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Abstract: Quantifying complexity from heart rate variability (HRV) series is a challenging task, and
multiscale entropy (MSE), along with its variants, has been demonstrated to be one of the most
robust approaches to achieve this goal. Although physical training is known to be beneficial, there
is little information about the long-term complexity changes induced by the physical conditioning.
The present study aimed to quantify the changes in physiological complexity elicited by physical
training through multiscale entropy-based complexity measurements. Rats were subject to a protocol
of medium intensity training (n = 13) or a sedentary protocol (n = 12). One-hour HRV series
were obtained from all conscious rats five days after the experimental protocol. We estimated MSE,
multiscale dispersion entropy (MDE) and multiscale SDiffq from HRV series. Multiscale SDiffq is
a recent approach that accounts for entropy differences between a given time series and its shuffled
dynamics. From SDiffq, three attributes (q-attributes) were derived, namely SDiffqmax , qmax and qzero.
MSE, MDE and multiscale q-attributes presented similar profiles, except for SDiffqmax . qmax showed
significant differences between trained and sedentary groups on Time Scales 6 to 20. Results suggest
that physical training increases the system complexity and that multiscale q-attributes provide
valuable information about the physiological complexity.

Keywords: sample entropy; dispersion entropy; multiscale entropy; complexity; heart rate variability;
rat; exercise; physical training; conditioning

1. Introduction

The study of system complexity is very challenging and has attracted much attention in the
past few years [1–3]. Physiological complexity reflects the interoperability and correct functioning of
regulatory processes as a whole, so the higher the complexity, the higher the system ability to adapt to
different situations in daily life [4].

Heart rate variability (HRV) series, derived from the electrocardiogram (ECG) or arterial pressure
signals, is one of the most important sources of information about system physiological status.
Heart rate is actively controlled by the autonomic nervous system and can respond to many situations
when the organism is challenged. A number of studies demonstrated that many indices extracted from
HRV are powerful risk predictors of morbidity and death, for cardiac and non-cardiac diseases [5–7].

One of the most substantial challenges in the quantification of complexity from HRV time
series is the difficulty in finding out a single measurement capable of doing this task consistently.
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In other words, most of the complexity measurements are capable of extracting some properties
that regard complexity itself, but none of them are enough to characterize all the complex traits of
a system. Mono- and multi-fractal measurements [8,9], irreversibility estimations [10,11], symbolic
methods [12,13], network analysis [14,15], as well as entropy-based approaches [16,17] have been
proposed to infer the system complexity.

Multiscale entropy (MSE) is an important example of an approach that has been shown to be quite
robust and consistent to characterize the system complexity from HRV time series. Like many other
approaches, it has some limitations depending on the situation, and improvements or refinements have
been proposed since MSE has emerged [18]. For example, the entropy estimator used in MSE (sample
entropy) can be replaced by other estimators, such as permutation entropy [19], fuzzy entropy [20],
distribution entropy [21], dispersion entropy [22], Rényi entropy [23] and bubble entropy [24],
among others. Some other entropy-based proposals, such as entropy of entropy [25] and multiscale
SDiffq (a measure of entropic differences) [26], are markedly different from the MSE original framework,
although notably inspired by MSE.

Mild intensity aerobic exercise has been shown to improve several systemic functions and
prepare the organism for sudden changes in the body. Experimental models using physical training
have demonstrated that gaining physical conditioning, before an induced pathology, can reduce the
disturbances caused by the disease [27,28]. In other words, physical conditioning seems to increase
the system physiological complexity level. However, controversial findings have been reported about
complexity and exercise, and scarce studies applied multiscale complexity approaches to identify how
the aerobic training can increase the complexity in healthy subjects [29–33].

In the present study, we applied MSE and two other complexity measurements derived from MSE,
namely multiscale dispersion entropy and multiscale SDiffq, to quantify the increase of complexity
with physical training in experimental models of healthy rats. Results show that all measurements
point to the same direction, but significant findings were obtained only with multiscale SDiffq.

2. Materials and Methods

2.1. Experimental Protocol

Male Wistar rats (210 g on average) were obtained from the Animal Care Facility at the Campus of
Ribeirão Preto of the University of São Paulo. The animals’ usage was according to the Ethical Principles
in Animal Research adopted by the National Council for the Control of Animal Experimentation,
approved by the Local Animal Ethical Committee from the School of Medicine of Ribeirão Preto of the
University of São Paulo.

The study divided animals into trained (n = 13) and sedentary groups (n = 12). Since animals
could have distinct initial physical conditioning, they were individually tested for maximum velocity
(Vmax). For the Vmax test, the animals were placed on a treadmill, with no inclination, and the speed
was increased in steps of 3 m/s every 3 min. The stage where the animal fatigued, as well as the time
spent on the incomplete stage were noted to calculate the Vmax of each rat [34].

The trained group underwent a physical training protocol on the treadmill with no inclination
for 9 consecutive weeks, 5 days per week. The training protocol consisted of a medium intensity
training that initiated at 50% of Vmax for 20 min and ended, at the ninth week, at 70% of Vmax for 60 min
(Adapted from [35]). At the fifth week, the trained group underwent a new Vmax test to adjust the
training protocol as some animals acquire physical conditioning quicker than others. The sedentary
group followed the same protocol, but the treadmill was kept off.

2.2. Data Acquisition and Processing

Two to three days after the end of the physical training protocol, rats were anesthetized with
a mixture of ketamine and xylazine (50 and 10 mg/kg, ip) and implanted with subcutaneous
electrodes for ECG recordings. Two days after surgery, with the animals conscious and under free
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movement conditions, the electrodes were connected to a bioelectric amplifier (Animal BioAmp
FE136, ADInstruments, Bella Vista, Australia), and ECG recordings were acquired (2 kHz) by
an IBM/PC coupled to an analog-to-digital interface (ML866 PowerLab 4/30, ADInstruments,
Bella Vista, Australia).

ECG was recorded during one hour, so that multiscale measurements could be confidently
estimated from HRV series. ECG recordings were processed using computer software (LabChart Pro,
ADInstruments, Bella Vista, Australia) that creates HRV series as the sequence of R-R intervals,
i.e., the time interval between adjacent R waves. All ECG recordings were carefully inspected,
and missing beat detections and artifacts were manually corrected. HRV series are 20,000 beats
in length, on average.

2.3. Multiscale Sample Entropy

Multiscale sample entropy (MSE) is a widely-known procedure to quantify the irregularity of time
series within a time-scale range [36,37]. The MSE algorithm consists of creating multiple scaled versions
of the original time series and calculating sample entropy (SampEn) from each scaled time series.

Consider a time series given by u(1), u(2), . . . , u(N). Let xm(i) be the set of consecutive samples
in u from i to i + m − 1, i.e., xm(i) = [u(i), u(i + 1), u(i + 2), . . . , u(i + m − 1)]. Thus, SampEn is
defined as [38]:

SampEn(m, r, N) = − ln
Um+1(r)

Um(r)
(1)

where:

Um(r) =
1

N −m

N−m

∑
i=1

Um
i (2)

Um
i =

[# of xm | d[xm(i), xm(j)] ≤ r]
N −m− 1

(3)

and:

Um+1(r) =
1

N −m

N−m

∑
i=1

Um+1
i (4)

Um+1
i =

[# of xm+1 | d[xm+1(i), xm+1(j)] ≤ r]
N −m− 1

. (5)

The distance function d is given by:

d[xm(i), xm(j)] = max
k=1,...,m

(|u(i + k− 1)− u(j + k− 1)|). (6)

In Equations (3) and (5), 1 ≤ j ≤ N −m, j 6= i. In SampEn equations, m is the pattern length or
embedding dimension and r is the tolerance factor assumed for similarity between samples.

To estimate MSE, multiple scaled versions of u are created by a coarse-graining procedure, where
each element j in a τ-scaled series is defined by:

uτ(j) =
1
τ

jτ

∑
i=(j−1)τ+1

u(i), 1 ≤ j ≤ N/τ. (7)

Next, SampEn is calculated from each scaled time series uτ , resulting in a curve of entropy versus
scale. It is worth noting that the higher the time scale (τ), the slower the dynamics that the scaled time
series is representing. Importantly, the tolerance factor (r) of SampEn is kept fixed for all time scales
(τ) in MSE.

In the present study, we calculated MSE with the most widely-used parameter setting, i.e., m = 2
and r = 15% of the original time series standard deviation. The maximum scale calculated was τ = 20.
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2.4. Multiscale Dispersion Entropy

Multiscale dispersion entropy (MDE) is similar to MSE and also quantifies the complexity of time
series [39]. However, instead of calculating SampEn for each scaled time series, dispersion entropy
(DispEn) is used to estimate irregularity.

Consider the same time series given before (u). First, u is filtered by a normal cumulative
distribution function (NCDF) with mean µ and standard deviation σ, resulting in a filtered time series
u f , which ranges from 0 to 1. This procedure is intended to better treat outliers. Next, u f is mapped
into c classes (1 to c), according to zc(j) = round(c ∗ u f (j) + 0.5), a function that linearly maps the
range [0, 1] to [1, c].

Now, let ym(i) be the set of consecutive samples in zc from i to i + m − 1, i.e., ym(i) =

[zc(i), zc(i + 1), zc(i + 2), . . . , zc(i + m − 1)], i = 1, 2, . . . , N − m + 1. Each vector ym(i) represents
a dispersion pattern. Considering that each value in ym can assume one of the c possible classes, there
will be cm potential dispersion patterns.

The probability of occurrence of each dispersion pattern ym(i) in zc can be calculated as the
number of times the pattern ym(i) appears on zc, divided by the total number of patterns in zc (i.e.,
N −m + 1). This procedure will result in a probability distribution for all possible dispersion patterns,
p[ym(i)]. Finally, the DispEn is defined as the Shannon entropy of p[ym(i)] [22]:

DispEn(m, c) = −
cm

∑
i=1

p[ym(i)] log(p[ym(i)]) (8)

MDE uses the same coarse-graining procedure of MSE. Thus, MDE estimation consists of the
creation of scaled versions of the original time series using Equation (7) and the calculation of DispEn
from each scaled time series. However, the NCDF function applied to each scaled version is the same
as that applied to the first scale, i.e., the original time series. This procedure has a similar effect of
keeping r fixed at all time scales in MSE and can be achieved choosing the same µ and σ of the NCDF
function at all scales.

Parameters of MDE were set as m = 2, c = 6 and maximum time scale τ = 20. NCDF was
generated with µ and σ as the mean and standard deviation of the original time series, respectively.

2.5. Multiscale SDiffq

An alternative proposal for multiscale complexity measurement is the multiscale SDiffq

analysis [26]. Although still inspired by MSE in the sense of multiscale analysis, multiscale SDiffq

do not use the entropy values over scales directly to characterize complexity. Instead, differences of
entropy between the time series and its uncorrelated version, i.e., surrogate data, are used to represent
the complexity. The difference of entropy is evaluated for a range of q-values, which is a parameter
derived from nonadditive mechanical statistics [40,41]. The so-called nonadditive q-entropy has three
regimes, namely classic additive when q = 1, sub-additive when q > 1 and super-additive when q < 1.

SDiffq accounts for the difference between the SampEnq of a given time series and the mean
SampEnq of a set of surrogate series. SampEnq is a generalization of SampEn inspired by nonadditive
statistics, which introduces the nonadditive parameter q to SampEn. Its equation is given by [42]:

SampEnq(m, r, N) = logq Um(r)− logq Um+1(r) (9)

where logq is defined as [43]:

logq(x) =
x1−q − 1

1− q
, [x ∈ R∗+; q ∈ R; log1(x) = log(x)] (10)

and [Z]+ = max{Z, 0}. The definitions of Um(r) and Um+1(r) are the same as presented in
Equations (2) and (4) for SampEn.
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To calculate SDiffq, one has to follow the steps:

• From a given time series u, S surrogate series are generated from u. The surrogate series is
obtained by simply shuffling u [44];

• Next, values A = Um(r) and B = Um+1(r) are calculated from u;
• Values of Um(r) and Um+1(r) are also calculated from each surrogate instance, obtaining their

mean values C = Um(r) and D = Um+1(r);
• Finally, SDiffq is defined by Equation (11) below:

SDiff q = logq(A)− logq(B)− [logq(C)− logq(D)]

= logq(A) + logq(D)− logq(B)− logq(C). (11)

Both SampEnq and SDiffq are parametrized in q so that they represent a curve of entropy,
or entropy difference, as a function of q. From SDiffq curves, three attributes (q-attributes) are obtained
to characterize the time series dynamics, namely SDiffqmax , qmax and qzero. The SDiffqmax represents the
maximum value for SDiffq in the range of q. The qmax and qzero represent the q-value where SDiffq

finds its maximum and zero values, respectively. qmax is the q parameter that gives the largest entropic
separation between the actual time series and its surrogate versions, whereas qzero is the q parameter
where original and shuffled dynamics have the same entropy. For more details on the calculation of
q-attributes, please refer to [26,42].

The extension of SDiffq to a multiscale measurement is straightforward. Scaled versions of the
original time series are created using the same coarse-graining procedure of MSE, given by Equation (7).
Then, for each scaled time series, the SDiffq curve is calculated and q-attributes are obtained, so that it
ends up with multiscale q-attributes.

Multiscale SDiffq parameters were set with the same values chosen for MSE, i.e., m = 2, r = 0.15
and maximum time scale τ = 20. The number of surrogate instances generated for each time scale was
S = 20, and the nonadditive q parameter ranged from −2 to 2 to estimate the q-attributes.

It is worth emphasizing the fact that q-attributes represent the SDiffq behavior. Furthermore, the
q parameter comes with the power law equation proposed for nonadditive entropy (q-entropy) [40,43].
Therefore, one can say that qmax and qzero indicate where this power law results in maximum entropy
differences regarding surrogates and where this difference is null (zero-crossing), respectively.

2.6. Statistical Analysis

We assessed mean MSE, MDE and multiscale q-attributes values in two range segments: short
(1 to 5) and long (6 to 20) time scales. Those variables were checked for normality by the Shapiro–Wilk
test. Differences between trained and sedentary groups were verified by Student’s t-test or the
Mann–Whitney rank sum test when required. Significance was assumed when p < 0.05.

3. Results

The curve profiles of MSE and MDE were very similar for both trained and sedentary rats
(Figure 1A,B). Likewise, no difference was found between the groups in the mean values of MSE and
MDE grouped by short (1 to 5) and long (6 to 20) time scales (Figure 1C,D), although for higher scales,
there was a tendency of increasing differences among groups (Figure 1A,B).

The curve profiles of qmax and qzero were very similar to each other (Figure 2B,C), which in turn
were also very similar to MSE and MDE (Figure 1A,B), regardless of the experimental group. On the
other hand, those curves are entirely different from the profile of SDiffqmax (Figure 2A). For qmax

and qzero, the curve values decrease for the first two or three scales; after that, they start to increase
(Figure 2B,C). However, in the case of SDiffqmax , values increase for, approximately, the first six scales,
and then, the values are virtually stable (Figure 2A). A significant difference was found between
trained and sedentary rats in the mean qmax at long time scales (6–20) (Figure 2E). No difference was
observed among groups in the mean SDiffqmax (Figure 2D) or mean qzero (Figure 2F).
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Figure 1. MSE or MDE did not detect differences between HRV complexity from trained and sedentary
rats. Curve profiles are presented for MSE (A) and MDE (B), obtained from trained and sedentary
groups. Bar graphs show mean entropy values obtained from MSE (C) and MDE (D) curves, grouped
by short (1 to 5) and long (6 to 20) time scales. MSE: multiscale sample entropy; MDE: multiscale
dispersion entropy; SampEn: sample entropy; DispEn: dispersion entropy; HRV: heart rate variability.
Bars represent the mean ± standard error.

Figure 2. Multiscale q-attributes calculated from HRV series of trained and sedentary rats. Curve
profiles are presented for SDiffqmax (A), qmax (B) and qzero (C), obtained from trained and sedentary rats.
Bar graphs show mean q-attributes values, obtained from SDiffqmax (D), qmax (E) and qzero (F), grouped
by short (1 to 5) and long (6 to 20) time scales. SDiffqmax : maximal SDiffq; qmax: q value where SDiffq is
maximal; qzero: q value where SDiffq is zero; HRV: heart rate variability. Bars represent the mean ±
standard error. * p < 0.05 when compared to the trained group.
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4. Discussion

The characterization of system physiological complexity from a univariate variable, such as HRV,
is a hard task. Previous studies have reported on MSE as a powerful tool to assess the complexity of
HRV [37,45–48]. Many studies have proposed and evaluated modifications in MSE, given its success
in characterizing complex dynamics. Some of them are based on the replacement of sample entropy by
another entropy measurement, such as MDE, attempting to improve the accuracy of MSE in specific
situations. In the present study, we applied MSE and MDE to account for the complexity changes
due to physical training in rats. However, neither MSE nor MDE were able to detect any difference
between HRV complexity from trained and sedentary rats.

On the other hand, multiscale SDiffq is a recent proposal of complexity measurements
(q-attributes), inspired by MSE, but with a different theoretical background. It relies on nonadditive
statistics and uses the difference of q-entropy between the actual and surrogate HRV time series to
characterize the complexity. Interestingly, from all the multiscale measurements studied, only qmax

was able to distinguish the complexity of HRV between trained and sedentary animals. Moreover,
the difference was found only at long time scales (6 to 20). Recent studies have pointed out that
short time scales of MSE are more associated with the vagal control of HRV, whereas long time
scales seem to be more related (although not exclusively) to the sympathetic control of HRV [46,49],
reinforcing the existence of long-term memory in the components of the autonomic nervous system.
Extending this interpretation to SDiffq, one could say that the difference between sedentary and trained
HRV is more related to differences in the sympathetic control. This seems a reasonable assumption,
given that (1) q-attributes use the same coarse-graining procedure of MSE to create the scaled time
series and (2) physical training promotes, among other benefits, a lower sympathetic activity and
modulation [50,51].

Even though there is a significant difference in qmax between trained and sedentary groups,
the difference is not huge. An interesting question to ask is: how much is changed in the physiological
complexity with physical training? Another question would be: how do the interactions between
physiological systems change in a physically trained animal? One has to bear in mind that all those
multiscale measurements represent a general view of the system function. In other words, those
complexity measurements extract the overall complexity of the system, which is the result of several
mechanisms contributing to the homeostasis. Considering that the sedentary animals are healthy,
a tremendous increase would not be expected in the complexity after physical training, given that
most of the regulatory mechanisms are supposed to be already working at a high complexity level.
Therefore, results suggest that systemic changes induced by physical training increase the system
complexity to a slightly higher level.

The ability of those multiscale measurements to quantify the overall system complexity of HRV
is a distinguishing feature. Many classical HRV indices seek to extract information related to the
sympathetic or vagal autonomic modulation, not to mention that they are all linear models. Those
indices are usually very sensitive to the environment and behavioral conditions and cannot represent
the physiological complexity [4]. For example, during one hour of ECG recording, the rat may explore,
sleep, groom, dig and other typical rat behaviors. All those situations will change the autonomic
balance, and it is difficult to say what is the real sympathetic and vagal modulation of the rat during
the whole one-hour period. On the other hand, applying the multiscale complexity measurements
during the whole period, it was possible to identify that the dynamics of HRV has higher complexity
in the trained rat compared to the sedentary one, even though the rat can change its physiological
state several times during the recording. It is worth noting that all multiscale approaches were also
applied to differential HRV series, but no difference was found between trained and sedentary animals,
for any measurement [52].

The classical concept of entropy, e.g., SampEn and DispEn, relies on the quantification of the
irregularity of a given series. The more irregular (unpredictable) the series, the higher the entropy.
Thus, the entropy of any series is supposed to be lower than the entropy of its shuffled version
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(surrogate), even though the correlation properties of the dynamics were broken when samples are
shuffled. However, with q-entropy, it is possible to achieve the same entropy values for both situations
(qzero). Therefore, if we consider the classical entropy (q = 1), surrogate data will always be assigned
to a higher entropy value, but if we consider q near 0.5 (super-additive), the two dynamics will be
assigned the same q-sample entropy. More interestingly, there are some values of q where the actual
dynamics is assigned higher entropy regarding its surrogate (also for super-additive q). Hence, qmax

can be interpreted as the nonadditive parameter that maximizes the complex properties present in the
actual dynamics.

In summary, results with multiscale SDiffq confirmed previous findings that qmax and qzero provide
similar, although not equivalent information, which is quite different from SDiffqmax . Furthermore, MSE,
MDE, qmax and qzero presented very similar curve profiles, despite their different theoretical definitions,
and qmax was the only measurement that detected differences in the physiological complexity after
physical training. There is no doubt that MSE represents a relevant tool for complexity analysis.
This study reinforces that multiscale SDiffq is an alternative tool for characterizing the complexity of
HRV time series, which can add information in some situations where MSE is not accurate enough.
Multiscale SDiffq could also be used to help to characterize the complexity of HRV time series in
different pathophysiological conditions, as well as in situations where the signal source is other
than HRV.
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