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Abstract: Although synthetic bioactive compounds are approved in many countries for food applica-
tions, they are becoming less and less welcome by consumers. Therefore, there has been an increasing
interest in replacing these synthetic compounds by natural bioactive compounds. These natural
compounds can be used as food additives to maintain the food quality, food safety and appeal, and
as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of
nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous
food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds
that can be extracted and reintroduced into the food chain as natural food additives or in food
matrices for obtaining nutraceuticals and functional foods. This review addresses general questions
concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds
that are being addressed to foods as natural additives and supplements. Those bioactive compounds
must follow the legal requirements and evaluations to assess the risks for human health and their
toxicity must be considered before being launched into the market. To overcome the potential
health risk while increasing the biological activity, stability and biodistribution of the supplements’
technological alternatives have been studied such as encapsulation of bioactive compounds into
micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along
the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes
the valorization path that a bioactive compound recovered from an agro-food waste can face from
the moment their potentialities are exhibited until it reaches the final consumer and the safety and
toxicity challenges, they may overcome.
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1. Introduction

According to the Food and Agriculture Organization (FAO) one-third of the produced
food is wasted [1]. The large amounts of agro-food waste represent a challenge for the food
processors, but also an important issue for both environment and international economy
since they are one of the causes for landfilling to be no longer sustainable [2,3]. Recent
studies showed that agro-food wastes must be considered renewable source of added-
value bioactive compounds (BCs) [4,5]. The current linear economy model is based on the
one acquired concepts from the industrial revolution, which implied a constant supply
of products with a short life span, forcing an ever so increasing production to face the
consumers’ needs [6]. This linear approach promotes the underexploitation of natural
resources giving rise to a significant environmental and economic crisis. Contrarily, a
circular economy encompasses the valorization of the waste allowing the extraction of
novel ingredients by returning them to the supply chain, boosting the economy while
reducing the environmental impact [3].

The majority of global food losses and waste (FLW) comes from the United States
which covers approximately 40% of the whole food supply chain, followed by Central

Foods 2021, 10, 1564. https:/ /doi.org/10.3390/foods10071564

https:/ /www.mdpi.com/journal/foods


https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods10071564
https://doi.org/10.3390/foods10071564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10071564
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10071564?type=check_update&version=1

Foods 2021, 10, 1564

2 of 26

and East Asia and North Africa with 32%, European countries represents 20% while Latin
America generates 6% of the FLW worldwide [7], which imply a significant impact on
biodiversity, human health, and climate change. However, these FLW might be useful
due to their high content of BCs in the production of food additives, functional foods,
supplements, and nutraceuticals [5]. Hence, the proper management of this FLW will
impact the change for a circular economy model and, a new concept perceived as an
efficient option on the long run to transform and increment value to the FLW. BCs recovered
from the food supply chain waste using sustainable extracting methodologies, will be used
as raw material, or as new products, with health benefits creating industries with added
value [6].

Current trends in the food industry and the continuous search for healthy products
suggest that consumer’s interest in natural and high-quality foods is increasing [8]. More-
over, the worldwide health crisis created by the COVID-19 redirected the current consumer
attitude, perception, and behavioral patterns to reduction of food waste and also regarding
the food products consumed [9]. Hence, attention to natural BCs has increased in the past
year especially due to the consumers” awareness regarding the evidence that a healthy and
balanced diet has a positive impact on health therefore, consumers worldwide have become
more health-conscious [10]. Furthermore, agro-food waste is a rich source of different BCs
with content depending on the category of the waste, such as fruit and vegetables, dairy,
meat and fish, cereals and roots, tubers and oilseed [3]. The FLW are cheap and renewable
from which these BCs can be extracted to yield novel functional food products. Over the
past few decades, the diversity of functional foods, supplements, and nutraceuticals in the
global market is increasing. The global market of nutraceuticals, food antioxidants, and
dietary supplements is expected to reach about $210 billion in 2026 [11]. Where Asia and
North America are the main nutraceuticals and dietary supplements consumer markets in
the world, whereas Europe focuses on collecting clinical evidence regarding the safety and
health benefits of the functional products [12]. Overall, the interest of the food industry
for more stable, functional, and user-friendly food additives that can be added to a high
diversity of food products is increasing [13]. Because each country has specific laws, the
legal aspects of natural BCs recovered from food waste used in a circular economy basis
have to be defined. Global regulations and policies for the use of resources in a sustainable
way must change from the usual processes (animal feeding, composting and anaerobic
digestion) to the current ones (incorporation into the food industries) [6].

The reintroduction of recovered agro-food waste BCs faces many challenges including
saftey, biological instability, potential contaminations (pathogens, toxins or pesticides) [14].
Because of that, those ingredients are considered as new foods that must undergo safety
assessments likely to change according to different countries, yet limited, legislations
concerning to the FLW utilization [15]. The stability and ingredients performance in a
food system faces many challenges while designing the appropriate delivery systems for
food additives, nutraceuticals, and dietary supplements [16]. The main objective of this
review is to compile the journey of the BCs recovered from agro-food wastes until the final
consumer, highlighting the safety and toxicity challenges that must be overcome.

2. Natural Bioactive Compounds

Bioactive compounds (BCs) definition is not consensual in the literature, however, one
of the most well-accepted describes that they are “natural or synthetic compounds with
the capacity to interact with one or more components in the living tissues and exerting a
wide range of effects [17]. This term is not considered in regulations, however, because
they can be part of food supplements, additives, nutraceuticals, functional foods, or novel
food, the legal requirements consider them [13]. Furthermore, the boundaries between the
food supplements, nutraceuticals, functional foods definitions are not clear and sometimes
are confused [18]. Unlike dietary supplements and food additives, there are discrepancies
and ambiguities in the definition of what nutraceuticals and functional food are, so a high
overlap exists between the terms demonstrating wholesale uncertainty about what they
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are [19]. A deep analysis of the definitions and the inconsistencies found can be studied in
a recent review work of Aronson [20]. Briefly, functional food contains certain substances
that may be beneficial to the health in higher concentrations than that in conventional
food. These compounds may contribute to enhancing the health benefits, being considered
qualitatively more than conventional food [12]. The food additives are ingredients added
during food processing for a technological function in order to ameliorate food quality
and/or food shelf-life [5]. However, nowadays the interest in incorporating functional
and natural food additives has gained significant impulse due to consumers becoming
more aware of nutraceuticals and dietary supplements benefits in promoting health [13].
Similarly, the market growth of dietary supplements and nutraceuticals has been driven
by consumer interest in health and well-being [21]. Nutraceuticals and food supplements
are very similar terms, and they can assume several forms (tablet, capsule, etc.,). From the
legal perspective, nutraceuticals represent a special part of dietary supplements because
they contain ingredients used for preparing pharmaceuticals, but they do not need to pass
through the same tests as pharmaceuticals [12,22].

The interest in BCs for food application in different ways continues to grow, powered
by the ongoing research efforts to identify the health properties and potential applications
of these substances, mainly extracted from natural sources, and coupled with public
interest and consumer demand. They were commercialized as medicines because of their
pharmacological assets and were mainly obtained from plants, vegetables, and fungi. The
main challenge currently is using the non-edible parts of the natural matrices, such as FLW
which still contains a high amount of different BCs with important benefits on human
health to use for food industry.

Among the agro-food wastes fruits, vegetables, roots, tubers, and cereals together,
have the highest wastage rates. The fruit production is dominated by citrus, watermel-
ons, bananas, apples, grapes, and mangoes, while the most produced vegetables are
tomatoes, onions, cucumbers and cabbages, and the roots and tubers are carrots and pota-
toes [23]. Bioactive compounds isolated include mainly polyphenols, tannins, flavonoids,
flavanols, vitamins (A and E), essential minerals, fatty acids, volatiles, anthocyanins, and
pigments [24]. By-products from the animal industries represent a good source of bioactive
peptides and proteins. Those may include derived products from meat and fish (with side
streams bones, tendons, skin, parts of the gastrointestinal tract and other internal organs,
and blood) [25]. The dairy industry is another valuable source of proteins and peptides,
specially from cheese production [26].

Another alternative presented nowadays for large volumes of produced wastes is the
production of energy through the use of biomass or as animal feed (Figure 1). Nonetheless,
the wastes are still rich in other valuable compounds such as pigments, sugars, organic
acids, flavors, phytochemicals, enzymes, antimicrobial compounds, and fibers that could
be extracted in order to use as food additive or supplement with higher added value [27].
Furthermore, the recovery of these BCs is a challenging and important task for their return
to industrial chains (commercialization) applying the circular economy concept in order to
be employed for the arising trends regarding human demand [3].

Several extraction methodologies have been reported for the recovery of bioactive
compounds from agro-food wastes that use organic solvents however, there is a grow-
ing need for green and sustainable alternatives. The green extraction technologies that
have been the focus are the microwave-assisted extraction (MAE), ultrasound-assisted
extractions (UAE), and supercritical fluid extraction (SFE) [4]. Recently the use of natural
deep eutectic solvents for the bioactive compounds recovery received great attention as an
alternative to the conventional extraction which uses organic solvents that may contribute
to toxicity, presenting high volatility and non-renewability [28].
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Figure 1. Possible new bioactive compounds extracted from agro-food waste.

Extensive research in the past few years intends to demonstrate the value of FLWas a
resource of compounds with bioactivity or technological potential to introduce new, more
sustainable, and natural alternatives to the market. The consumer’s preferences for “clean
labels” determines the use of natural compounds to replace synthetic ones, motivating
the scientific community to search for new sources of natural alternatives, directing their
attention to the utilization of agro-food by-products [5]. One of the most reported potential
was the fruit and vegetable waste, since it generates a high amount of residue in the food
supply chain and is rich in different types of compounds that can be used for different
purposes [3].

2.1. Antioxidants

Currently, there are a lot of antioxidant compounds which are already being used in
the food industry, mainly as a food additive, and are permitted by regulations, such as
ascorbic acid, a-tocopherol, rosemary extract [29]. However, the main challenge nowadays
is recovering compounds with the same potential from waste and proving their safety and
functionality for introduction in the food system [30]. Any by-product can be considered a
valuable resource of new antioxidant food additives, e.g., overly ripe berries, non-compliant
fruit, peels, pomace, and seeds. A recent study from Muino et al. [31] described the use of
an olive oil waste extract rich in polyphenols as a potential natural antioxidant applied to
lamb meat patties, delaying the lipid and protein oxidation while maintaining acceptable
color for a prolonged time, extending the product shelf-life to 3 days. Another recent
work from Bitalebi et al. [32] observed that apple peel extract (APE) inhibited protein and
lipid oxidation in rainbow trout Oncorhynchus mykiss mince during refrigerated storage
(4 °C). Furthermore, lipid oxidation was inhibited (96 h at 4 °C) lowering the peroxides
and thiobarbituric acid-reactive substances (TBARS) when compared to control.

2.2. Preservatives

The most common preservatives in the food industry are nitrates (E240-E259) and
nitrites (E249-E250) and they are related to the development of carcinogenic compounds
responsible for developing cancer [5]. Therefore, natural antimicrobials that can be added
to food are mainly terpenes, peptides, polysaccharides, and phenolic compounds, among
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others with less expression. The agro-food byproducts are a major source of these com-
pounds with several reports showing the potential antimicrobial activity of different BCs.
For instance, olive leaf extract was used to reduce bacteria contamination in shrimp and
organic leafy greens [33,34]. Meat products quality and shelf-life was increased [35] and
the capacity to delay fish microbiological spoilage (E. coli, L. monocytogenes and S. aureus)
resulted in extending fish shelf-life under retail conditions [36]. Moreover, the antimicrobial
capacity of pomegranate peel extract were investigated in chicken products [37,38] and,
the extract showed good antimicrobial activity against S. aureus and B. cereus. In general,
addition of pomegranate peel extract to popular chicken and meat products enhanced its
shelf-life by 2-3 weeks, during chilling temperature [39].

2.3. Anti-Browning

The resulted decrease in fresh produce quality and shelf-life results from enzymatic
browning [40] and consequently negatively impacts product color, taste, flavor, and nu-
tritional value. One solution presented to reduce this phenomenon is using antioxidant
solutions and two of the most effective and traditionally used solutions are the ascorbic
acid, its derivatives, and sulfites [8]. The use of natural compounds with anti-browning
properties would be of unquestionable importance for better consumer acceptance of these
products. Compounds with a strong antioxidant capacity such as phenolic compounds
have been presented as potential inhibitors of oxidative enzymes. This was demonstrated
by a recent work developed by Cindy Dias et al. [40] that uses extracts from strawberry tree
(leaves and branches) and apple byproducts to inhibit polyphenol oxidase and peroxidase.

2.4. Colorants

Most available commercial colorants are synthetics however, a few of them like
carotenoids and anthocyanins are already obtained from natural sources [5]. Therefore,
the use of FLW as new source of colorants could be a way to shift to more natural addi-
tives in the food industry, while still maintaining a cost-effective production. The 16 nat-
ural pigments permitted in EU were specified in the Regulation (EC) No. 1333/2008.
Good examples of natural color additives are the anthocyanins and carotenoids since
in nature they are responsible for the blue, red, purple, orange, and yellow coloration
of several species in the plant kingdom. Some examples of anthocyanins sources are
winery byproducts, red cabbage, black carrots, purple sweet potatoes, and berries [41].
Blackberry residues are one of the most important sources of natural colorants and nu-
traceuticals (4.31 mg Cy3GIE/g) [42]. Citrus peels and pomace residues are good sources
of carotenoids [43,44]. These compounds can be used for natural colors in products, and
beyond that enhancing the shelf-life of food and beverages by preventing pathogens and
contaminants or off-flavor formation.

2.5. Thickeners

Citrus peels are also rich in pectin. Therefore, pectin extracted from citrus peels
could be applied as a gelling agent in bakery, confectionery, and in meat products. Water-
insoluble fibers as pectin are also considered a functional food that are used to improve gut
microbiota health [29,43].

3. Food Waste Bioactive Compounds Regulatory and Legislative Issues

The interest in food industry toward development of functional and nutraceutical
products is increasing and the BCs extracted from FLW can be re-used in the human food
supply chain as nutraceuticals, functional foods [44], additives, supplements, fortification,
and other minor ingredients [14].

One of the challenges related with FLW valorization is the lack of effective policy and
is growing the necessity to improve the statutory rules, codes of conduct and guidelines.
The utilization of BCs recovered from FLW are still limited to scientific research and patents,
because there is still a lack of legislation for FLW utilization [15].
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3.1. European Union

The general food law (GFL), the European framework regulation on foods, has the
purpose to assure the maximum protection level of human health and consumer interest
while certifying the correct functioning of the internal European market for both food and
feed. Furthermore, the GFL is also the founding regulation for EFSA to provide scientific
advice and technical support for all European legislation and policies regarding the food
and feed safety matters [45].

In Europe, the European Community (EC) Regulation No. 178/2002, Article 2 and
Codex Alimentarius guidelines regulate the use of food waste and by-products as food
ingredients or as natural food additives. Therefore, when food by-products are proposed
to be used as natural additives and do not match the current regulations, a proper autho-
rization as novel food, EC Regulation No. 258/97 (1997), is required [14]. The Novel Food
Regulation (NFR) had a specific regulation (EU) 2015/2283 that deals with foods and food
ingredients that were not used before 15 May 1997 for human consumption. Novel foods
must undergo a safety assessment and the request must follow the EC Recommendation
No. 97/618 [15].

When a new nutritional substance is not included in the ingredients list from 15 May
1997, it is recommended to be included in the Annexes of the Directives on foods for
particular nutritional uses, of the Directive on food supplements and of the Regulation on
fortified foods and should be submitted to the European Commission, Health and Food
Safety Directorate-General, Unit E1, Food information and composition, food waste [46].

In 2009, the European Food Safety Authority (EFSA) published the Guideline entitled
“Safety assessment of botanicals and botanical preparations intended for use as ingredients
in food supplements”. This guidance focused on the botanical preparations intended for
use in food supplements, but also applicable to other uses in the food area. The safety
assessment considers the identification and nature of source material that includes part
of the plant (seeds, leaves, and other bioproducts), manufacturing process (extraction
method, solvents used) to obtain botanical preparations and chemical characterization
of constituents. The list does not specify the use of agri-food waste as raw material for
the preparation of such nutraceuticals. The botanical preparations should not contain
toxic substances making required studies on toxicity and toxicokinetic according to the
test methods described by Organization for Economic Cooperation and Development
(OECD) or in European Commission Directives 87/432/EEC and 67/548/EC—Annex 5
(Authority & Committee, 2009). The bio-waste producers should confirm the safety of new
nutraceutical products [47]. Regulation advices to focus toxicity studies on each specific
constituent of the nutraceutical [48].

Bioactive compounds can enter the market as food additives to improve technological
and sensory functions [49], as a supplement or being presented as a functional food.
The different applications will imply different regulations to follow. The authorization
procedure for food additives is laid down in Regulation (EC) No 1331/2008 and the safety
is regulated by the EFSA [50]. Based on this data, EFSA evaluates the level below which
the intake of the substance can be considered safe—the so-called acceptable daily intake
(ADI). Once accepted, the commission makes a proposal for possible authorization of
the additive and present it for voting at the Standing Committee on the Food Chain and
Animal Health (SCoFCAH) which is preceded by a presentation to the Council and the
European Parliament. However, they can still reject the proposal if does not comply with
the EU legislation conditions [51]. The European regulatory framework considers that
functional foods must match the general food laws [45].

Other legislative aspects must be considered when introducing a new compound in the
food industry since the development of “eco-extracts” for food application as an additive
for instance is governed by various regulations such as No 1333/2008. Another parameter
also regulated (Directive 2009/32/EC) is the solvent used to obtain that compounds which
establish maximal solvent residue limits in the final foodstuff [52].
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3.2. Non EU Contries

In the United States, depending on the product application the ingredients can have the
nutritional label and be regulated as food, food supplement, diet constituent, or nutritional
supplement which the product is marketed [53,54].

The utilization of food wastes as a food component is limited in the USA, due to
consumer health and safety. In this case the Food and Drug Administration (FDA) is
the main organism responsible in the federal government to ensure food safety and have
enforced the Federal Food, Drug and Cosmetic Act (FFDCA) and the related food safety
aspect of Public Health Service Act (PHSA 42 US C). The laws are directed to any generic
food safety procedure that may be applicable for any input into food processing. The
identification and prevention of physical, biological, or chemical hazards that may represent
risks to human health is controled by the Hazard Analysis and Critical Control Point
(HACCP) concept. Contrarily to human food, the utilization of food waste for animal and
poultry feed, is well-regulated by the FFDCA [14].

The ingredients used for functional foods should meet all the requirements described
for conventional food in Federal Food, Drug and Cosmetic Act (1938) (latest amendment in
2018) [55]. On the contrary, food supplements have a statutory definition in the US [56].
They can contain vitamins, minerals, herbs and other botanicals, amino acids, dietary
substances for use by humans to supplement the diet by increasing the total dietary
intake, metabolites, constituents, extracts, or combinations already reported [57]. All food
supplements’ ingredients marketed before the implementation of the dietary supplement
health and education act of 1994 (DSHEA) are considered safe and they can be used.
However, after this date the ingredients launched are considered novel ingredients and
they must be assessed by the FDA. New dietary ingredients must contain only dietary
ingredients which are present in the food supply and are not chemically altered and also
have history of use and evidence of safety [58].

In Japan, functional foods are considered as a specific category whose approval
process is made by the Food with Health Claims (FHC) system. The FHC can be divided
in two groups depending on the purpose and function: Foods for Specified Health Uses
(FOSHU) and Foods with Nutrient Function Claims (FNFC). The Minister of Consumer
Affairs Agency of the Government of Japan is responsible for FOSHU approval. They
follow specific requirements: proved efficacy and safety on the human organisms, suitable
nutritional profile, existence of analytical methods for quality control and the assurance of
compatibility with product specifications by the time of consumption [59].

The food supplements are considered “health food” and they are regulated by the
general food laws. All the ingredients are regulated by the Food Sanitation Act (1947)
(latest amendment in 2018), while all substances designated as medicine are not consid-
ered “health food” and so are regulated by the Pharmaceutical Affairs Act (1960) (latest
amendment in 2013) [56].

In China the State Administration for Market Regulation (SAMR) issued guidelines on
health food labelling [60]. The main competent authorities for supervision of food additives
are the national health commission (NHC), which formulate the food safety standards and
registration of new food additives, while the state admnistration for market regulation
(SAMR) makes the supervision on production and circulation of food additives, inspection
and quarantine of import and export food additives. New food additives are required to
be registered with NHC and any intention for production, operation, use or import of a
new food additive must request a license and should have information related with name,
function category, dose level, application, certificates to prove technical necessity and use
effect, quality specification requirements, safety assessment materials, raw materials or
sources, chemical structure and physical properties, production techniques, toxicology
safety assessment documents, and testing reports on quality specifications [61].

In India, no mentions are made to the use of agro-food wastes, but the Food Safety
and Standards Authority of India (FSSAI) is the responsible body that regulates the food
safety standards. At the moment the functional foods are divided into eight categories:
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Health Supplements, Nutraceuticals, Food for Special Dietary Use, Food for Special Med-
ical Purpose, Specialty food containing plant or botanicals, Foods containing Probiotics,
Prebiotics, and Novel Foods [62].

4. Safety Issues Related with Food Waste Valorization

FLW are a valuable source of BCs, such as phenolic compounds, flavonoids, antho-
cyanins or carotenoids, pectin, dietary fibers, proteins, and enzymes [15]. Due to this
richness in several BCs, food by-products encompass important activities, such as an-
tioxidant, anti-inflammatory, anti-proliferative, antidiabetic, and also antimicrobial and
antivirus. The utilization of those compounds recovered from food wastes faces several
challenges that can compromise product safety, such as biological instability, potential
pathogenic contaminations, high water activity, potential for rapid auto-oxidation, and
high levels of active enzymes [14]. The following section describes the most frequent chal-
lenges and constrains required to assure food safety once used agricultural by-products.
Table 1 describes some examples of the potential contaminants that may persist in the
extracted BCs and may represent an issue before considering the reintroduction in the
human food chain. The most common contaminants referenced are pesticides, mycotoxins,
microbial contaminations, heavy metals, and biogenic amines. All these biological hazards
cause severe diseases and therefore, several factors must be taken in consideration when
validating if the FLW is suitable for the extraction of valuable components.

During conventional pest management, it is expected that pesticides have been used
to safeguard crop production. The plant by-products that have been treated with pesticides
could potentially cause troubles as the extracts will no longer be seen as a “natural” product
and will be considered as an alternative preparation of the regulated agrochemical [63].
Under the European Union legislation (Article 32, Regulation (EC) No. 396/2005), EFSA
is responsible for the annual report of pesticide residue levels analysis in foods in the
European market [64]. Contamination by pesticides should be prevented when obtaining
the source material, since the smallest pesticides contamination detection may cause
problems with the legislation. The selection of solvents (e.g., n-hexane and acetonitrile) for
the extraction procedures is of maximum importance because they can selectively solubilize
and even concentrate pesticides [65].

Another important contaminant that must be controlled is the mycotoxins. Those
are fungal secondary metabolites known to be widely distributed worldwide in many
foods and feed stuff [66]. The smallest micro-fungi infestation of the plants can lead to
contamination with mycotoxins, persisting in the final products which can compromise
their use for the production of high-quality supplements and the safety of their consump-
tion [67]. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), deoxynivalenol
(DON), and zearalenone (ZEN) have gained much attention due to their high frequency
and severe health effects in humans and animals [66]. Some of the troubleshooting caused
by micotoxins in other organisms like humas and/or animals involves effects like carcino-
genic, genotoxic, hepatotoxic, teratogenic, estrogenic, immunosuppressive, nephrotoxic,
or neurotoxic [68,69]. There are no regulatory limits established for micotoxins levels
in herbal-based food supplements however, the maximum regulatory limits for certain
mycotoxins in foods have been set under EU regulation No. 1881/2006 [70]. Only two
micotoxins were covered by legislation when used herbs, the aflotoxins and ochratoxin
A [71]. There is still required the exposure assessment because there are only a few studies
on this topic [72].

Many types of waste material still contain large numbers of microbes that lead to
a breakdown of protein resulting in the production of strong odors. In many types of
agro-food waste, enzymes are still active which accelerate or intensify the reactions related
with spoilage [73]. The amount of available water determines whether a microorganism
will grow or survive. Molds, are well adapted to conditions of low moisture while others
will produce spores or enter survival state until the moisture is high enough for bacterial
action. The contamination of agricultural products or by-products is frequently atributted
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to foodborne pathogens (e.g., Salmonella spp. and E coli O157:H7) and the application of
contaminated fertilizer especially from animal source is on the basis of that [74].

Metals contaminations (e.g., lead, mercury, arsenic, and cadmium) are particularly
disturbing because of their regular presence in food supplements and the inherent toxicolog-
ical concern that they raise. Factors that are based on metal contamination, in plant-based
supplements, are the chemical soil composition, the plant characteristics, and its growing
conditions, as well as the lack of purity, extraction techniques, formulation/manufacturing,
transport, and storage conditions [75]. One example is the rice bran used as a health food
supplement still it contains levels of inorganic arsenic considered carcinogen (~1 mg/kg
dry weight), which are around 10-20 fold higher than the concentrations found in bulk
grain [76].

Biogenic amines are basic nitrogenous compounds formed mainly by the decarboxyla-
tion of amino acids or by amination and transamination of aldehydes and ketones. They
can have unwanted toxicological effects in humans that include rash, edema, headaches,
hypotension, vomiting, palpitations, diarrhea, and heart problems [77]. They are found in
a broad range of protein-rich foodstuff from either vegetal or animal sources, such as dairy
products, meat, fish, and alcoholic beverages and represent markers of food freshness and
indicators of inadequate food processing and storage conditions [78].

Safety is a crucial criterion in “eco-extract” definition, while exhibiting no microbial
contaminations. To fulfill those requirements, extracts can be pasteurized or submitted
to sterilizing filtration at the end of the process [52]. One of the problems related with
solvent extraction, is that, depending on the used solvent they can concentrate on the
contaminants initially present in raw material. One possibility to avoid this phenomenon is
to proceed with plant material decontamination before extraction or during the extraction
using absorbent materials [79]. Orange peels extract modified with an hybrid bentonite
was employed for the adsorptive removal of carcinogenic mycotoxins [80]. Other materials
were also proposed for mycotoxin removal as activated charcoal, hydrated sodium calcium
aluminosilicate, and yeast cell wall [81-83].

One alternative to avoid contaminants in the extracts, with potential for industrial ap-
plication, is membrane processes such as microfiltration, ultrafiltration, and nanofiltration.
Those can be used to recover, separate and fractionate-specific BCs specially wastewaters,
while assuring safety [84]. Integrated processes of microfiltration followed by ultrafiltra-
tion have been proposed to recover phenolic compounds such as chlorogenic acid and
apigenin-7-O-glucoside from artichoke wastewaters [85], polyphenols from orange press
liquor [86], hydroxytyrosol, procatechuic acid, tyrosol, caffeic acid, p-coumaric acid from
olive mill wastewaters [87].

The most effective way to control the presence of mycotoxins and guarantee food
supplements safety is by prevention of fungal growth and mycotoxin production. For those
good agricultural practices (GAP) in field must be implemented, like controlling harvesting
and storage conditions improved by technological issues like controlled atmosphere, and
also controlling other physical methods like cleaning, milling, etc., [63]. The HACCP
implementation is an effective strategy for prevention, control, and periodic monitoring of
mycotoxin in all stages from field to the consumer [88].

Some of the strategies (heat treatment or ionizing radiation) used to eliminate bacterial
contaminations and to control mycotoxins can compromise the quality of the final product.
Some of the mitigation efforts that can be made are the monitorization and prevention of
contaminations in an earlier stage of processing or at the raw material itself, preventing
their entering into the food processing system [63].
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Table 1. Examples of potential safety hazards related with agro-food by-products valorization.

Contaminants Type By-products Reference
Cyprodinil
Pesticides Dli:methomorph Grape skin extract [77]
amoxadone
Dimetoathe
Diazinon
Fenitrothion Tomato carotenoid extract [89]
Chlorpyrifos
Methidathion
Aflatoxin B1 Coffee husk and silverskin [90]
Mycotoxins Fumonisin B1 Orange peel extracts [80]
Ochratoxin A (OTA) Grape skin extract [77]
Norovirus
Salmonella Meat, poultry, dairy, fruits,
Bacteria’s and molds Campylobacter vegetables, seafood, grains, [91]
Bacillus and nuts
E. coli
Cadmium (Cd) Grape skin extract [77]
Heavy metals Lead (Pb) Gre};n tea extract [92]
Cadaverine
Putrescine .
Biogenic amines Ethanolamine Grape skin extract (771
Ethylamine
Phenylethylamine Rice, soy, almond, coconut [93]

and oat press cake

5. Toxicological Evaluation

To protect public health, when a novel food or ingredient is proposed is necessary
to ensure consumer health, and for that safety assessments, procedures are proposed in
regulations [94]. The toxicological evaluation is fundamental in all safety assessments,
whatever the country and the laws that govern them. In EU countries, the toxicological
evaluation should be followed by the EFSA guidelines. These guidelines were made
to perform the safety assessment of the food additives, vitamins and minerals, novel
foods, food supplements, and botanicals and follow the tier toxicity testing approach
proposed for food additives in 2012 [95,96]. Whereas in the USA, the evaluation should be
followed by FDA rules accordingly the Toxicological Principles for the Safety Assessment
of Direct Food Additives and Color Additives Used in Food, commonly known as the
Redbook [97]. In EU countries, the EFSA guidelines use a tiered approach, i.e., sequential
testing strategy, where it is divided into three groups. The first group, tier 1 includes
the minimal data required for all compounds. The following group is the tier 2 and is
mandatory for compounds that are absorbed and exhibit in vitro toxicity or genotoxicity in
the gastrointestinal system, i.e., compounds that test positive in tier 1 tests. Lastly, the tier
3, which should be accomplished if after tier 2 tests the compounds show bioaccumulation,
in vivo genotoxicity, and chronic toxicity. In this tier, a case-by-case approach must be
established considering all the available data [18,95]. So, all compounds must be analyzed
for the minimum tests required (tier 1) and depending on the results they may need further
testing (Figure 2). For example, in vitro positive results in genotoxicity testes (Tier 1)
obligate a follow-up for in vivo genotoxicity tests (Tier 2). Moreover, the tiered approach, is
designed to evaluate four core areas: toxicokinetics, genotoxicity, toxicity, and reproductive
and developmental toxicity [18,95]. Accordingly the guidelines provided by EFSA [95],
there are several general issues that should be considered in the design, conduct, and
interpretation of toxicological studies for submission to approval, the most important
are: (1) The studies should be performed with the additive according to the proposed
specifications and should be produced according to the application; (2) studies with animals
and humans should comply the EU standards and regulations for ethical approval and
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Systemicavailability?

Subchronic toxicity and
genotoxicity in vitro?

welfare standards; (3) studies in animals should follow the internationally agreed test
guidelines (Directive 2010/63/EU [98]); (4) toxicokinetics and toxicity of food additives
in animals should be conducted using internationally agreed test guidelines described in
OECD test guidelines (OECD TG) or in Council Regulation (EC) No. 440/2008 [99]; (5) non-
clinical studies should follow the principles of Good Laboratory Practice (GLP) described
in Directive 2004/10/EC19 [100]; (6) the oral route should be selected for testing substances
and the bioactive ingredients should be added to solid food, or to both solid and liquid, and
normally via the diet. For substances applied in beverages, administration via drinking
water may be the best option; (7) botanical food additives derived from conventional food
sources with a long-term history of food use, may benefit from a “presumption of safety”
when an adequate information exists.

Tier2 ‘

Bioaccumulation?

Genotoxicityinvivo ? Additional studies>
Chronic Yes

toxicity/carcinogenicity? Neurotoxicity ?
Reproductive toxicity? Endocrine and

Reprodutive toxicity ?

Ingredient notsuitable

Oncogenicity ? as food additive

Case-by-case approach

Go to Market

Figure 2. Triggers for the next tier in EFSA approach.

Table 2 summarizes the EFSA proposed toxicity tests needed in each tier for each
of the core areas. As can be observed, most of the studies should be performed using
the methods described in the OECD. These methods are the internationally established
test guidelines with the aim to evaluate the effects of chemicals on human health and the
environment. The OECD guidelines are split into five sections and, the guidelines are
compiled in Section 4. Health effects are the ones used for toxicity tests of the sources
of vitamins and minerals, novel foods, and/or botanicals ingredients. Nevertheless, all
studies performed should be based on good laboratory practice (GLP) [18,95].

Toxicokinetic provides information about the system exposure to the substance and the
process involved in their absorption, distribution, metabolism, and excretion (ADME) [101].
Furthermore, it helps to relate the chemical concentration to the observed toxicity effect
and to understand the mode of action of the chemical compound and its metabolites.
Additionally, it consents the selection of the appropriate doses for toxicity studies. The main
objective of Tier 1 tests is to establish the stability and whether compound or breakdown
products are absorbed from the gastrointestinal tract (GIT) through established model’s
studies, including gut microbiota (including in vitro, in vivo and ex vivo absorption and
bioavailability models). Coecke et al. [102] reported several different methods for the
evaluation of the toxicokinetics, including using chamber and inverted sac model. If
negligible absorption and breakdown products is confirmed, a restricted number of studies
would be accepted. In the case of the compound absorption being small, its metabolites or
breakdown products from the GIT study, then Tier 2 should be carried out according to
the OECD TG 417, using in vivo studies with rats. The trigger that demands tier 3 studies
is the possible bioaccumulation. In this case, toxicokinetic studies with repeated doses in
animals will be necessary.



Foods 2021, 10, 1564

12 of 26

Table 2. Toxicity tests for food additives evaluation suggested by the European Food Safety Authority (EFSA).

Toxicity Tests Tier1 Tier 2 Tier 3
Stuchles t(.) defme ADME and other basic Animal studies with repeated administration
. . . . . toxicokinetic parameters (T /5, AUC, . . . .
Studies of in vitro gastrointestinal metabolism . R . doses involving studies to steady state which
. . . bioavailability, Ciax and Tmax) following a . . )
Toxicokinetic to establish whether compounds or . A would be approximately five terminal
. single dose (OECD TG 147) together with .
metabolites are absorbed. L 2 e half-lives.
in vivo assessment of ADME for identification . .
e . Human Clinical Trials.
and quantification of metabolites.
Follow-up of a positive result in basic test
Basic testing battery: battery.
e Bacterial reverse mutation assay (OECD e In yivoe test for Fhromosomal damage
Genotoxicity TG471). using mammalian erythrocyte
. . . . micronucleus (OECD TG 474). (OECD
e  In vitro mammalian cell micronutrients TG 474)
test (OECD TG 487). )

In vivo Comet assay (OECD TG 489).

Transgenic rodent assay (OECD TG 488).

Toxicity Tests (subchronic, chronic and
carcinogenicity)

Subchronic toxicity study

e  repeated dose in rodents (OECD TG 408,
at least 90 days).

. Chronic toxicity studies in a mammalian
species (generally the rat) for 12 months
(OECD TG 452)

. Carcinogenicity for 18-24 months period
(OECD TG 451).

Short-term tests with transgenic mouse
models (p53 +/—, rasH2, Tg.AC, Xpa—/—
and Xpa—/—p53+/—) (OECD 488)
Neurotoxicity, immunotoxicity or
endocrine-mediated studies

Reproductive and Developmental toxicity

e Prenatal developmental toxicity in rabbit
(OECD TG 414).

e  Extended One-Generation Reproduction
toxicity study (OECD TG 443).
Administration of the test substance
should normally be via the diet or by
oral gavage to both sexual mature female
and male animals covering pre-mating
period (at least 2 weeks) and a 2-week
mating period.

Studies for endocrine, developmental
neurotoxicity (OECD TG 426), and mode of
action studies.
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Table 2. Cont.

Toxicity Tests Tier1 Tier 2 Tier 3

e  Bioavailability e  Bioaccumulation

] ) e  Gastrointestinal toxicity e  Invivo genotoxicity

Triggers for next tier ... e Subchronic toxicity e  Chronic toxicity and carcinogenicity

e  Invitro genotoxicity e  Reproductive & Developmental toxicity
e Human studies
e Immunotoxicity

Additional Studies e  Hypersensitivity /allergy
e  Food Intolerance
e  Neurotoxicity
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The genotoxicity evaluates the effect of the substances on the DNA, i.e., mutagenicity,
and genotoxicity. It is known that genetic modification and germ cells are associated
with severe health effects such as degenerative diseases and cancer, even occur at low
exposure levels [103]. Furthermore, the alteration on the DNA may induce abortions,
infertility, and/or heritable damage. Taken in account the harmful consequences of genetic
damage to human health, genotoxicity and mutagenic potential are the basic components
of the risk assessment. A basic battery of in vitro tests is required for all the compounds
(Tier 1) evaluating induction of gene mutation, structural and numerical chromosomal
alteration. For instance, research works of Ribeiro et. al, [104] analyze the genotoxicity of
a new ingredient developed from FLW, olive pomace powders, with the objective to be
incorporated in the food industry as an additive due to high antioxidant and antimicrobial
activity and technological properties. The authors evaluated the genotoxicity accordingly
using the Ames test with Salmonella typhimurium strain (TA 98) and did not find cell viability
problems at any of the concentrations tested, which indicates the absence of mutagenicity.
However, these works need to be performed in vitro with mammalian cell micronutrients
to validate the judgment of no genotoxicity.

The Ames test (OECD, guideline 471) was also used to prove the non-mutagenicity of
three nutraceuticals, already commercialized, that were obtained from grape pomace, vitis
vinifera, and apple extract representing natural extracts rich in polyphenols [47]. A stilbene
rich extract obtained from gravepine shoots was considered safe as a natural additive after
a combined analysis of micronucleous test and comet assay (OECD 474, 489) [105].

Therefore, in the case where all in vitro endpoints are clearly negative, it can be
concluded that the compound is not a genotoxic hazard. In the event of positive and/or
inconclusive and /contradictory results from the basic battery tests it will be necessary a
follow-up with in vivo tests, to assess whether the genotoxic potential observed in vitro is
expressed in vivo (Tier 2). There is no Tier 3 for these core areas, however the EFSA could
be considered a follow-up of Tier 2 results by carcinogenicity studies and germ cell assay
(OECD TG 488). When in vitro and in vivo results are not consistent, then a case-by-case
should be analyzed.

The main purpose of doing toxicity tests in a food additive, nutraceutical, or food
supplement is to provide more information on treatment-related changes in blood, urine,
and clinical biochemistry parameters, histopathological changes in organs and tissue after
prolonged exposure to the compounds. To establish the main toxicological profile of the
substance, showing the target organs and tissues affected, data from the subchronic study
(at least 90 days in rodents) should be submitted to EFSA together with the request for use.
In the case of positive effects, chronic toxicity (OECD TG 452) and carcinogenicity tests
(OECD TG 451) should be performed or, alternatively, a combined protocol to study both
in same experiment (OECD TG 453) (Tier 2). Tier 3 tests have been developed to clarify the
classical carcinogenicity bioassay previously performed in Tier 2. Moreover, tier 3 may also
include specific tests for neurotoxicity, immunotoxicity, and endocrine effects.

Food compounds showing bioavailability must be assessed in reproductive and
developmental toxicity (that is, only if it has positive results in subchronic toxicity in
Tier 1). These tests provide information about effects and potency on male and female
reproduction system (e.g., fertility, pregnancy, prenatal and postnatal survival, growth,
functional and behavioral development of the offspring and reproductive capacity of the
offspring) and on prenatal development (e.g., lethality, toxic effects on the embryo and
fetus, teratogenicity, and sex ratio). However, conclusions on whether tests are necessary
will need to be considered in the light of the toxicity data and toxicokinetics available; if the
Tier 1 toxicokinetic tests show that the substance is systemically available, it is necessary
to perform Tier 2 testing for reproductive and developmental toxicity is required. Where
absorption is insignificant, Tier 2 testing for reproductive and developmental toxicity does
not need to be performed. Tier 3 is activated by positive results in Tier 2 studies and might
include additional studies for endocrine developmental neurotoxicity (OECD TG 426), that
will be studied on a case-by-case basis.
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In addition to the four core areas evaluation, the EFSA reported other test may be
needed to allow an adequate risk evaluation and establish safety including immunotoxicity,
hypersensitivity, food intolerance, etc.

Regarding the guidelines that must be followed in the USA for food additives tox-
icological evaluation, the FDA first presumes that essential toxicological information is
necessary for every food additive. After that, the safety data required are dictated by
the concept of concern level (CL). Lastly, the CL is evaluated considering the additive
potential human intake and its molecular structure. However, the initial estimation of
testing requests can be changed if results suggest a substantial or unpredicted adverse
effect. The total results of toxicology studies are then used to calculate the acceptable daily
intake (ADI) which is then compared with the estimated daily intake (EDI) values; if the
EDI is less than ADI, the food additive is safe under these conditions [106]. The concept
of CL (low (I), intermediate (II) or high (III)) is fundamental to the toxicological safety
evaluation for the additives and its identification is made based on the diagram represented
in Figure 3. The level of expected toxicity of a compound is assigned based on its molecular
structure (low (A), intermediate (B), or high (C)) and an estimation of cumulative human
exposure [97]. Examples of category A compounds include fats, fatty acids, ketones, esters,
monocyclic hydrocarbons, acids, and human metabolites of carbohydrates and lipids. Cat-
egory B includes inorganic salts of iron, copper, zinc, amino acids, and proteins. Category
C includes amides and imines, polycyclic aromatic hydrocarbons, compounds with nitro,
N-nitroso, azide, and purine groups. Finally, based on the LOC obtained, there are a list
of minimum toxicity studies that are required, to support the safety of the food additive
(Table 3) for each of the CL (I, II, and III).

High
1000 PPB
500 PPB s
250 PPE wepu—
_ Il
Cumulative
Concern
Human ]
Level
Exposure
|
50 PPB ==
|
25 PPB g
12 PPB e I
|
Low
Low Intermediate High
Toxicological Toxicological Toxicological
Potential Potential Potential
(Structure (Structure (Structure
Category A) Category B) Category C)

Figure 3. Concern level (CL) defined according to the human exposure and chemical structure. The
cumulative human exposure is expressed as ppb of daily dietary consumption of food additive.
Adapted from: Redbook [93].

Contrarily to EFSA, the FDA divides the main tests into several categories, but the
main test required in each of the categories is the same that are required by EFSA for
approval in the EU countries. Likewise, EFSA, genotoxicity tests are performed in vitro
and in vivo to consider the key types of genetic alterations and types of DNA damage
(mutagenicity and genotoxicity). According to FDA, all compounds must perform the
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in vitro basic tests battery (OECD TG 471 and 487). However, if the cumulative estimated
daily intake of the compound exceeds 50 ppb in the diet an in vivo test is required. In EU
this test is only performed when positive results are observed at in vitro basic tests battery.
Moreover, in this case EFSA requires two more in vivo tests.

The subchronic studies are applied at all compounds like EFSA, however, in this
case they call it “short-term toxicity tests” and evaluate in vivo with rodents for at least
28 days (OECD 407), with a group of animals exposed repetitively to the additive in their
diet, while at EFSA the subchronic test for all compounds lasts 90 days (OECD 408). In
FDA, it is only tested for 90 days for CL II and III compounds. Besides, in the case of
CL 1II1, it is also necessary to carry out long-term toxicity tests with dogs conducted for
a minimum of 12 months (OECD TG 452). In these studies, blood and urine samples
are evaluated periodically throughout the period and, at the end of the study, detailed
necropsies and histopathology are performed on high dose and control groups. Effects
related to compounds bioaccumulation in tissues should be evident, allowing for the
determination of a “no observable adverse effect level” (NOAEL). In the case of subchronic
feeding studies for CL III the results help dose selection for the chronic studies. While, at
the previous level data are often used for the ultimate determination of safety.

Tests in the category of chronic and carcinogenicity studies are required only for CL
III food additives and are often combined into a single study where the lifetime studies
have a duration of approximately 104 weeks in two rodent species. The compounds
belonging to CLs Il and III demands reproductive and developmental testing and should be
performed by exposing male and female rodents (20/gender/group) orally to the additive
to evaluate several endpoints. The results would give indication that the tested substance
have a potential effect on neonatal morbidity and mortality and on the teratogenic. Lastly,
metabolism and pharmacokinetic studies and clinical human studies only need to be
carried out if indicated by available data or information.

Briefly, food additives from CL I needs a short-term feeding study in a rodent species,
at least 28 days in duration and, a short-term test for genetic mutations potential. CL II
requires the previous test for CL I plus testing in a 90-day feeding study in a rodent and a
nonrodent species, a multigeneration reproduction study with a developmental toxicity
phase and metabolism/pharmacokinetic studies. The additives belonging to CL III require
a more extensive testing, in addition to the studies in two rodent species, and a chronic
feeding study of at least 1 year in a nonrodent species.

Despite the different regulatory frameworks, the overall risk-assessment procedures
and measures are similar.

When considering food supplements some differences in the jurisdictions regarding
toxicological data required were registered between the EU and USA. In EU the toxicologi-
cal data referred to EFSA’s Guidance for submission for food additive evaluations (EFSA
Panel on Food Additives and Nutrient Sources added to Food [ANS] 2012). In contrast
in USA the FDA considers toxicological tests for various scenarios based on whether the
anticipated exposure of the substance exceeds historical consumption. Besides that, it
considers clinical trial data, and historical use of botanicals as medicines [58].
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Table 3. Approach suggested by the Food and Drug Administration (FDA) for the toxicity evaluation of food additives.

Toxicity Tests

Concern Level I Concern Level I1

Concern Level II1

Genetic Toxicity Tests

If the cumulative estimated daily intake of a food ingredient is 50 ppb or less but greater than 0.5 ppb:

Bacterial reverse mutation assay (OECD TG471).

In vitro mammalian cell micronutrients test (OECD 487) or in vitro mouse lymphoma thymidime kinase+/— gene mutation assay.
If the cumulative estimated daily intake exceeds 50 ppb in the diet (150 ug per person per day):
The two previous tests + in vivo test for chromosomal damage using mammalian erythrocyte micronucleus (OECD TG 474).

Short-term toxicity tests with rodents

28 Day oral repeated dose study in Rodents (OECD 407).

Screening for neurotoxicity and immunotoxicity.

Subchronic toxicity studies with nonrodents

Study in rodents at least 90 days of repeated dose (OECD TG 408).
Screening for neurotoxicity and immunotoxicity.

One-Year Toxicity Studies with Non-Rodents

Long-term toxicity tests with non-rodents
(usually dogs) should be conducted for a
minimum of 12 months (OECD TG 452).

Screening for neurotoxicity and
immunotoxicity.

Chronic toxicity and
carcinogenicity

° Chronic toxicity studies in a mammalian
species (generally the rat) for 12 months
(OECD TG 452)

. Carcinogenicity for 18-24 months period
(OECD TG 451).

Reproduction and Development toxicity
studies

e  Exposing male and female rodents
(20/gender/group) orally to the additive
(OECD TG 421).

e  Extended One-Generation Reproduction
toxicity study (OECD TG 443).

e  Exposing male and female rodents
(20/gender/group) orally to the additive
(OECD TG 421).

Extended One-Generation Reproduction
toxicity study (OECD TG 443).

Metabolism and pharmacokinetic studies

If indicated by available data or information.

Clinical studies (in Humans)

If indicated by available data or information.

There is no requirement for obtaining clinical

safety data for food additives. However, could
be necessary if indicated by available data.
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6. Challenges for New “Smart-Foods” for Health

The interest in products free from artificial and synthetic additives is growing as
well in making formulations that assure the food bioactive ingredients stability and safely
delivered to the target organs and cells. In the recent years several food components and
nutraceuticals have been encapsulated by different technologies [107]. One of the most
common techniques that guarantees the stabilization of sensitive components, controlled
release of core material, and that allows the physical separation of reactive or incompat-
ible ingredients and thereby increasing product shelf-life is through the encapsulation
technology [16].

According to the European Commission for legislative and policy purposes is con-
sidered a “nanomaterial” if 50% or more of the total particles have one or more external
dimensions between 1 and 100 nm [108]. Nanomaterials can occur naturally in food struc-
tures at a nanometer range as a result of processing or cooking (e.g., emulsions such as
mayonnaise) or they can be engineered [108]. In the last case, the material can be metab-
olized or excreted by the body such as nanoemulsion or nanoencapsulation of nutrients
(e.g., vitamins) or they can persist or be slowly soluble as seen in the case of synthetic
amorphous silicon (anti-caking agent), nano-silver (antimicrobial agent), and titanium
dioxide (food additive) [109]. There are various nanocarriers sources for food applica-
tion that may include inorganic (e.g., silver, titanium and silicon dioxide, iron oxide, and
zinc oxide), organic components like milk proteins, other animal proteins, plant proteins,
polysaccharides, lipids (fats and oils), and biodegradable chemical polymers [107]. Most
of the bioactive ingredients including polyphenols, fatty acids, lipophilic vitamins and
nutraceuticals, aromas and preservatives are intrinsically hydrophobic and for that water
and oil dispersions are prepared [110]. The scheme represented in Figure 4 summarizes the
most common encapsulation techniques applied in food industry as well some examples
of nanocarriers already tested to deliver bioactive ingredients in food systems.

The techniques that could be applied to encapsulate materials are spray dryer, fluid
bed dryer, extrusion, liposome techniques, centrifugal separation, rotational suspension
separation, and electrostatic deposition [111]. One of the main targets of nanoparticles
technology is to protect BCs from degradation along with the gastrointestinal digestion and
cellular metabolism, enabling a controlled release of BCs to the target tissues affected by
biological disturbances [112]. Some recent examples of that are molecules like vitamin D (a
lipophilic molecule) that was encapsulated into fish oil for higher oral bioavailability [113],
ferulic acid prepared with shellac into nanofibers exhibited a colon-targeted sustained
release acting as a preventive agent for colon cancer [114]. One of the strategies to increase
BCs stability is to increase resistance through stomach acidic conditions and a safe release
in the intestine. Isolated lactoferrin from camel milk encapsulated with alginate [115] and
catechin with starch-based nanoparticles [116] allowed them a controlled release in the
intestine.
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Nanoencapsulation Food Ingredients
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Figure 4. Scheme of the most commonly applied nanocarriers for bioactive compounds [16,107,108,
117-120].

The investment of nanotechnology in food industry market is led by the USA through
the National Nanotechnology Initiative (NNI). Other nations that followed them are Japan
and the European Union, which have both dedicated considerable resources [121]. Food
processing methodologies that involve nanomaterials include integration of nutraceuticals,
gelation, and viscosifying agents, nutrient propagation, mineral and vitamin fortification,
and nano-encapsulation of flavors [122]. Nanomaterials already make part of commer-
cialized food, but there is still a lack of information related to safety. The Center for Food
Safety created a list to alert consumers of common food-related products that contain
nanotechnology that includes candies (M&M'’s, Skittles), baby bottles, and plastic storage
containers [123]. The use of encapsulation for bioactive compounds recovered from agro-

food wastes is still restricted to laboratory research and some examples are described in
Table 4.

Table 4. Nanoencapsulation applied to bioactive compounds recovered from agro-food wastes with the purpose to be
reintroduced in food chain.

Bioactive
Components

Catechin,
epicatechin,
quercetin, ferulic
acid, gallic acid,
p-coumaric acid,
syringic acid,
trans-cinnamic
acid, vanillic acid,
and vanillin
p-Coumaric and

sl Nanoparticles
Food Products Application Source Technique Reference

Drinking Yogurt ’?Egggﬁl;?t Cocoa hull waste  Liposomal systems [124]

Juices and fruit
salads

Reduce
mycotoxins

ferulic acids,
epicatechin,
quercetin

Grape stem and
leaf extracts

Microencapsulation [125]
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Table 4. Cont.
Food Products Application Bioactive Source Nanoparticles Reference

pp Components Technique

Yogurt Colorant Betalains Red pitaya peel Microencapsulation [126]

Cupcakes Antimicrobial Polyphenols Pomegranate peel =~ Microencapsulation [127]
Antimicrobial and Polyphenols Lyophilized

Beef meatballs antioxidant (Punicalagin) Pomegranate peel pomegranate peel [128]

nanoparticles

After consumption, the nanomaterials can have different biological destinies in the
gastrointestinal system: (1) They are completely digested and absorbed; (2) are partially
digested and slightly release the encapsulated compounds; and (3) are resistant to digestion
and compounds are thrown out from the digestive system or cross the intestine epithelium
and entry to the bloodstream. For the three situations, the toxicological aspect of the
components used in nanomaterials production must be considered a potential immuno-
logical response as well [129,130]. Once that, the nanoparticles go through the intestinal
epithelium without rejection [117]. However, the bioavailability of the encapsulated BCs
will increase as particle size decreases, having a direct effect in absorption enhancing the
health outcomes [131].

Nanoparticle’s toxicity can be explained across several properties” dependent on their
compositions and structures [117]. Because of their high surface area nanoparticles could
adsorb gastrointestinal enzymes altering the normal function of digestion. Depending on
the composition, dimensions, morphology, aggregation state, and interfacial properties
nanoparticles may accumulate in specific tissues exhibiting toxic effects [132]. Inorganic
nanoparticles may generate reactive oxygen species in the cells [133]. The location of
bioactive ingredients releases and absorption within the gastrointestinal tract may be
altered, hence showing adverse health effects [134]. Toxicity may also be exerted by
a higher concentration of the bioactive agents since encapsulation protected them and
increase their bioaccessibility [135]. Another harmful effect of nanoparticles is related to
their potential interaction with colonic bacteria’s resulting in an alteration of their viability,
creating an imbalance in the relative proportions of different bacterial species [136].

Until now there is limited legislation related to the use of nanomaterials in food
industry, but agencies and government claim that current legislations ensure the safety of
nano-food products [108]. A guidance document entitled “Guidance for the risk assessment
of the application of nanoscience and nanotechnologies in the food and feed chain” was
prepared in 2011 by European Food Safety Authority (EFSA). These guidelines afford
an nanomaterial risks evaluation in food products, where the nanomaterial preparation,
amount in final food product, and toxicity are assessed [137].

FDA regulates the nanomaterials included in food products, regarding the safety
and regulatory issues in novel food industry technologies, through a guidance for the
manufacturers entitled “FDA Regulation of Nanotechnology”. This guidance defines
nanomaterials as products with particle size within the nanoscale range (from 1 to 100
nm) and products with physical, chemical, and biological characteristics related to the
nanomaterials. Some of the responsibilities are on the manufacturers, which are responsible
for monitoring physicochemical properties, impurities, and safety. They are also responsible
to submit a regulatory evaluation and indicate a regulatory issue for the consumption of
the novel food product [138].

Other countries like Australia, New Zealand, and Korea state that food products with
nanomaterials should have a control of the safety requiring experiments to be done before
lunching in the food in the market and the related guidelines should also be published [130].

7. Conclusions

Natural bioactive compounds represent a special group of health care molecules
that could be applied in a great variety of food classes: functional foods, nutraceuticals,
dietary supplements, and used as food additives providing to the consumers a natural and
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sustainable alternative to the synthetic ones. These high value-added compounds could be
recovered from food losses and waste but there are many challenges to be addressed in the
insertion of these molecules in food additives, nutraceuticals, and dietary supplements,
mainly regarding the safety and toxicity. One of the current efforts toward increased
ingredient stability, controlled release of the bioactive compounds, and increased product
shelf-life is the use of encapsulation technology.

The consciousness of food industry in the importance of the safety aspects, must obey
different legal requirements depending of the country where they are applied. The adverse
effects of the consumption of natural supplements is relatively rare, and the increasing
prevalence of products adulteration with bioactive substances require care from regulators
to ensure public safety.

Besides the lack of regulatory, legal provisions, or guidelines for food waste utilization,
this review provides a comparison between the European and American regulatory frame-
work as well as the risk assessment criteria that food-related bioactive compounds must
follow to ensure product safety. Consumer’s attitude, perception, and behavior related
with food waste is changing and their mind-sets are shifting toward “natural” compounds
for healthier lifestyle, increasing the responsibility of industries and national authorities in
providing a safer product.
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