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Background: Despite developments in surgical techniques and medical care, people

with a Fontan circulation still experience long-term complications; non-invasive

therapies to optimize the circulation have not been established. Exercise intolerance

affects the majority of the population and is associated with worse prognosis.

Historically, people living with a Fontan circulation were advised to avoid physical

activity, but a small number of heterogenous, predominantly uncontrolled studies

have shown that exercise training is safe—and for unique reasons, may even be

of heightened importance in the setting of Fontan physiology. The mechanisms

underlying improvements in aerobic exercise capacity and the effects of exercise

training on circulatory and end-organ function remain incompletely understood.

Furthermore, the optimal methods of exercise prescription are poorly characterized. This

highlights the need for large, well-designed, multi-center, randomized, controlled trials.
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Aims and Methods: The Fontan Fitness Intervention Trial (F-FIT)—a phase III

clinical trial—aims to optimize exercise prescription and delivery in people with a

Fontan circulation. In this multi-center, randomized, controlled study, eligible Fontan

participants will be randomized to either a 4-month supervised aerobic and resistance

exercise training program of moderate-to-vigorous intensity followed by an 8-month

maintenance phase; or usual care (control group). Adolescent and adult (≥16 years)

Fontan participants will be randomized to either traditional face-to-face exercise training,

telehealth exercise training, or usual care in a three-arm trial with an allocation of

2:2:1 (traditional:telehealth:control). Children (<16 years) will be randomized to either

a physical activity and exercise program of moderate-to-vigorous intensity or usual

care in a two-arm trial with a 1:1 allocation. The primary outcome is a change in

aerobic exercise capacity (peak oxygen uptake) at 4-months. Secondary outcomes

include safety, and changes in cardiopulmonary exercise testing measures, peripheral

venous pressure, respiratory muscle and lung function, body composition, liver stiffness,

neuropsychological and neurocognitive function, physical activity levels, dietary and

nutritional status, vascular function, neurohormonal activation, metabolites, cardiac

function, quality of life, musculoskeletal fitness, and health care utilization. Outcome

measures will be assessed at baseline, 4-months, and 12-months. This manuscript will

describe the pathophysiology of exercise intolerance in the Fontan circulation and the

rationale and protocol for the F-FIT.

Keywords: aerobic exercise, cardiac rehabilitation, single ventricle, congenital heart disease, telehealth, exercise

intolerance, hypoplastic left heart syndrome, tricuspid atresia

BACKGROUND

Most babies who are born with single ventricle physiology and
are palliated with the Fontan procedure will now survive into
adulthood (1). The Fontan circulation is the result of a series
of staged surgical procedures that redirect venous return to
the pulmonary arteries, bypassing the heart. While establishing
a Fontan circulation alleviates volume loading and cyanosis,
it comes at the expense of elevated central venous pressure,
reduced preload, and diminished (pulsatile) pulmonary artery
flow. Chronically, these abnormal hemodynamic conditions
cause long-term complications, including premature mortality,
Fontan-associated liver disease, protein-losing enteropathy,
thromboembolic events, arrhythmias, and heart failure (2).
However, major advances in surgical techniques and medical
care have dramatically improved prognosis, and the projected
population of people living with a Fontan circulation in
Australia and New Zealand is expected to double over
the next 20 years (3). This improved prognosis highlights
the need to establish adequate health care services and
therapies to provide appropriate care for people living with a
Fontan circulation.

Exercise training is a well-established therapy and is part of

routine clinical care in people with cardiopulmonary conditions

(4). In non-congenital cardiac conditions, improvements in
aerobic exercise capacity—reflected by peak oxygen uptake
(VO2)—following cardiac rehabilitation or exercise training
is associated with better prognosis and clinical outcomes,

including potential reductions in mortality and hospitalization
(5–9). While this association has yet to be directly shown in
people with a Fontan circulation, it would seem plausible
that increasing peak VO2 with exercise training would
yield similar benefits in this cohort, especially since the
peripheral muscle pump is of heightened importance in
this unique physiological environment. This is supported
by studies that show an association between higher aerobic
exercise capacity and better prognosis in people with a Fontan
circulation (10–13).

Multiple series from tertiary centers around the world have
shown the utility of peak VO2 to identify high-risk phenotypes.
People who have congenital heart disease (CHD) with a peak
VO2 below 15.5 ml/kg/min are at a 2.9-fold increased risk of
hospitalization or death compared to those with greater aerobic
exercise capacity (10). Higher peak VO2 is also associated with
better end-organ function in people with a Fontan circulation
(14). Furthermore, deterioration in aerobic exercise capacity
appears to be the strongest predictor of adverse events in people
with a Fontan circulation (15, 16).

Given the apparent prognostic implications associated with
higher aerobic exercise capacity, it would seem intuitive to
understand the pathophysiology of exercise intolerance and
optimize therapies such as exercise training that can improve
peak VO2. This manuscript will review the pathophysiology of
exercise intolerance in the Fontan circulation and describe the
rationale, aims, and methods for the multi-center, randomized,
controlled Fontan Fitness Intervention Trial (F-FIT).
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FIGURE 1 | Distribution of % predicted peak oxygen uptake (consumption) in patients after Fontan operation and its distribution in patients with different types of

Fontan surgery. ec, extracardiac; lat, lateral; TCPC, total cavopulmonary connection. Reproduced from (12).

PATHOPHYSIOLOGY OF EXERCISE
INTOLERANCE IN THE FONTAN
CIRCULATION

Cardiopulmonary Exercise Testing
Response in the Fontan Circulation
People living with a Fontan circulation usually have at least
moderately impaired aerobic exercise capacity (Figure 1),
with large series reporting an average peak VO2 ranging
from 23 to 27 ml/kg/min (52-61% predicted) (12, 13). The
typical cardiopulmonary exercise testing response includes a
depressed peak heart rate (HR), elevated minute ventilation
(VE)/carbon dioxide production (VCO2) slope (ventilatory
inefficiency), reduced peak work rate, and increased breathing
frequency (17–19). Peak oxygen pulse—a surrogate for
stroke volume and arteriovenous oxygen extraction—is
impaired, with an early plateau or downsloping trajectory
of the oxygen pulse curve, likely reflecting cardiogenic
(preload) limitation to exercise performance and intrinsic
skeletal muscle dysfunction (20, 21). Exercise ventilatory
oscillation is also common (22). Furthermore, a subset of
people may also have mechanical ventilatory limitations
reflected by limited breathing reserve (23). Interestingly,
the anaerobic threshold and other submaximal measures
of exercise capacity are often better preserved compared
to peak VO2, albeit still lower than normal predicted
values. Some people may also experience exercise-induced
oxygen desaturation secondary to diffusion type limitation
or right-to-left shunting via veno-venous collaterals or
Fontan fenestration.

Serial Changes in Aerobic Exercise
Capacity
The change in aerobic exercise capacity over time may be more
prognostically significant than a single measurement (16); a
decline in peak VO2 is associated with increased risk of adverse
cardiovascular events, death, and cardiac transplantation (15,
24). Some longitudinal studies have reported an average decline
in aerobic exercise capacity ranging from 0.8 to 2.6 percentage
points per year (15, 24–26). The accelerated rate of decline
may result in a premature deterioration below the “critical”
peak VO2 threshold (16.6 ml/kg/min or 50% predicted) that
significantly increases the risk of adverse events (27, 28). This
may explain the high prevalence of morbidity, and premature
mortality observed as early as the third or fourth decade of
life. Promisingly, more recent reports have shown slower rates
of decline or even an increase in aerobic exercise capacity
trajectory (29). Understanding the contributors to the trajectory
of aerobic exercise capacity may aid the determination of
appropriate therapies and potentially identify the appropriate
timing for intervention.

Surgical Factors
Age at Fontan Completion
The optimal age at Fontan completion remains controversial. It is
uncertain whether prolonging the period prior to partial surgical
correction (Glenn shunt) can allow for optimal pulmonary
vascular development, albeit at the expense of cyanosis and
volume loading. Fontan completion at a later age may also allow
for a larger conduit to “optimize” flow. However, data appears
to support the notion of early Fontan completion to preserve
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FIGURE 2 | Various techniques of the Fontan procedure. (A) Atriopulmonary connection. (B) Lateral tunnel total cavopulmonary connection (TCPC). (C) Extracardiac

conduit TCPC. IVC, inferior vena cava; RA, right atrium; RPA, right pulmonary artery; and SVC, superior vena cava. Reproduced from (32).

long-term aerobic exercise capacity (30, 31). This associationmay
be explained by protecting the single ventricle from excessive
volume loading with earlier age at Fontan completion.

Type of Circulation
Since the original atriopulmonary connection-type Fontan
procedure, there have been various modifications to this
approach (Figure 2). While the notion of the original procedure
was to “ventriculize” the right atrium to compensate as a
subpulmonary pump, long-term follow-up data demonstrated
poor prognostic outcomes with this surgical approach (33). The
preferred approach in the current era is the total cavopulmonary
connection (lateral tunnel or extracardiac conduit), which has
dramatically improved long-term outcomes and survival because
atriopulmonary connections are more prone to arrhythmias,
cardiacmaladaptation (heart failure), worse atrial and ventricular
mechanics, and premature mortality (1, 33, 34). Importantly, the
modification to the total cavopulmonary connection-type Fontan
circulation has optimized hemodynamics and flow energetics.
Indeed, those with a total cavopulmonary connection tend to
have greater pulmonary flow and stroke volume compared to
those with an atriopulmonary connection, but the impact on
aerobic exercise capacity is unclear. In adolescents and adults,
peak VO2 and submaximal exercise measures were higher in
those with a total cavopulmonary connection (35), although
surprisingly, large seminal series show no difference in aerobic
exercise capacity between groups (12, 26). These contradictory
findings may be attributed to the vastly heterogeneous group
of patients that present with extensive variations in arrhythmia
burden, ventricular morphology, pulmonary vascular function,

muscle mass, lung function, physical activity levels, and
ventricular function. It is likely that the type of Fontan circulation
is associated with aerobic exercise capacity only in a selected
subset of older patients with other co-existing complications and
suboptimal Fontan circuit geometry.

Cardiac Factors and Pulmonary Vascular
Resistance: Implications for Cardiac
Output
Cardiac Factors

Systolic Ventricular Function
At rest, cardiac output is often within the normal range or only
mildly depressed in the single ventricle circulation, with relatively
well-preserved systolic function (contractility). Reductions in
resting cardiac output may be the consequence of “ventricular-
vascular” uncoupling instead of impaired contractility (36).
However, at elevated HRs, there is evidence of limited inotropic
response, likely secondary to decreased preload rather than
intrinsic cardiac abnormalities (37). Although some studies have
reported a correlation between measures of systolic function
and aerobic exercise capacity (38, 39), the degree of ventricular
systolic dysfunction does not completely account for the level of
exercise intolerance experienced in the majority of the cohort,
most of whom have preserved systolic function. This is supported
by our local data (35) and a large, multi-center series from the
Pediatric Heart Network, which did not find any association
between systolic ventricular function and peak VO2 (40).
Furthermore, if contractility was a significant cause of exercise
intolerance, the use of inotropic agents would theoretically
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improve cardiac output, and in turn, aerobic exercise capacity,
which has not been demonstrated in the Fontan circulation
(41). In summary, while it is probable that systolic ventricular
function contributes to aerobic exercise capacity, it is unlikely to
be a primary contributor to exercise intolerance unless systolic
ventricular dysfunction is severe (42).

Diastolic Ventricular Function
In the Fontan circulation, preserving diastolic function is
imperative to minimize pulmonary pressure and increase
pulmonary blood flow. Even modest elevations in filling
pressure can have significant effects on preload and aerobic
exercise capacity (28). Resting diastolic dysfunction assessed
by echocardiogram inversely correlates with peak VO2 (38,
43, 44). Of note, however, studies that utilize traditional
echocardiography measures of ventricular function (systolic
and diastolic) should be interpreted with caution, as they are
poorly validated and likely inaccurate in the setting of preload
deprivation and atypical chamber geometry in the Fontan
circulation (45, 46). While the ability of the ventricle to “pull”
blood through the pulmonary vasculature is limited, preserving
diastolic function in the single ventricle is likely an important
factor to prevent the deterioration of aerobic exercise capacity by
maintaining ventricular filling.

Dominant Ventricle Morphology
The myocardial architecture and coronary blood supply of the
left ventricle are designed to sustain the systemic circulation (47).
Unsurprisingly, the ability of the right ventricle to support the
systemic circulation is often suboptimal, and adverse remodeling
likely ensues over time in many patients, which theoretically
should impair aerobic exercise capacity. Indeed, some studies
have reported an association between left ventricularmorphology
and aerobic exercise capacity (25, 48).

However, series involving older cohorts were unable to
detect an association between exercise intolerance and dominant
ventricle morphology (26, 49–51). This is consistent with other
clinical measures of exercise capacity (6-min walk distance or
treadmill exercise duration), which showed no differences in
exercise performance between ventricular morphology type in
patients with an extracardiac conduit type circulation (52). The
latest Pediatric Heart Network study also did not show an
association between ventricular morphology and peak aerobic
exercise capacity, although patients with a dominant left
ventricle had better submaximal exercise capacity (higher VO2 at
anaerobic threshold) (26). Notably, even those with a dominant
left ventricle show evidence of pathological abnormalities
compared to the normal biventricular heart (53), andmay in part,
explain the conflicting findings reported.

Despite the association between ventricular morphology
and aerobic exercise capacity previously reported, people with
a systemic right ventricle can still achieve normal or even
supranormal exercise capacity (14, 54), suggesting that it is not
a central limiting factor. This is likely related to the somewhat
limited role that contractility has on cardiac output in the setting
of limited preload.

Outflow Obstruction and Valvular Regurgitation
Outflow obstruction may be attributed to valvular stenosis,
aortic obstruction, subvalvular stenosis (e.g., membrane or
muscle bar), or supravalvular stenosis, which may impede
the augmentations of cardiac output during exercise. This
can lead to increased afterload, ventricular hypertrophy, and
potentially maldistribution of blood flow, with significant
implications on atrial filling pressures and stroke volume.
Importantly, these obstructions may progress over time and can
become dynamic with exertion (55), further restricting flow and
potentially resulting in a precipitous decline in cardiac output
during exercise.

Regurgitation of the systemic semilunar or atrioventricular
valve predisposes the heart to chamber enlargement and
progressive ventricular dysfunction, which may impair aerobic
exercise capacity. Ohuchi et al. reported that a small subset
of Fontan patients with atrioventricular valve insufficiency had
lower peak VO2 (48). This reduction in aerobic exercise capacity
may be associated with the deleterious consequences that
accompany atrioventricular valve regurgitation (e.g., elevations
in atrial pressure), which affect the transpulmonary flow gradient.
However, more prospective data are required to confirm the
degree to which atrioventricular valve insufficiency contributes
to reduced aerobic exercise capacity.

Chronotropic Response
Chronotropic limitation is a common factor associated with
impaired aerobic exercise capacity in people with cardiac
conditions. In contrast to patients with a biventricular
circulation, mildly-to-moderately depressed peak HR (often
described as “chronotropic incompetence”) may be, in part,
an autoregulatory response to reduced preload. Scarring of
the conduction system related to cardiac surgery, intrinsic
developmental abnormalities of the conduction system, and
drugs (such as beta-blockers and anti-arrhythmic medications)
also impair the chronotropic response. Unless chronotropic
limitation is severe, peak HR does not appear to significantly
impair aerobic exercise capacity. Further supporting this notion,
there is no difference in chronotropic limitation between patients
who achieve “normal” aerobic exercise capacity compared to
those with reduced aerobic exercise capacity (54). In addition,
atrial pacing studies have shown no improvement in cardiac
output. Further increases in peak exercise HR may result in
a plateau or decrease in cardiac output and promote exercise
intolerance (Figure 3). The observed diminished HR reserve
(HRR) can be predominantly attributed to hemodynamic
abnormalities (i.e., reduced preload) (56). However, during
relative submaximal exercise intensities, the chronotropic
response is appropriate or even higher compared to healthy
control subjects (57).

Pulmonary Vasculature

The “Critical Bottleneck”
Gewillig et al. have usefully described the pulmonary vascular
bed as the “critical bottleneck” that is predominantly responsible
for impeding ventricular filling and cardiac output, which in
turn impairs aerobic exercise capacity (58). Transpulmonary flow
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FIGURE 3 | Quadratic regression analysis of mean stroke volume and cardiac

output vs. average heart rate values. In people with a Fontan circulation, an

additional increase in heart rate beyond peak exercise values would result in

(A) a disproportionate fall in stroke volume such that (B) cardiac output cannot

increase further. Modified from (56).

restriction attributed to inadequate pulmonary artery growth
and progressive pulmonary vascular disease likely ensues from
the absence of pulsatile pulmonary flow; pulmonary artery
growth essentially ceases after Fontan completion, potentially
restricting venous return and impairing aerobic exercise capacity.
Supporting this notion, pulmonary artery size is inversely
correlated with New York Heart Association Functional Class
and is positively associated with peak VO2 (59). Maldistribution
of pulmonary blood flow, which is common in Fontan physiology
due to altered branch pulmonary artery anatomy and flow
dynamics, is also associated with decreased aerobic exercise
capacity (60).

The influence of the pulmonary vasculature on aerobic
exercise capacity has been elegantly demonstrated in an invasive
study performed by the Mayo Clinic (Figure 4) (61). Egbe et al.
showed that people with abnormal exercise pulmonary vascular
reserve (primarily reflecting pulmonary vascular dysfunction)
have significantly worse aerobic exercise capacity (49% predicted
peak VO2) compared to those with a normal pulmonary vascular
reserve (67% predicted peak VO2). When interpreted with

other hemodynamic data (decreased stroke volume index with
increased pulmonary vascular resistance index), it is reasonable
to speculate that the difference in peak VO2 is attributed to lower
pulmonary vascular resistance, resulting in enhanced ventricular
filling in patients with normal pulmonary vascular reserve.

It is likely that opening the “critical bottleneck” (i.e.,
reducing pulmonary vascular resistance) would theoretically
improve ventricular filling and aerobic exercise capacity, but
therapies targeted at the pulmonary vasculature have yielded
disappointing and inconsistent results; a 7% increase was the
greatest improvement in peak VO2 reported (62–64). Marginal
improvements were also observed for submaximal exercise
parameters (VO2 at anaerobic threshold) with phosphodiesterase
five inhibitors; the landmark FUEL (Fontan Udenafil Exercise
Longitudinal) trial failed to show improvements in peak VO2

(62). Disappointingly, the reported treatment effect (3-5%) with
pulmonary vasodilator therapies for peak VO2 is of questionable
clinical benefit (65).

Despite statistically insignificant improvements in
peak aerobic exercise capacity, drug therapies such as
phosphodiesterase five inhibitors may still provide clinical
benefits (66). Long-term use of pulmonary vasodilators may
reduce systemic venous pressure and attenuate or prevent future
complications or decline in aerobic exercise capacity.

The available data suggest that the pulmonary vascular
characteristics are an important contributor to aerobic exercise
capacity in the Fontan circulation. However, treatments
that target pulmonary vasculature alone are insufficient
to “normalize” aerobic exercise capacity—perhaps because
the bottleneck is fixed and/or unlike pulmonary arterial
hypertensive vasculopathy—or perhaps simply because trials are
underpowered and more careful patient selection is required due
to the vast heterogeneity of the cohort.

Extending Beyond the Heart and
Pulmonary Vasculature
Lung Function
Typically, resting lung function demonstrates a mildly restrictive
ventilatory pattern in people who have a Fontan circulation (67–
69). The impairments in lung function parameters are associated
with lesion complexity, multiple sternotomies or thoracotomies,
physical activity restriction, respiratorymuscle dysfunction, body
mass index (BMI), and scoliosis (19, 67, 70). Reduced forced vital
capacity, lung volumes, and diffusion capacity of the lung for
carbon monoxide are common and associated with decreased
peak VO2 (67, 70–72). In addition to better aerobic exercise
capacity, superior lung function is associated with increased
handgrip strength that may reflect superior respiratory muscle
strength (73).

Interestingly, despite the apparent resting lung function
abnormalities, in general, patients rarely encroach upon their
breathing reserve (74). However, in an extensive series of 260
young people with a Fontan circuit, 23% of those with impaired
aerobic exercise capacity (<80% predicted peak VO2) had
limited breathing reserve, suggesting a mechanical ventilatory
limitation to exercise (23). Assessing ventilatory limitation using
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FIGURE 4 | Schematic showing the relationship between pulmonary vascular reserve (VR) and end-organ function. Pressure-flow relationship showing change in

mean pulmonary artery pressure (mPAP) (Fontan pressure) per unit change in cardiac output (CO), or mPAP/CO slope, during exercise. Abnormal pulmonary VR

defined as mPAP/CO slope > 3 (red) is associated with worse endothelial dysfunction and end-organ dysfunction (more liver stiffness, renal dysfunction, volume

overload, and exercise intolerance) as compared to normal pulmonary VR defined as mPAP/CO slope ≤ 3 (blue). Reproduced from (61).

breathing reserve alone likely underappreciates the pulmonary
contribution to exercise intolerance. The addition of tidal
flow-volume loops during exercise testing may reveal further
underlying ventilatory constraints. Indeed, studies that utilized
inspiratory capacity maneuvers to assess dynamic operating
lung volumes and expiratory flow limitations during exercise
show further evidence of abnormal ventilatory responses (75).
At submaximal work rates, people with Fontan physiology
have lower inspiratory reserve volumes compared to controls,
possibly resulting in higher elastic work of breathing. These
ventilatory abnormalities during exercise may be attributed
to the restrictive ventilatory impairment observed and likely
contributes to the heightened dyspnea intensity reported at
submaximal workloads (75).

The relationship between lung function and aerobic exercise
capacity may also be explained by additional mechanisms.
Reductions in forced vital capacity may be of particular
importance, as it can impair the ability to compensate for
ventilatory inefficiency during exercise (23). Furthermore, it
has been postulated that smaller lungs have less blood volume
and reduced capacitance, and in turn, diminished capacity to
accommodate decreases in pulmonary vascular resistance, which
has important implications for ventricular filling during exercise.
While it is clear that lung function contributes to exercise
intolerance in the single ventricle circulation, the extent and
precise mechanisms remain poorly defined.

Systemic Vascular Resistance and Vascular Function
Vascular dysfunction (increased arterial stiffness and endothelial
dysfunction) is associated with worse aerobic exercise capacity
(76–78). This is likely related to impaired skeletal oxygenation

andmuscle blood flow rather than the contribution of endothelial
dysfunction to increased systemic vascular resistance (elevated
afterload) in the setting of limited preload reserve (41, 79).
Elevated systemic vascular resistance is likely a secondary
phenomenon required to maintain adequate blood pressure in
the Fontan circulation at rest and during exercise (80).

Sex
Data from the Australian and New Zealand Fontan Registry has
shown that the male sex is associated with an increased risk of
premature death or transplantation (1, 81). Consistent with this
observation in people with a Fontan circulation, male sex is a
factor associated with lower aerobic exercise capacity (relative
to age and sex) and progressive exercise intolerance (26, 49).
The sex differences in aerobic exercise capacity may be related
to reduced muscle mass compared to healthy controls, which
is likely more pronounced in males (especially during puberty),
and the inability of the single ventricle to support the increased
metabolic demands of the greater absolute skeletal muscle mass
in males.

Hypoxemia and Cyanosis
Cyanosis or hypoxemia is common in people with a Fontan
circulation. It is unclear whether a patent fenestration is
associated with improved aerobic exercise capacity as a result of
increased ventricular filling or if the establishment of a right-to-
left shunt and subsequent hypoxemia will impair it; data on the
effects of fenestration closure are inconsistent (82–84). However,
fenestration closure has been shown to improve ventilatory
efficiency (83), which may decrease dyspnea perception during
submaximal exercise.
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Paradoxically, lower hemoglobin is associated with better
aerobic exercise capacity (14). A similar relationship was
reported with lean mass, which is inversely correlated with
hemoglobin (85). This is probably because elevated hemoglobin
reflects a compensatory erythrocytosis in the setting of low
oxygen saturation. This contrasts with the findings of Kodama
et al., who reported a positive correlation between peak VO2

and hemoglobin (86). Regardless of the reported conflicting
associations, the contribution of arterial desaturation to reduced
aerobic exercise capacity is minimal, explaining <5% of the
variance in peak VO2 (40).

Skeletal Muscle Function
Handgrip strength, dynamic muscular strength, and muscular
endurance have all been reported to be lower in people with a
Fontan circulation than in healthy, age-matched controls and
are associated with reduced skeletal muscle mass (85, 87–89).
In a series with a heterogenous sample of CHD lesions (30%
Fontan), when strength was indexed to lean mass, there was no
difference in isometric strength compared with healthy controls
(90). This may suggest that the reductions in muscle strength
reported can largely be attributed to the reduction in lean mass
that we and others have demonstrated (85, 89, 91). Beyond
generalized muscle weakness (92), peripheral skeletal muscle
blood flow and ergoreceptor function appear to be abnormal
(89, 93), and this is likely accompanied by a shift in muscle
fiber type (to type IIb), similar to the findings in acquired heart
failure. Furthermore, impaired skeletal muscle oxidative capacity
has been shown using MRS P31 spectroscopy, and delayed
muscle oxygen uptake kinetics denote potential muscle metabolic
abnormalities (21, 94). The combination of these skeletal muscle
abnormalities likely result in the early onset of metabolic acidosis,
premature fatigue during exercise, and consequently impaired
aerobic exercise capacity.

Body Composition

Skeletal Muscle Mass
Even in relatively young people with a Fontan circulation, there
is a high prevalence of skeletal muscle deficit compared to
age-sex matched controls (21, 91). Although myopenia (low
muscle mass) is prevalent across many CHD lesions, it is
likely those with a Fontan circulation experience a greater
degree of lean mass deficits. The causes of lean muscle deficits
are poorly defined, but in the Fontan circulation, relative
deconditioning, chronically elevated central venous pressure,
physical inactivity, neurohormonal activation, and altered
blood flow are likely contributing factors. To highlight this
pathophysiological difference to sarcopenia (age-related muscle
deficits) and low lean mass in other CHD lesions, Tran et al.
described the term Fontan-associated myopenia (appendicular
lean mass index Z-score < −2) (85). Low lean mass in the setting
of Fontan physiology is particularly concerning, given the strong
correlation between skeletal muscle mass and exercise stroke
volume and/or aerobic exercise capacity (21, 89, 95, 96). This
can be attributed, inter alia, to improved cardiac preload—greater
skeletal muscle mass decreases venous compliance and squeezes a
greater volume of blood back toward the pulmonary vasculature

and heart (97). Leg muscle contractions may also generate a
pulsatile flow profile in the pulmonary vascular bed (98).

Obesity and Adiposity
A higher BMI is associated with lower aerobic exercise capacity
in people with a Fontan circulation. High levels of adiposity—
particularly in the thoracic region—may impair the function of
the respiratory bellows. The Pediatric Heart Network Fontan III
study showed that patients in the lowest tertile, based on percent
predicted peak VO2, were more likely to be overweight or obese
(26). However, defining “healthy” weight status using BMI in this
cohort is problematic because the high prevalence of lean mass
deficiency conceals the presence of increased fat mass when BMI
is used as a surrogate of adiposity (85). Although the adverse
effects of obesity will likely impair aerobic exercise capacity (14),
further research using reference measures of lean and fat mass
should be conducted to better characterize the implications of
obesity on Fontan physiology.

Respiratory Muscle Dysfunction
Extending beyond the effects that respiratory muscle weakness
may have on dynamic lung function, it also contributes to
an increase in motor command output, resulting in a greater
sensation of breathlessness during exercise (99). Furthermore, in
the setting of limited cardiac reserve, the redirection of blood flow
from the exercising skeletal muscles to the respiratory muscles
(“metaboreflex”) promotes premature fatigue and profound
impairment in aerobic exercise capacity. These mechanisms
may, in part, explain the association between respiratory
muscle function and aerobic exercise capacity in Fontan
patients (92).

At rest, Fontan physiology is heavily dependent on respiration
to promote ventricular filling. Theoretically, it would be
expected that improving inspiratory muscle strength would
augment the respiratory muscle pump and ventricular filling.
While inspiratory muscle training has been shown to improve
ventilatory efficiency and resting cardiac output, most studies
have not resulted in statistically significant increases in peak
VO2 (100–102). This may be because the skeletal muscle pump
accounts for the majority of the increase in cardiac output,
with only minor contributions attributed to the respiratory
pump during exercise (103). Respiratory muscle training may be
beneficial in patients who specifically have clinical respiratory
muscle weakness. This notion was supported by a recent
randomized controlled trial, where baseline measures of maximal
inspiratory pressure indicated inspiratorymuscle weakness in the
cohort; peak VO2 increased after 4 months of inspiratory muscle
training (104).

Benefits of Exercise Training and Safety
Paradoxically, the most effective non-invasive therapy to manage
exercise intolerance is exercise training (97, 105, 106). A recent
review of respiratory muscle and exercise training studies in
over 200 people with a Fontan circulation showed that the
majority of studies resulted in improvements in peak VO2

(107), and increases of up to 23% (treatment effect 30%) have
been shown with combined aerobic exercise and light resistance
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training (104). Other benefits included improvements in skeletal
muscle mass, cardiac output, peripheral muscle oxygenation,
and ergoreceptor function (97, 105, 106, 108–110). Importantly,
some studies also show improvements in health-related quality of
life (111–115).

Furthermore, long-term participation in sports, physical
activity, or exercise may have direct benefits on Fontan
physiology. Increasing skeletal muscle mass through resistance
exercise training can enhance the function of the peripheral
muscle pump and augment venous return (108). The periodic
increase in volume load during exercise “stretches” the preload
deprived ventricle and may attenuate the phenomenon of
progressive “disuse hypofunction” (58, 116). Regular physical
activity like exercise training transiently but repetitively increases
pulsatile flow and recruit pulmonary vessels, which may have
important implications for pulmonary vascular growth and
function (97, 116). Indeed, those who participate in regular
physical activity (particularly during childhood) appear to have
better Fontan physiology and are more likely to exhibit a
high physical performance (“Super-Fontan”) phenotype (54, 117,
118). Collectively, these mechanisms may explain the association
between higher peak VO2 and better end-organ function, clinical
outcomes, and prognosis (10, 13, 14). However, further research
is required to confirm this hypothesis.

Safety of Physical Activity and Exercise Training
Reviews of exercise training studies in people with a Fontan
circulation have not reported any serious adverse events
associated with exercise training (107, 110). Undeniably, during
exercise, systemic venous pressure can increase dramatically in
the Fontan circulation (119). While there are some concerns
related to the deleterious effects of the transient elevation of
central venous pressure during exercise on end-organ function,
the current evidence suggests these are unwarranted. Higher
aerobic exercise capacity is associated with healthier end-organ
function biomarkers, potentially reflecting decreased venous
pressure, better hemodynamics, and reduced hepatic congestion
(14, 54). This is further supported by a series that showed
lower venous pressure and better markers of end-organ function
in adult patients who increased their aerobic exercise capacity
during childhood (reflecting increased physical activity levels or
exercise training) (118). Together, these data should alleviate
the concerns regarding safety and end-organ damage associated
with chronic moderate-to-vigorous intensity exercise training,
but more prospective data are needed.

ADDRESSING THE UNANSWERED
QUESTIONS: RATIONALE FOR THE
FONTAN FITNESS INTERVENTION
TRIAL—THERAPIES AND FUTURE
DIRECTION

The mechanisms underlying impaired aerobic exercise capacity
in the setting of Fontan physiology differ significantly from other
chronic cardiac conditions. Traditional pharmacotherapies used
tomanage exercise intolerance in the biventricular circulation are
of limited utility in the Fontan circulation. Currently, exercise

training has been shown to be the most effective, non-invasive
therapy for improving aerobic exercise capacity in people who
have a Fontan circulation (Figure 5) (105, 106, 109).

While this review identifies common factors that contribute to
exercise intolerance (Figure 6), understanding factors associated
with superior aerobic exercise capacity is also important to
more deeply characterize the pathophysiology. Recent series have
studied cohorts of people with Fontan physiology with normal or
superior aerobic exercise capacity (14, 54, 121). We previously
described a subset of young people who can achieve normal
or even supranormal exercise performance (“Super-Fontan”)
(121). Importantly, in this series, a proportion had unfavorable
Fontan features (e.g., dominant right ventricle, pacemakers, and
atriopulmonary connections), suggesting extracardiac factors
play a significant role in aerobic exercise capacity.

A common characteristic of a person with a Fontan
circulation who has “normal” aerobic exercise capacity is regular
participation in moderate-to-vigorous intensity physical activity
from a young age (54, 121, 122). Some possible mechanisms
for this observation may include superior development of the
pulmonary vasculature (e.g., increased pulmonary artery size),
increased lower limb lean mass, higher lung volumes due to
stronger respiratory muscles, and adaptive remodeling of the
single ventricle due to better preload (97, 98, 106). Exercise
training can systemically target components that are both
distal (downstream) and proximal (upstream) to the critical
“bottleneck” as well as the pulmonary vasculature itself. This
makes exercise training an attractive therapy and may explain
the efficacy observed compared to drug therapies that may only
target a single component of Fontan physiology.

However, despite the aforementioned benefits associated with
exercise training and physical activity, traditionally, most people
with CHD have not received formal advice (beyond restrictions)
on physical activity, sports, and exercise training during their
clinical consultations (123). This may be related to the paucity
of quality evidence available on safety and efficacy; most studies
are based on small heterogenous samples and were without a
control group. While current exercise training recommendations
are available to guide clinical practice (106, 109, 124, 125),
these are predominantly based on clinical experience and expert
opinion. Indeed, the most recent 2018 AHA/ACC and 2020
ESC guidelines suggest that there is only moderate (level B)
evidence to support recommending cardiac rehabilitation or
exercise training in people with CHD (4, 126). Therefore,
adequately powered, multi-center, randomized, controlled trials
such as the F-FIT are required to provide high-quality (level
A) evidence to conclusively support recommending exercise
training in clinical practice.

Furthermore, the “traditional” model of exercise training
for people living with chronic diseases requires face-to-face
supervision by exercise professionals (at least initially) that are
often only available at expert centers. Whilst it is likely that
performing exercise training in a supervised fitness facility setting
is “optimal”, this method of exercise training delivery requires
high resource utilization and may not be economically feasible
or practical for many people living with a Fontan circulation.
In addition, traditional exercise training programs offered to
people with CHD are usually designed for older adults with
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FIGURE 5 | Controlled trials of non-invasive therapy to improve aerobic exercise capacity in the Fontan circulation. The percentage change in peak oxygen uptake

following non-invasive therapies or placebo in Fontan cohorts are shown. The most effective non-invasive therapy is exercise training. n, non-significant; *, statistically

significant; †, percentage difference between groups. Kouatli et al. (120); Goldberg et al. (63); Goldberg et al. (62); Hebert et al. (64); Cordina et al. [high intensity

resistance training] (108); Turquetto et al. [combined aerobic exercise and light resistance training] (104).

chronic conditions (e.g., cardiac rehabilitation), which may not
be suitable for the relatively young adult CHD population.
Indeed, previous studies have identified this as a potential barrier
to participation (127, 128), and over half of those surveyed with
CHD expressed interest in a technology-directed, home-based,
exercise program (129).

The F-FIT will be one of the first phase III multi-center,
randomized, controlled trials to provide high-quality evidence
to “optimize” exercise training in people living with a Fontan
circulation. The F-FIT will also investigate if a telehealth
exercise training model (that requires less resources) can produce
equivalent (non-inferior) results to a traditional supervised gym-
facility-based approach.

The primary objectives of the F-FIT are to:

a) Establish the efficacy of a 4-month traditional supervised gym-
based aerobic and resistance exercise training program of
moderate-to-vigorous intensity on peak VO2 compared to
usual care in adolescents and adults.

b) Establish the efficacy of a 4-month physical activity program
of moderate-to-vigorous intensity on peak VO2 compared to
usual care in children.

c) Evaluate if a 4-month telehealth exercise training program
of moderate-to-vigorous intensity can produce comparable
(non-inferior) improvements in peak VO2 compared
to the traditional exercise training group in adolescents
and adults.

Secondary objectives include:

a) Determining if participants in the exercise intervention
groups can maintain changes in peak VO2 with remote
support over an 8-month period.

b) To evaluate the health economics (cost-effectiveness) of
exercise training interventions based on health-related quality
of life, health care utilization, and patient costs.

c) To characterize the mechanisms that underlie changes in
peak VO2.

d) To characterize the physiological and neurocognitive
changes associated with exercise training, including changes
in cardiopulmonary testing measures, peripheral venous
pressure, body composition (skeletal muscle mass, fat
mass, and bone mineral density), endothelial function,
neurohormonal activation, skeletal muscle oxygenation,
respiratory muscle and lung function, neurocognitive and
neuropsychological function, metabolites, nutritional and
dietary status, liver stiffness, and cardiac function.

STUDY DESIGN AND METHODS

Study Population
Participants will be recruited from the Australian and New
Zealand Fontan Registry (130), National CHD Database,
and eight quaternary CHD centers, including Royal Prince
Alfred Hospital, Sydney, Australia; The Children’s Hospital
at Westmead, Sydney, Australia; Royal Melbourne Hospital,
Melbourne Australia; Royal Children’s Hospital, Melbourne
Australia; Perth Children’s Hospital, Perth, Australia; Fiona
Stanley Hospital, Perth, Australia; The Prince Charles Hospital,
Brisbane, Australia; and Queensland Children’s Hospital,
Brisbane, Australia. Advertisements will also be disseminated via
social media, websites, and flyers to facilitate recruitment.

The F-FIT will include people with a Fontan circulation
aged 10-55 years. Participants will also need to be ≥6 months
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FIGURE 6 | Factors contributing to exercise intolerance in the Fontan circulation. Factors in red may be improved with exercise training.

TABLE 1 | Study inclusion and exclusion criteria.

Inclusion criteria

• People with a Fontan circulation aged 10-55 years

• Medically stable and on stable medical therapy for ≥3 months

• ≥6 months post-Fontan completion

Exclusion criteria

• Planned intervention within 2 years

• Mental or physical disability that prevents participation in exercise training

• Current or actively planned pregnancy

• Uncontrolled systemic hypertension at rest or during exercise

• Clinically unstable or recent significant change in therapy (within 3 months)

• Physiological stage D in accordance with ACC/AHA guidelines

• COVID-19 unvaccinated individuals despite being eligible according to ATAGI

recommendations

• Unreliable internet connection

• Current participation in structured sports or exercise training for more than

30min, three times a week

post-Fontan completion, clinically stable, and on stable medical
therapy for≥3months to be eligible. The inclusion and exclusion
criteria are provided in Table 1. A two-step exclusion process will
take place:

1) Based on the patient’s most recent medical records, phone
screening, and approval from their treating cardiologist.

2) Following baseline testing.

Participants will be excluded prior to randomization during
the two-step eligibility evaluation if any of the following
are identified: categorized as physiological stage D, have a
planned surgical intervention within 2 years, current pregnancy
or actively planned pregnancy (within 1 year), mental or
physical disability that restricts participation in exercise training,
uncontrolled arrhythmias or (systemic) hypertension at rest or
during exercise, a recent significant change in medical therapy
(<3 months), and people who currently participate in structured
sports or exercise training for more than 30min, three times per
week. People who are COVID-19 unvaccinated and are eligible
for vaccination according to the Australian Technical Advisory
Group on Immunization (ATAGI) recommendations will also
be excluded.

Randomization and Stratification
The F-FIT will involve three arms in adolescents and adults
(≥16 years), and two arms in children (<16 years). Adolescents
and adults will be randomized in an allocation of 2:2:1 to
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either a traditional gym-based exercise program (traditional
group), a telehealth exercise training program (telehealth
group), or usual care (control group), respectively. Children
will be randomized to either an exercise training program
or usual care (control group) based on a 1:1 allocation.
Randomization will be stratified by: baseline aerobic
exercise capacity (<65% or ≥65% predicted peak VO2);
sex (male or female); and age (16-34 years or 35-55 years
for adolescents and adults; 10-12 years or 13-15 years for
children). Computer-generated, random permuted blocks will
be prepared by an independent statistician in the Clinical
Epidemiology and Biostatistics Unit (CEBU) at Murdoch
Children’s Research Institute (MCRI) and incorporated into
the REDCap randomization tool (hosted by MCRI) that
will be embedded in the REDCap database created for this
trial. The randomization schedules will be prepared for each
recruitment site.

Study Investigations
The F-FIT will conduct a range of assessments at baseline,
4-months, and 12-months. The study design is outlined in
Figure 7, and the assessments are summarized in Table 2. In
brief, all participants will undergo a detailed evaluation of
aerobic exercise capacity, respiratory muscle and lung function,
body composition, musculoskeletal fitness, endothelial function,
quality of life, neurocognitive and neuropsychological function,
neurohormonal activation, liver stiffness, dietary intake and
nutritional status, metabolites, habitual physical activity levels,
and cardiac function. Follow-up visits will be conducted within
15 days of the scheduled reassessment date. If a testing
date cannot be scheduled within 15 days, participants in
the intervention groups may continue exercise training in
accordance with the protocol to prevent detraining for up to
31 days.

Statistical Considerations
Power Analysis
Sample size calculations have accounted for a 10% dropout
over 4-months.

Adolescents and Adults
This study will involve testing two hypotheses: the first involves
demonstrating the superiority of the traditional exercise training
group compared to the usual care group with regards to
improvements in peak VO2. The second involves demonstrating
that telehealth exercise training is non-inferior to traditional
exercise training. Using this rationale, we based the sample size
calculation for a three-arm trial with a randomization allocation
of 2:2:1 using the R package Three Armed Trials (version 1.0-3).

We will require 110 adolescent and adult Fontan participants
(44 each in the traditional and telehealth training groups and 22
in the usual care group) to achieve at least 80% power (two-sided
α of 5%) to detect a difference of 10% in peak VO2 (standard
deviation of 5%) between the traditional exercise training group
compared to the control group. If there is a statistically significant
difference between the traditional and control group (i.e., p-value
< 0.05), then the test of non-inferiority will have 80% power

(one-sided α of 2.5%) of showing that telehealth training retains
at least 85% of the effect seen in traditional testing compared
to control.

Children
A total of 70 children with a Fontan circulation (35 in the training
group and 35 in the usual care group) is required to achieve
>99% power (two-sided α of 5%) to detect a difference in peak
VO2 of 10± 5% at 4-months.

Statistical Analysis
The primary analysis will be based on intention-to-treat (ITT),
including all randomized participants regardless of exposure
to the allocated treatment or adherence to the trial protocol.
Comparison of the primary outcome measure (change in peak
VO2 at 4-months) between the groups will be estimated using
linear regression adjusted for the stratification factors used
during randomization. Results will be presented as the difference
of means with a corresponding 95% confidence interval (CI) and
p-value. Secondary outcomes at 4-months and 12-months will
be compared between the groups using linear regression with
adjustment for the stratification factors for continuous outcomes
and binary regression adjusted for the stratification factors used
during randomization for binary outcomes where results will be
presented as a risk difference and corresponding 95% CI.

For each participant cohort, if the proportion of missing data
for the primary outcome is more than 5%, analysis based on
multiple imputation may be performed. A sensitivity analysis to
compare the results of analyses restricted to participants with
complete data and analyses where those with missing data are
included using multiple imputation will be performed. If used,
multiple imputation models will be conducted for the outcome
variable, and 50 completed data sets will be imputed by chained
equations, including all the participants initially randomized. The
primary outcome, randomization strata variables and variables
predictive of (i) missingness and/or (ii) the change in peak VO2

will be included in the imputation model.

Exercise Training and Physical Activity
Interventions
Exercise Training Interventions for Adolescents and

Adults

Traditional Fitness Facility-Based Exercise Training
Patients randomized to the traditional model of exercise training
delivery will participate in moderate-to-vigorous intensity
aerobic and resistance exercise training three times a week for
4-months. All sessions will be supervised by a qualified exercise
professional (e.g., exercise physiologists or and physiotherapists)
in small groups of 1-4 people. The sessions will be supervised
in a local fitness facility near the participant’s residence, where
they will be provided with a complimentary membership for the
duration of the study. Participants will start and conclude each
session with a 5 min warm-up and cool down, which may include
low-intensity exercise and dynamic or static stretching. The
structure of the sessions will involve 10min of aerobic exercise,
30min of resistance exercises, followed by another 10min of
aerobic exercise.
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FIGURE 7 | The Fontan Fitness Intervention Trial (F-FIT) study design flow diagram.
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TABLE 2 | Assessments and testing.

Outcomes measures

Cardiopulmonary exercise testing Aerobic exercise capacity (peak VO2 )
‡, VE/VCO2 ratio and slope, RER, HR, OUES, VO2 at

AT, work rate, oxygen pulse, VO2/work rate slope, and peripheral venous pressure

Respiratory muscle and lung function tests FEV1, FVC, FEV1/FVC ratio, TLC, DLCO, PImax, and PEmax

Dual-energy x-ray absorptiometry Lean mass, fat mass, bone mineral content, and bone mineral density
†

Liver elastography Liver stiffness

Near-infrared spectroscopy
†

HHb, HbO2, and skeletal muscle oxidative capacity

Neurocognitive function assessment (Cogstate) Psychomotor function, attention, visual learning and memory, verbal learning and memory,

processing speed, social-emotional cognition, working memory, and executive function

scores

Habitual physical activity (accelerometers; Actigraph GT9X

Link)

Counts per minute, steps per day; and time spent in sedentary, light, moderate, vigorous,

and moderate-to-vigorous activity

Nutrition and dietary assessments (ASA24, SGA
†
or SGNA

†
,

GSRS
†
, and indirect calorimetry

†
)

SGA (in adults)/SGNA (in children) classification of nutritional status; GSRS (reflux,

abdominal pain, indigestion, diarrhea, constipation scores, and total score); dietary

macronutrient and micronutrient intake and composition, and REE

Flow-mediated dilation (FMD)
†

FMD% (1 diameter), baseline diameter, peak diameter, and time to peak

Laboratory and biochemical investigations NT-proBNP and metabolomic analysis

Transthoracic echocardiography AVV S/D ratio, valvular function, VTI, annulus size, aortic flow, and ventricular function

Resting and exercise cardiac MRI
†

Ventricular volumes (end-diastolic, end-systolic, stroke volume), ejection fraction, flows

(aortic, vena caval), diastolic function (feature tracking, T1 mapping E’), pulmonary artery

size (Nakata index), lung water density, hepatic T1 mapping, and AV valve function

Anthropometry and BIA Height, weight, waist circumference, BMR, total body water, %BF, and skeletal muscle

index

Quality of life (PedsQL core and cardiac modules) Physical functioning, emotional functioning, social functioning, school/work functioning,

psychosocial functioning, heart problems and treatment, perceived physical appearance,

treatment anxiety, cognitive problems, communication and total scores

Adolescents and adults Children

Musculoskeletal fitness testing Chest press 1RM, leg press 1RM, number of leg

press repetitions at 70% 1RM (muscular

endurance), and handgrip strength

Number of sit-ups, number of push-ups,

standing long jump distance, and handgrip

strength

Health economic analysis (EQ-5D-5L, CHU-9D, patient cost,

and health care expenditure data linkage)

Health state in EQ-5D dimensions, patient cost, and

health care utilization

CHU-9D scores, patient cost, and health care

utilization

‡Primary outcome,
†
Conducted in a subset of participants at selected sites. 1RM, one-repetition maximum; AT, anaerobic threshold; AV, atrioventricular; ASA24, automated self-

administered dietary assessment tool; AVV S/D, atrioventricular systolic to diastolic duration; BIA, bioelectrical impedance analysis; BMR, basal metabolic rate; BF, body fat; DLCO,

diffusing capacity of the lung for carbon monoxide; FEV1, forced expiratory volume in one second; FMD, flow-mediated dilation; FVC, forced vital capacity; GSRC, gastrointestinal

symptom rating scale; HbO2, oxyhemoglobin; HHb, deoxyhemoglobin; HR, heart rate; MRI, magnetic resonance imaging; NT-proBNP, N-terminal pro b-type natriuretic peptide; OUES,

oxygen uptake efficiency slope; PEmax, maximum static expiratory pressure; PImax, maximum static inspiratory pressure; REE, resting energy expenditure; RER, respiratory exchange

ratio; SGA, subjective global assessment; SGNA, subjective global nutritional assessment; TLC, total lung capacity; VTI, velocity time integral; VE/VCO2, ventilatory equivalent for CO2;

VO2, oxygen uptake.

The first 10-min bout of aerobic exercise will be performed on
a cycle ergometer, and the second 10-min bout is selected based
on the participant’s preference to allow for autonomy. Aerobic
exercise training will start at a moderate intensity (40-50% HRR)
and progress up to vigorous intensity (70-80% HRR) after 10
weeks, as tolerated. The aerobic exercise training work rate will
be continually adjusted throughout the program to maintain the
target training HR range.

Resistance training will comprise of 5 exercises, including the

leg press, seated row, leg curl, chest press, and calf raise. The

participant’s one-repetition maximum (1RM) will be assessed for

each exercise during the first session and every 4 weeks to titrate

the load to the appropriate training intensity. Resistance exercise

intensity will start at 3 sets of 8-12 repetitions at 60% 1RM and
be progressed to 70% 1RM after 2 weeks. Participants will be

provided with ∼60 s rest between sets. Consistent with clinical
practice, intensity can be up titrated based on the participant’s
rating of perceived exertion (RPE) and observer RPE for aerobic
exercise training using the OMNI scale. For resistance exercises,
the two for two method, and the participant’s or observer’s RPE
using the OMNI scale can be used to facilitate progression in
between 1RM tests, which can be guided by the supervising
exercise professional. An outline of the method of progression
is shown in Table 3. The total estimated duration of each session
is 60-75 min.

Telehealth Exercise Training
People in the telehealth group will participate in partially
supervisedmoderate-to-vigorous intensity aerobic and resistance
exercise training 3 times a week for 4-months. Prior to each
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TABLE 3 | Exercise training progression for the traditional group.

Weeks (sessions) Intensity category Intensity

Aerobic exercise training progression

1-2 (6) Moderate 40-50% HRR

3-6 (12) Moderate 50-60% HRR

7-10 (12) Vigorous 60-70% HRR

11-16 (18) Vigorous 70-80% HRR

Resistance exercise training progression

1-2 (6) Moderate

(moderate load)

60% 1RM (3 sets, 8-12 repetitions)

3-16 (42) Vigorous

(moderate-to-high

load)

70% 1RM (3 sets, 8-12 repetitions)

HRR, Heart rate reserve; 1RM, one-repetition maximum.

session, a 5-min warm-up and cool-down will be performed
and may include low-intensity exercise and dynamic or static
stretching. Participants will be provided with a GymstickTM and
HR monitor for exercise training. Participants will be asked to
perform 20min of aerobic exercise training independently three
times a week, starting at 40-50% HRR and progressing to 70-80%
HRR. The aerobic exercise training progression will be consistent
with the traditional group shown inTable 3. Exercise trainingHR
will be transmitted to a mobile app, and participants will be asked
to record the average and maximal HR as well as their RPE and
session duration of each aerobic session in a training log.

Resistance exercise sessions will be supervised by qualified
exercise professionals and delivered via Zoom in groups.
Participants will perform 3 sets of 8-12 repetitions of various
resistance exercises using a GymstickTM with a target RPE of 7
using the OMNI scale by week 3 for each exercise. Resistance
exercises may include squats, upright rows, lunges, seated rows,
chest press, and calf raises. When the participant rates an exercise
lower than 7 on the OMNI scale in consecutive sets or sessions,
the resistance (load) of the GymstickTM will be increased or
participants will be asked to increase their repetitions to the upper
limit of the prescribed range. Similar to the traditional group,
the intensity can be adjusted based on the two-for-two method
and observer RPE. Participants will also be asked to record
exercise session details in a training log. The total estimated time
to complete both the aerobic and resistance exercise session is
∼60-75 min.

Children’s Physical Activity Program
Children allocated to the intervention group will participate in a
face-to-face physical activity program once a week for 4-months.
The SAAFE principles will be utilized to guide the delivery of the
program in an engaging and enjoyable manner (131). Weekly
sessions will be supervised by an exercise professional and
conducted at a community sport center or fitness facility near the
participant’s residence in small groups of 3-10 participants/family
members when possible. The duration of each session will be
∼90min and consist of an exercise training circuit, foundational
movement skills practice, and physically active games. Prior

to each session, participants will engage in a 5-10min warm-
up that includes a variety of games, aerobic exercises, and
dynamic stretching.

Participants will be provided with HR monitors that will
transmit their HR in real-time to an app on an electronic device
(e.g., iPad, tablet, or laptop) to monitor exercise intensity during
the exercise circuit. The exercise circuit will be conducted in
an interval format and encompasses a combination of aerobic
and resistance exercises. Exercises may include but are not
limited to squats, hopping, broad jumps, push-ups, backward
running, and walking lunges. The target session average HR will
initially be at moderate intensity (≥40% HRR) and progress to
vigorous intensity (≥70% HRR) after 10 weeks, consistent with
the adolescent and adult aerobic exercise programs (Table 3). The
exercise circuit will last∼30 min.

Following the exercise circuit, participants will practice a
variety of foundational movement skills (e.g., kicking, catching,
throwing, and hitting) for 5-10min, which is facilitated by the
exercise professional, family members, and caregivers. After the
practice period, participants will engage in physically active
games for ∼20min. Each session will conclude with a 5–10 min
cool-down that may consist of low-intensity aerobic activities
and stretching.

In addition to the weekly face-to-face physical activity
sessions, participants will also be provided with a variety of
tasks to complete in their own time. These tasks will be directed
at promoting a healthy lifestyle or complement the physical
activity sessions.

Exercise Training Considerations
The target aerobic exercise training HR range (intensity) will
be prescribed using the percentage of HRR method, which
more accurately reflects metabolic load compared to prescribing
aerobic exercise intensity based on the percentage of peak HR
(Figure 8). The resting and peak HRs obtained at baseline
cardiopulmonary exercise testing will be used for determining the
prescribed target HR ranges:

Exercise Training HR (HRR method) = % target intensity

×
(

peak HR − resting HR
)

+ resting HR

In participants who are prescribed β-adrenergic blocker agents
or other HR limiting drugs, exercise testing and training should
occur between 3 and 10 h after the dose was taken (132).
If participants are unable to exercise at the prescribed HR
range (e.g., chronotropic incompetence) or unable to tolerate
aerobic exercise training in the prescribed HR range, aerobic
exercise training intensity will be guided by both the observer
and participant reported RPE, and the talk test. Furthermore,
participants will exercise at least 10-15 beats below the ischemic
or discharge threshold in people with stable ischemia or for those
who have an implantable cardioverter-defibrillator.

If participants are unable to complete the resistance exercise
set with continuous repetitions, an intra-set rest (“cluster” set)
may be provided. This method produces comparable results
to completing the set using traditional set structures (i.e.,
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FIGURE 8 | Comparison between the percentage of peak heart rate (HR; [%HRpeak]) and percentage of HR reserve (%HRR) methods to the average reference HR

recorded at the corresponding percentage of peak VO2 (%VO2) exercise intensity domain. The %HRpeak method significantly underestimates the reference exercise

HR. The %HRR method results in clinically insignificant differences to the corresponding reference HR recorded in all exercise intensity domains based on %VO2 and

reflects metabolic load more accurately than the %HRpeak method. Data from 287 congenital heart disease patients at Royal Prince Alfred Hospital.

completing the prescribed repetition range in a set without rest)
in healthy and clinical cohorts (133, 134).

In the setting where a participant is unable to complete a
prescribed exercise, a suitable alternative that targets the same
muscle group will be prescribed.

Usual Care
Participants randomized into the usual care (control) group will
continue with routine clinical care as directed by their treating
medical team. They will also be instructed to continue with
their usual daily activities and will not be restricted or asked to
refrain from engaging in physical activity or exercise training.
Participants allocated to the usual care group will be offered 4-
months of telehealth exercise training (in adolescents and adults)
or the physical activity intervention (in children) after their final
12-month testing session.

Maintenance Phase
After 4-months of traditional exercise training, telehealth exercise
training, or the physical activity program, participants in the
exercise intervention groups will be encouraged to continue to
engage in physical activity or exercise training at least two times a
week. Adolescent and adult Fontan participants in the exercise
intervention groups will be provided complimentary access to
a local fitness facility to facilitate ongoing adherence. Children
Fontan participants will be encouraged to join community

sporting organizations and participate in a range of physical
activities. The study teamwill contact participants every fortnight
for the initial 2 months and every month after for the remaining
duration of the study to provide remote support. Some people
may receive up to 3 “booster” sessions delivered by an exercise
professional to promote ongoing physical activity or exercise
training participation.

Education
To complement the exercise training and physical activity
interventions, participants will also receive education on a variety
of topics. This may include topics on understanding their
congenital lesion, how to integrate physical activity into their
daily routine, and nutrition and healthy eating. Education will
be disseminated and delivered by information sheets and pre-
recorded online videos.

Safety and Adverse Events
Safety will be evaluated by reviewing the adverse events recorded
in each group. All adverse events will be continuously recorded
throughout the trial using a case report form. The severity of
the reported adverse event (i.e., serious or non-serious) and the
likelihood of the event being related to testing or the intervention
will be evaluated.

Frontiers in Pediatrics | www.frontiersin.org 16 January 2022 | Volume 9 | Article 799125

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Tran et al. The Fontan Fitness Intervention Trial

Adherence and Compliance
Adherence and compliance to exercise training will be monitored
using various methods, including attendance to sessions, training
logs, and HR monitors. In the F-FIT, adherence to the exercise
training program will be considered as attending to 80% of
the prescribed sessions—with attendance to at least 70% of
sessions in the 4 weeks preceding the follow-up assessment
visit. Non-adherent participants are defined as participants that
attend <20% of the prescribed sessions, and partially adherent
participants are considered as those who attend 20-79% of the
prescribed sessions.

CONCLUSION

Multiple factors influence aerobic exercise capacity; suboptimal
preload appears to be the predominant factor impairing
aerobic exercise capacity. Reduced ventricular filling is primarily
associated with low lean mass, diastolic dysfunction, and
abnormal pulmonary vascular development and function.
Preliminary evidence shows exercise training is a safe and
effective therapy for improving peak VO2 in people with a Fontan
circulation. The F-FIT aims to provide high-quality evidence
on the effects of physical activity and exercise training for
increasing aerobic exercise capacity. A telehealth home-based
exercise intervention will also be evaluated as a scalable and
economical model of exercise training delivery. Furthermore, this
multi-center randomized controlled trial will provide insight into

the physiological changes associated with exercise training and
unravel important pathophysiology.
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