGF-induced VSMC 
proliferation (Figs. 1 and 2). In addition, CQ and HCQ inhibited TGF-β1-induced Smad3 
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phosphorylation and VSMC proliferation (Fig. 3). We also found that CQ and HCQ inhibited 
carotid artery ligation-induced neointima formation and collagen induction in vivo.

CQ or HCQ, which are quinoline-based drugs, are known as anti-malarial drugs and inhibit 
late autophagy by interfering with fusion between the autophagosome and lysosome 
by increasing lysosome pH. In recent years, quinoline-based drugs have used as anti-
inflammatory agents for rheumatoid arthritis, lupus erythematous, cancer, and sarcoidosis 
as well as some dermatologic conditions.10-12,14 CQ and HCQ decrease cytokine production 
from T-lymphocytes and monocytes and attenuate proinflammatory cytokines, including 
interleukin-6, interleukin-1β, and tumor necrosis factor-α.31,32 In addition, CQ inhibits cell 
growth and induces cell death by necrosis as well as by apoptosis in A549 lung cancer cells,33 
and the CQ-mediated anti-cancer effect was associated with decreases in p42/44 MAPK 
and Akt activities in CT26 mouse colon cancer cells.34 However, the molecular mechanism 
by which CQ and HCQ regulate abnormal proliferation in VSMC and intimal hyperplasia 
has not been addressed. In the present study, CQ- and HCQ-induced AMPK activation were 
involved in inhibition of VSMC proliferation (Fig. 3). In addition, CQ and HCQ inhibited 
TGF-β1-induced Smad3 phosphorylation, suggesting that CQ and HCQ inhibit carotid artery 
ligation-induced intimal hyperplasia and collagen induction via inhibition of the Smad3 
signaling pathway.
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It is well known that cell proliferation is related to the cell cycle. Thus, we examined whether 
CQ and HCQ affect the cell cycle of VSMCs by flow cytometric. Most cell cycle arrest occurred 
at the G1/G0 phase, suggesting a role of CQ and HCQ in G0/G1 phase arrest. Interestingly, 
we found HCQ increased G2/M phase arrest but not G0/G1 phase arrest. It has been reported 
that CQ and HCQ cause G2/M phase arrest in cancer cells, increasing p21 level and decreasing 
cyclin B1 level.35 These results suggest that inhibition of VSMC proliferation by CQ and HCQ 
can be attributed to cell cycle arrest through G2/M phase arrest.

In conclusion, we found that CQ and HCQ activated AMPK and inhibited PDGF-
induced VSMC proliferation. In addition, CQ and HCQ inhibited TGF-β1-induced Smad3 
phosphorylation and VSMC proliferation. Moreover, CQ and HCQ inhibited carotid artery 
ligation-induced neointima formation in vivo. These results suggest that CQ and HCQ are 
potential therapeutic targets for vascular diseases with abnormal VSMC proliferation.
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