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This paper presents a novel spiking neural network (SNN) classifier architecture for
enabling always-on artificial intelligent (AI) functions, such as keyword spotting (KWS)
and visual wake-up, in ultra-low-power internet-of-things (IoT) devices. Such always-on
hardware tends to dominate the power efficiency of an IoT device and therefore it is
paramount to minimize its power dissipation. A key observation is that the input signal
to always-on hardware is typically sparse in time. This is a great opportunity that a
SNN classifier can leverage because the switching activity and the power consumption
of SNN hardware can scale with spike rate. To leverage this scalability, the proposed
SNN classifier architecture employs event-driven architecture, especially fine-grained
clock generation and gating and fine-grained power gating, to obtain very low static
power dissipation. The prototype is fabricated in 65 nm CMOS and occupies an
area of 1.99 mm2. At 0.52 V supply voltage, it consumes 75 nW at no input activity
and less than 300 nW at 100% input activity. It still maintains competitive inference
accuracy for KWS and other always-on classification workloads. The prototype achieved
a power consumption reduction of over three orders of magnitude compared to the
state-of-the-art for SNN hardware and of about 2.3X compared to the state-of-the-art
KWS hardware.

Keywords: always-on device, spiking neural network, event-driven architecture, neuromorphic hardware, clock
and power gating

INTRODUCTION

An spiking neural network (SNN) classifier is an attractive option for ultra-low-power intelligent
internet-of-things (IoT) devices. It is promising especially for always-on functions due to their
spike-based operation for computation and communication, allowing their switching activity
and power to scale smoothly with the input activity rate. An SNN, therefore, is suitable for
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applications like keyword spotting (KWS) or face recognition in
surveillance, thanks to its event-driven operation.

Spiking neural network based hardware work so far, however,
focused on either the acceleration of neural simulations or
the improvement of both performance and energy efficiency.
In other words, they are not designed for always-on function.
For example, Neurogrid (Benjamin et al., 2014) targets large-
scale neural simulations. It employs analog neurons and address
event representation (AER) for communication, the latter using
a multi-bit bus. SpiNNaker (Painkras et al., 2013) also targets
neural simulation and employs an array of embedded digital
processors communicating asynchronously. Yang et al. presented
multiple works that targeted large scale neural simulations. In
CerebelluMorphic (Yang et al., 2021b) they simulated portions
of the cerebellum related to motor learning using 6 field
programmable gate array (FPGA) chips that communicate
using a multicast router. In BiCoSS (Yang et al., 2021c) they
presented a platform with 35 FPGA chips connected to realize
real-time computation of biological activities in multiple brain
areas. In another work (Yang et al., 2021d), they presented
an event-based processing algorithm that used piecewise linear
approximation and binarization for efficient implementation of
credit assignment to neurons in neuromorphic hardware. On the
other hand, TrueNorth (Akopyan et al., 2015) was designed to be
a scalable low power neurosynaptic inference engine for SNNs.
The architecture was event-driven and employed synchronous
circuits for computation blocks and asynchronous circuits for
communication. Also, Tianjic chip was designed to support
inference only with both neuromorphic and deep-learning
models (Pei et al., 2019). Some works proposed architectures
for both the training and inference of SNNs. Koo et al. (2020)
introduced the implementation of a stochastic bit and used it
in the realization of a neuron and synapse. They support on-
chip training and inference with the synapse being stochastic
in training and neuron being stochastic in both training and
inference. Chen et al. (2018) presented an SNN accelerator
with on-chip spike-timing-dependent plasticity (STDP) based
learning. This chip has 64 cores that communicate using a
network-on-chip (NoC) with each core supporting 64 leaky
integrate and fire (LIF) neurons. Also, Loihi (Davies et al., 2018)
was designed to support a variation of the current based dynamics
LIF neuron model and a wide range of synaptic learning rules
for both supervised and unsupervised learning. It is built for
performance. It has 128 cores, three x86 cores, off-chip interfaces
and an asynchronous NoC for communication between cores.
Also, Seo et al. (2011), implemented a scalable architecture with
a set of 256 neurons and transposable memory for synapses
in near-threshold voltage (NTV) circuits. It mapped an auto-
associative memory model. Some other works implemented
different learning rules for on-chip training. Knag et al. (2015),
implemented a feature extractor based on a sparse coding
algorithm using LIF neurons. Park et al. (2019), developed
a new neuromorphic training algorithm and hardware which
supports low overhead on-chip learning. Some of these chips e.g.,
(Akopyan et al., 2015; Davies et al., 2018) employ asynchronous
logic such as quasi-delay-insensitive (QDI) dual-rail dynamic
logic or bundled data communication. Asynchronous logic

circuits are, however, generally bulkier and power-hungrier than
the single-rail static counterpart and also not very voltage-
scalable (Chen et al., 2013; Liu et al., 2013) and bundled
data communication incurs significant overhead because of the
handshake. Some other chips employ power-efficient static logic
(Chen et al., 2018; Davies et al., 2018; Park et al., 2019; Pei et al.,
2019), but they target high throughput, not always-on function.
As a result, they exhibit a power consumption of more than
tens of mW, which makes it difficult to use them for always-
on functions.

In this work, we focus on ultra-low-power always-on inference
hardware and propose an SNN classifier consuming less than
300 nW. Our architecture uses fully spike-based event-driven
operation and only static logic operating at a NTV to achieve
such low power. Specifically, our design is centered around the
neurosynaptic core. It is implemented using static gates and
spike-driven (i) spatiotemporally fine-grained clock generation,
(ii) clock-gating, and (iii) power-gating. Also, the communication
between neurosynaptic cores is free from information loss due
to the collision of spikes, despite using only wires to connect the
cores. The architecture exhibits active power consumption that is
proportional to the input rate due to its event-driven nature.

We also employ the technique in Cao et al. (2014) to train a
neural network with binary weights and use the weights for the
SNN we intend to deploy. The use of binary weights is a recent
development in deep learning for making inference efficient
(Courbariaux et al., 2015). They are of special interest because of
their reduced memory footprint and simple computations. They
are well suited for low power hardware and attain close to state of
the art accuracy on datasets like MNIST. On the other hand, we
keep the activations as spike-rate-coded multi-bit values, which
improves the model’s inference accuracy.

We prototyped an SNN classifier in 65-nm LP CMOS
technology. It has 5-layers and a total of 650 neurons and
67,000 synapses. It consumes 2.3–6.8X lower power at state-of-
the-art accuracies on two well-known KWS benchmarks, i.e.,
Google Speech Command Dataset (GSCD) for multi-keyword
recognition (Warden, 2018) and HeySnips for single-keyword
spotting (Coucke et al., 2019).

In the remaining portion of this manuscript, we will present
our SNN hardware architecture and the experimental results. In
section “Materials and Methods,” we discuss the high-level SNN
classifier architecture, elaborate on each of the components of
the neurosynaptic core and introduce the experiment setup. In
section “Results,” we present the results and finally conclude in
section “Discussion.”

MATERIALS AND METHODS

The SNN classifier in our proposed design is depicted in Figure 1.
It can support a fully connected network as large as 256-128-
128-128-10 with binary weights onto five neurosynaptic cores
which is sufficient to support the KWS task. We map each layer of
the network to a different neurosynaptic core. The neuron block
in the neurosynaptic core for the input layer has 256 neurons
while the ones for the hidden layers, each contains 128 neurons.
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FIGURE 1 | The proposed SNN classifier architecture (bottom) with the maximum supported network size (top) for always-on functions like keyword spotting.

Each neuron has its own hardware and thus they can process in
parallel. The size of each layer can be altered to make it smaller
by configuring the neurosynaptic core using the scan chain. The
architecture needs to change if a much larger network needs to
be supported while not increasing the area for tasks like object
identification in a security video, necessitating time-sharing of
neuron hardware.

The input and hidden neurosynaptic cores have a neuron
block and a synapse block while the output neurosynaptic core
has only a neuron block. A neuron block contains all the IF
neurons in that layer, a synapse block has (i) an arbiter, (ii) an
SRAM storing up to 256-by-128 binary weights for the input
neurosynaptic core and up to 128-by-128 binary weights for
the hidden neurosynaptic cores, and (iii) a spike generator that
simultaneously generates 128 spikes.

Neuron Block
We propose a spike-event-driven architecture. Figure 2 shows
the neuron block based on that architecture. Each neuron
has (i) asynchronous wake-up circuits and (ii) a synchronous
finite state machine (FSM). Also, all the neurons in a neuron
block share a clock generator based on a ring oscillator.
The architecture contains fine-grained clock-generation and
clock-gating circuits based on spike input as an event. In
the absence of input spikes, each neuron gates its clock
and also power-gates the non-retentive parts of the neuron
using zigzag power-gating switches (PGSs) (Cerqueira and
Seok, 2017), to reduce static power dissipation. In zigzag
power-gating, if the circuit in the power down state, the
gates are left in alternate states by default, reducing the
capacitance that needs to be charged while transitioning into
power on state.

The wake-up circuit of each neuron (Figure 2A, left) has the
static flip-flops, FF+1 and FF−1, which detect the rising edge of
the incoming spikes from two inputs, Spk+1 and Spk−1. Positive
spikes which increase the potential of the neuron are directed to
Spk+1 and negative spikes which decrease the potential to Spk−1.
As shown in Figure 3A, the detection of a spike makes the output
of the clock-enable flip-flop (FFclk−en) high. It also un-gates the
PGS of the neuron. Thanks to the zigzag PGS, the ungating (i.e.,
wake-up) is done in a single clock cycle.

This process starts up the shared clock generator in the neuron
block if it was not already started by another neuron. The shared
clock generator contains a configurable ring oscillator and a clock
divider. The length of the ring oscillator and the divisor for the
clock divider are determined during testing to obtain the desired
clock frequency. The first falling edge of the clock generator’s
output after an active FFclk−en sets the un-gate flip-flop (FFclk−ug)
to high, ungating the clock signal that goes into the FSM. The use
of FFclk−ug ensures that there is a complete low phase of the clock
signal before the rising edge at the clock input of the FSM, giving
sufficient setup time to the flip-flops in the FSM.

Once awoken, the neuron FSM gets executed. The FSMs are
slightly different for the input core, hidden cores, and output
core (Figures 2B–D). In the case of hidden neurons, the FSM, as
shown in Figure 2B, enters the Potential Update state on receiving
the positive edge of the clock. The neuron’s potential is increased
or decreased by one based on the input spike’s type. Then, the
neuron’s potential is compared with the preset threshold (TH) in
Check Pot. State. The neuron contains a 9-bit adder/subtractor
to increment/decrement potential and to compare the potential
with the threshold. If the potential is less than the threshold,
the FSM goes back to the Start/Standby state while resetting all
the flip flops in the wake-up circuit (FF+1, FF−1, FFclk−en, and
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FIGURE 2 | (A) Neuron Block Architecture with wake-up circuits on the left, FSM with zigzag power gating on the right and Shared Clock generator on the bottom.
(B) Hidden Neuron FSM. (C) Input Neuron FSM. (D) Output Neuron FSM.

FFclk−ug; find them in Figures 3A,B). Otherwise, it resets the
neuron’s potential to zero and also FF+1 and FF−1 in the Potential
Reset state, allowing for receiving the next spike (Figure 3C).
The FSM then enters the Spk Req state, asserts the firing request
(Reqi) and waits for the acknowledgment (Acki) from the arbiter
in the synapse block. While waiting for Acki, if the FSM receives
a new spike it enters another state, Potential update 2, where the
neuron’s potential is calculated. Once Acki from the arbiter is
received, the neuron’s FSM goes back to the Start/Standby state
after resetting the flip-flops (FF+1, FF−1, FFclk−en, and FFclk−ug)
in the asynchronous wake-up circuits. This cuts off the clock and
power to the neuron.

The operation of input and output neurons are slightly
different. The input neuron’s FSM is depicted in Figure 2C. On
receiving a spike, the FSM directly enters the Spk Req state, asserts
a firing request (Reqi) and waits for an acknowledgment (Acki)
from the arbiter in the synapse block. On receiving Acki from
the arbiter, the FSM resets FF+1, FF−1, FFclk−en, FFclk−ug and
goes back to the Start/Standby state. Again, in this state, the clock
and power to the neuron are gated. The output neuron’s FSM is
depicted in Figure 2D. Upon receiving a spike, the FSM enters
the Potential Update state, then in the next state, it resets FF+1,
FF−1, FFclk−en, FFclk−ug and then goes back to the Start/Standby
state. The output neuron does not generate any spikes and only
keeps track of the potential. The neuron with the highest potential
determines the classification result.

This spike-based event-driven operation enables large power
reduction and energy savings. First, if the input has no activity,
which is common for always-on applications, the proposed

neuron architecture can enjoy a very long sleep time. The
hidden neuron without spike-event-driven power management
would consume 1.16 nW as shown in Figure 4A. The proposed
clock-generation/-gating enables 74.6% power savings and the
zigzag power gating provides an additional 17.68%, resulting
in an overall power reduction of 4.8X when the circuit is not
processing any spikes.

If the input has non-zero activity, the proposed neuron will
experience shorter sleep time but it still saves a considerable
amount of energy. For the targeted benchmarks, the shortest idle
time between two spikes per neuron is estimated to be around
4 ms at the maximum input rate. Figure 4B shows the energy
consumption of the hidden neuron as a function of sleep time
obtained using SPICE simulation. The energy consumed includes
the overhead of transitioning in to and out of the power down
state and the energy consumed during sleep. We consider the
hidden neurons with no low power technique used, with only
clock gating used, and with both clock and power gating used.
We can observe that the neuron with clock and power gating can
save energy consumption by 4.35X for 4 ms sleep time. Also, if
the sleep time of the neuron is greater than 1.3 ms, we stand to
gain due to the proposed fine-grained clock and power gating.
The shortest idle time between two spikes would be much smaller
for SNN accelerators that target high throughput, making it
challenging to obtain any benefit from fine-grained power gating.

Synapse Block
The synapse block was also designed based on the event-driven
architecture. Figure 5A shows its microarchitecture. The synapse
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FIGURE 3 | Waveforms for a hidden neuron FSM when (A) potential is less than the threshold and shared clock was disabled, (B) potential is less than the threshold
and shared clock is running (assume other neurons in the same neuron block are active), (C) potential is greater than the threshold and shared clock is running.

block has an arbiter FSM, an SRAM array, spike generators,
and its own clock generator. A request signal (Reqi) from the
neurons within the same neurosynaptic core starts the local
clock generator of the synapse block, which makes the arbiter
FSM get executed. In case multiple neurons assert Reqi, the
arbiter handles the requests, i.e., grants access to the single-
port weight SRAM based on a fixed priority. To serve n-th
neuron’s request, the arbiter asserts the n-th wordline (WLn)
and loads the binary weights on the read-bitlines (RBLs) whose
values are captured by the flip flops. Each row of the SRAM
contains 128 binary weights which are equal to the number of
neurons in the neurosynaptic core. This means all the weights
needed to serve a neuron’s request are obtained in a single
access. The spike generator uses these weight values to generate
128 positive or negative spikes to the neuron in the next layer.
It is to be noted that the spike generator is connected to the
neurons in the next neurosynaptic by wires only. The arbitration

among the neurons also has the effect of managing access
to these wires by allowing only one spike per wire at once.
Therefore, we avoid the loss of information due to the collision
between two (post-synaptic) spikes traveling to a single neuron
at the same time.

When the local clock generator is enabled, the arbiter FSM gets
executed (Figure 5B). The FSM starts in the Start/Standby state
and when the positive edge of the clock arrives the FSM moves to
one of the Ack[i] states. The exact Ack[i] state is determined based
on the indices of the neurons making the request. The neurons
with a smaller index have a higher priority.

The waveforms in Figure 5C show an exemplary operation of
the circuit when neuron 1 and neuron 2 generate a request at the
same time. We can see from the figure that once the requests are
generated, the FFclk−en flip-flop is set. This turns on the local
clock generator and disables power gating. Acknowledgment
(Ack1) is provided to neuron 1 because it has a higher priority
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FIGURE 4 | (A) Impact of spike-driven clock gating and a combination of clock and power-gating on the standby power consumption of a hidden neuron obtained
using SPICE simulation. (B) Energy consumption of the hidden neuron obtained using SPICE simulation as a function of sleep time between two spikes, when the
clock is free running and when clock gating and power gating are used.

determined in design time. The same acknowledgment signal acts
as the read WLn for the SRAM.

The arbiter then starts executing the spike generation sub-
FSM (Spkgen). The Spkgen waveform in Figure 5C shows the
state of the sub-FSM. When Spkgen is in the state St1, weight
values are captured in flip-flops and when Spkgen enters state
St2, 128 positive or negative spikes (spk+/−1) are generated for
all the neurons in the next layer based on the weight values. The
arbiter acknowledges back to neuron 1 by asserting Ack1 while
the spike generator goes through the states St0, St1, and St2.
Ack1 stays high until the request from the neuron is high or the
spike generation completes, whichever is later. If there are any
outstanding Reqi, the arbiter FSM continues to serve, otherwise,
the clock and power are disabled.

We chose the fixed priority arbiter instead of a round-robin
one as the area saving is about 17X for 128 inputs. Figure 5D
shows the area of the round-robin arbiter and fixed priority
relative to a fixed priority arbiter with 32 inputs. We can see
from Figure 5D that the area required for a round-robin arbiter
is superlinear as a function of the input size while the area for
a fixed priority arbiter increases approximately linearly with the
number of inputs.

The fixed priority scheme, however, could cause the neuron
with the lowest priority to starve, i.e., its requests may not be
served if the arbiter is busy serving the requests of the neurons
with higher priority. We can address the problem of starvation by
increasing the bandwidth of the SRAM or reducing the requests
that neurons make. In our design process, we ensure the fixed
priority arbiter starves no neuron. We improved the bandwidth
of SRAM using supply boosting which is discussed in section
“On-Chip SRAM.” We chose the thresholds of the neurons
and the clock frequencies of the neuron and synapse blocks so
that spikes are not missed while the neurons are waiting for
acknowledgment from the arbiter.

The process to determine those key design parameters is as
follows. As shown at the bottom of Figure 6, we have considered

a case where a neuron receives spikes from Nnrn,i neurons and
produce spikes, where we can formulate the number of requests
in the i-th layer (Nreq, i), which is:

Nreq,i =
Nspk,i × Nnrn,i

THi
, (1)

where THi is the threshold of the neurons, Nspk, i is the number
of incoming spikes in a particular time period (called a frame)
and per neuron, Nnrn, i is the number of neurons, all in the i-th
neurosynaptic core. On the other hand, the number of requests
that the arbiter in the i-th layer can serve (Nserve, i) can be
formulated as:

Nserve,i =
fclk,a × Tframe

Ncyc,a
(2)

where Ncyc, a is the number of cycles that the arbiter consumes
to serve one request, Tframe is the frame size, fclk, a is the arbiter’s
clock frequency.

If Nreq, i (Eq. 1) exceeds Nserve, i (Eq. 2), starvation occurs.
When starvation occurs, incoming spikes can get dropped as the
arbiter is not fast enough to serve all the requests. We ensure
by design no spike is dropped, i.e., by making Nreq,i not exceed
Nserve,i. This is done by increasing THi or increasing fclk, a.
The former, however, can incur a degradation in the accuracy.
This is because the increase of THi would reduce the number of
output spikes generated in the i-th layer. It has the same effect
as reducing the precision of the activations in a binary-weight
neural network that has a similar network structure. On the other
hand, increasing fclk,a increases the power consumption of the
synapse block. Therefore, we swept THi and fclk, a values to find
optimal operating points for the chip. Figure 7A shows a curve
obtained using RTL simulation with 1000 MNIST test samples
(LeCun et al., 1998) and 8-bit activations. The curve separates
the regions where the neurons starve and where they do not. We
choose design points so that the average number of spikes per
neuron is roughly the same for each of the hidden layers and
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FIGURE 5 | (A) Proposed synapse block architecture. (B) Arbiter FSM showing the fixed priority and Spkgen sub-FSM. (C) Waveforms showing the operation of the
synapse block when neuron 1 and 2 generate a request. Acknowledgment is given to neuron 1 because of higher priority. Spkgen sub-FSM executes while the
acknowledgment is high. (D) Normalized area comparison between round-robin arbiter and fixed priority arbiter for a different number of inputs. The normalized area
is obtained by dividing the cell area with the area of the fixed priority arbiter with 32 inputs.

hence the curve that separates the starvation and non-starvation
region is the same for all of them. The design point, i.e., the
neuron threshold and the synapse block clock frequency for each
of the hidden layers is indicated as a red star in Figure 7A. The
threshold values we chose for the hidden layers for the MNIST
dataset are (32, 16, and 14) and the threshold values we chose
for the KWS datasets with 6-bit activations are (28, 18, and 10).
The threshold values are not very different for the two kinds of
datasets despite the difference in the desired spiking rate because
of the dependency on weight and input data.

Indeed, the threshold value affects the number of spikes
generated in a layer and this affects the inference accuracy. Recall

that the activations are spike-rate-coded multi-bit values and
the reduction of the number of spikes leads to fewer bits. We
can observe the impact of the choice of threshold values for
different hidden layers on the accuracy of the SNN classifier
in Figures 7B–D. It shows through a Python simulation the
accuracy obtained on 300 test samples of the MNIST dataset.
The Python simulation models the neuron and arbiter and uses
a set of time series vectors as input spike train whose entries
are either 1,−1, or 0 indicating the presence and the sign of the
spike. We chose the time resolution so that the results mimic
the RTL simulation. For Figure 7B, we varied the threshold for
the first hidden layer while the thresholds of the second and
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FIGURE 6 | Binary coding in a BNN and spike-rate coding in an SNN.

third hidden layers are chosen to be 16 and 8. For Figure 7C
we varied the threshold of the second hidden layer and kept the
threshold of the first hidden layer to be 24 and that of the third
hidden layer to be 8. For Figure 7D we varied the threshold of
the third hidden layer and kept the threshold of the first hidden
layer to be 24 and that of the second hidden layer to be 16. From
Figure 7B we can observe that the accuracy of the classifier is
worse for the small (roughly < 5) and the large threshold values

(roughly > 40). Figure 7B also shows the total number of neuron
requests dropped across layers as a function of the threshold of
the first hidden layer. It indicates that if the threshold is too
small, too many spikes are produced, causing starvation, which
leads to too many neuron requests being dropped, resulting in a
deterioration in the accuracy. Figures 7C,D show a similar trend
when the threshold for the second hidden layer and the third
hidden layer is varied. But we can also observe that the impact of
the threshold of the second and third hidden layer on accuracy
is relatively small if a proper threshold is chosen for the first
hidden layer. This is because the number of spikes and hence
the number of neuron requests are large in the first hidden layer.
The threshold of the first hidden layer determines the number of
requests dropped in the first hidden layer which is also a large
portion of the total number of requests dropped.

On-Chip SRAM
The chip has 65.25 kb of SRAM and so it was important to
minimize SRAM leakage power dissipation. We designed the
SRAM based on the circuit described by Cerqueira et al. (2019)
for ultra-low-power operation. High threshold voltage (HVT)
transistors with three times minimum length were used for the
bitcell to reduce leakage. The buffer in the peripheral circuits
employed zig-zag power gating with cut-off transistors separate
for each row, ensuring fast wake-up.

FIGURE 7 | (A) Threshold and clock frequency optimization for no starvation during operation. Neurons are not starved when the arbiter clock frequency and the
threshold for the layer are high enough. (B) SNN accuracy on 300 samples of the MNIST dataset and the total number of neuron requests dropped (request drop
count) per sample when the threshold value for the 1st hidden layer is varied. (C) SNN accuracy and Request drop count when the threshold value for the 2nd
hidden layer is varied. (D) SNN accuracy and Request drop count when the threshold for the 3rd hidden layer is varied.
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FIGURE 8 | (A) The ratio of the leakage of the peripheral circuits to that of the bitcells (leakage ratio) for different SRAM sizes where the number of rows is the same
as the number of columns obtained using SPICE simulation. (B) Read delay of the SRAM for different boosted supply voltages (VDDH) obtained using SPICE
simulation.

We chose to have all the weights for a layer in a single SRAM
macro size instead of smaller banks. Figure 8A shows the ratio
of the leakage of the peripheral circuits to the leakage of the bit
cells as a function of the number of rows obtained using SPICE
simulation. From Figure 8A we can see that because of this the
leakage of peripheral circuits would get amortized among more
bitcells, helping us in the overall objective of reducing the leakage.

We use supply voltage boosting during a read operation to
speed up the charge or discharge of the read bitline. The delay
in the read operation arises mostly from charging the read WLn
and charging or discharging the read bit line. Supply voltage
boosting was needed to improve the speed of read operation
which took a hit due to the use of a single SRAM macro for
storing all the weights in a layer. We performed a transistor-level
SPICE simulation to observe the read delay of SRAM for different
values of the boosted supply voltage and the results are shown
in Figure 8B. In Figure 8B we can observe that on increasing
the boosted supply voltage (VDDH) we will eventually be limited
by the time taken to charge the WLn. We operate our circuit so
that read delay is not the critical path in the design by choosing a
high enough VDDH, which is roughly 0.8 V if the regular VDD
is set to 0.52 V.

Experiment Setup
Chip Prototype
We prototyped the test chip in a 65 nm LP CMOS process.
Figure 9A shows the die photo with the boundaries of different
cores marked. The input and the hidden cores have the
dimensions 0.7 mm × 0.7 mm. The output neurons take an area
of 0.0276 mm2. Each of the hidden cores is logically equivalent
but have a different layout to simplify the routing. The total core
area is around 1.99 mm2. The area breakdown of the chip can be
seen from the pie chart in Figure 9B. The chip also contains the
input decoder and the output encoder for reducing the number of
I/O the chip would require. Those decoder and encoder convert
the spike I/Os to the binary address in AER, reducing the spike

I/O pin count from 512 to 9. Also, the chip contains a scan
chain to configure the thresholds of the neurons in different
neurosynaptic cores, set the clock frequency of the neuron and
synapse blocks and write the weights into the SRAMs.

Input Preparation
We envisioned the SNN to interface directly with a spike-
generating feature-extraction front end such as the ones discussed
in Yang et al. (2015, 2019, 2021a). For our experiments, we
used the software model (Yang et al., 2019) to generate features
for the KWS task. The software model makes use of post-
layout Spectre simulations for tuning its parameters and has
been validated using chip measurements. In the analog front
end, the spikes are generated when the voltage on a capacitor
exceeds a certain threshold (Thanalog). The finite bandwidth of
the comparator and Thanalog together control the spike frequency.
We do not alter the value used for Thanalog across the HeySnips
and the GSCD datasets.

The software model generates features of size 16. Each
dimension of the feature captures the energy at a central
frequency in the form of the number of spikes that are generated
by the analog front end in a certain time period. We call this
time period as frame size in case of audio input. The central
frequencies of the 16 channels are geometrically scaled from
about 100–5 kHz. We configure the front end so that the number
of spikes can be represented by 6-bits, i.e., each element in the
feature has 6-bit precision. We set a frame size Tframe of 80 ms
with no overlap between successive frames, based on the length of
the audio clip of the datasets and the dimension of the input layer
that the chip supports. In GSCD and HeySnips datasets, each
keyword audio sample is roughly 1s. We put together the feature
vector of the current frame along with the feature vectors of the
past 15 frames to obtain a vector of size 256 that contains the
number of spikes associated with each input neuron. We evenly
spread out the spikes for each input neuron within a time period
equal to the frame size. The FPGA then sends these spikes to the
input decoder inside the SNN chip in the form of AER.
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FIGURE 9 | (A) Die photo of the SNN Classifier with the Neurosynaptic Cores along with the Test Circuits. (B) Area break-down of the SNN Classifier. (C) Test chip
with its connection to the FPGA board and LabVIEW. FPGA interface is used for sending the inputs to the chip and reading out the potential of the output neurons.
LabVIEW is used for configuring the thresholds and write to the SRAMs.

FIGURE 10 | (A) Clock frequency measurement and min frame length for 8-bit activations as a function of the supply voltage. Frame size is constrained by the
latency of the SNN classifier (i.e., longer latency increases the minimum frame size). (B) Power consumption of the chip as a function of the input rate at two supply
voltages. Power consumption increases linearly with the input rate.

In the case of the MNIST grayscale dataset, we downsample
the image size to 16 × 16 by utilizing 2 × 2 max-pooling so
that we can match the image with the size of the input layer of
the chip. For each input sample, we generate a set of time series
vectors (spike trains) for the input layer of the chip in a time
duration equal to the frame size, which is chosen based on the
latency of the chip.

Training
We train a binary neural network (BNN) model that uses
binary weights (+1, −1), has no bias and 6-bit ReLU
activation (Cao et al., 2014) for the KWS task. The network

structure is equivalent to the SNN model we deploy. The
BNN provides the weights for the SNN model. The 6-bit
activations in the BNN are encoded for the SNN using spike-
rate, e.g., 010000(2) is mapped to 16 spikes/frame. We set the
threshold of the neurons in each layer such that each neuron
generates at most 63 spikes/frame (i.e., Nspk,i in Figure 6
is less than 63), which matches the 6-bit activation of the
BNN model. This is possible because in the SNN model, as
spikes pass through the neurons in a layer, the number of
spikes scales roughly by the ratio of the threshold. We can
easily change the activation precision after deployment for
different models by configuring the thresholds. For example,
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FIGURE 11 | (A) Accuracies of the SNN chip measured across multiple benchmarks. (B) ROC curves from KWS benchmarks obtained using RTL simulation.
(C) Accuracy of the SNN chip on KWS datasets across 0–40 dB SNR levels obtained using RTL simulation. (D) Measured power consumption of chip and error for
the HeySnips dataset as a function of activation precision. Stars denote the operating point used for comparison with other works.

FIGURE 12 | (A) Leakage power of the chip measured as a function of temperature at different supply voltages. (B) Variation of neuron clock frequency measured as
temperature and supply voltage vary.

we use 8-bit activation with the Tframe of 0.5 s for the
MNIST grayscale.

Inference Testing
Altera DE1 board containing a Cyclone II FPGA chip is used
to interface with the input decoder and the output encoder in

the SNN chip as shown in Figure 9C. The SNN chip along with
the FPGA is globally synchronous but locally asynchronous. The
global clock comes from the FPGA and is used to send new inputs
and read out the potential of output neurons at regular intervals.
The input decoder and the output encoder are synchronized to
the global clock but are asynchronous to the clock of the input
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FIGURE 13 | Measurement of the neuron clock frequency of around 50
neurosynaptic cores across 10 chips at a supply of 0.52 V.

core and the output core. All the neuron and synapse blocks
within the SNN chip are asynchronous to each other. LabView
is used to configure the scan-chain and write weights into the
SRAMs in the neurosynaptic cores.

The FPGA board reads out the input data from its memory.
It sends an 8-bit AER code to the input decoder identifying
the neuron which is supposed to receive a spike and another
signal identifying whether the spike is an incrementing spike or
decrementing spike. The input decoder then sends a pulse to
the appropriate neuron. Spikes that arrive at the input of the
hidden layer arrive at all the neurons simultaneously. There is
separate hardware for each neuron and hence they can process
spikes simultaneously and compete for access to the SRAM. After
an interval greater than or equal to the latency of the chip, the
FPGA deactivates the output core’s clock so that no more spikes
are processed. It then enables the output encoder to read out the
potential of the output neurons in a serial fashion. The SNN chip
is not pipelined, so at the end of the readout, the FPGA resets the
potential in all the neurons and sends in the next set of spikes to
the input decoder.

For our experiments, we define the latency of the SNN chip as
the time needed to process enough spikes to achieve the desired
accuracy. If the latency of the chip is less than or equal to the
frame size, we can achieve real-time operation. We can stream
a new input to the classifier at the end of each frame, which is
typically done in audio processing systems. The time period we
allow the chip to process is equal to the frame size. The frame
sizes are large enough to process most of the spikes and not hurt
the accuracy of the task.

RESULTS

Most of the results are based on a supply voltage of 0.52
V and the clock frequency of the neuron block of 70 kHz
and that of the synapse block of 17 kHz, while the chip

can operate at other supply voltages and achieve different
frequencies. Figure 10A shows the measurement results of the
neuron block frequency, synapse block frequency and latency
of the chip (minimum frame size) at different supply voltages
when 8-bit activations are used. An off-chip instrument (NI
LabView) was used to measure the clock frequency. The latency
of the chip was measured by comparing the potential of the
output neurons with the results from RTL simulation for 50
samples of the MNIST test set with 8-bit activations. The
minimum frame size we can use to operate the chip with 8-
bit activations reduces with a supply voltage as the speed of the
circuit increases.

We measured the power consumption of the chip during
standby and when continuously running (100% input rate) KWS
datasets like GSCD or HeySnips. The power consumption of
the chip would scale based on the amount of activity at the
input. Figure 10B shows what the SNN chip power consumption
would be at different input rates. We obtain the maximum
switching power by subtracting the standby power from the
power consumption at a 100% input rate. We obtain the
power consumption at an intermediate input rate by scaling the
switching power and summing it up with the standby power.
The SNN chip dissipates a power of 75 nW when there is no
input and power of 220 nW when running a KWS dataset at a
supply of 0.52 V.

We physically measured the accuracy of the chip and we can
see the accuracy of the chip across the different classification
tasks in Figure 11A. We read out the output neurons’ potential
to the FPGA and pick the index of the neuron with the highest
potential as the predicted class. In GSCD, the SNN can recognize
four keywords (“yes,” “stop,” “right,” and “off,” arbitrarily chosen)
and fillers with an accuracy of 91.8%. The SNN architecture we
use is 256-128-128-128-5 and configure the thresholds to be (1,
28, 18, 10) where 1 is the threshold for the input layer (fixed) and
the rest are for the hidden layers. For the HeySnips dataset, the
chip can recognize one keyword (“Hey Snips”) and fillers with an
accuracy of 95.8%. For the MNIST grayscale dataset, the trained
SNN structure is 256-128-128-128-10 with the thresholds of (1,
32, 16, 14) and it gives an accuracy of 97.6%.

Figure 11B shows the receiver operating characteristic (ROC)
curve for GSCD and HeySnips. It shows the false reject rate
(FRR) as a function of the false alarm rate (FAR) for 1-h-long
audio obtained by concatenating the test set samples and running
an RTL simulation. FAR indicates the number of false positives
while FRR indicates the number of false negatives. We obtained
the ROC by calculating the softmax of the output neurons’
potential and varying the discriminating threshold. If the softmax
value of the keyword class is greater than the discriminating
threshold then the prediction is a keyword otherwise it is a
non-keyword. If the discriminating threshold is large (close to
1) most of the audio frames will be classified as non-keyword
which will increase the number of false negatives (FRR). If the
discriminating threshold is small (close to 0) then most of the
audio frames will be classified as keyword thereby increasing
the number of false positives (FAR). In the case of GSCD, we
take the average of the pairs (FAR and FRR) we obtain for each
keyword at a certain discriminating threshold. In addition, we
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ran an RTL simulation to obtain the accuracy of the chip in
the presence of noise by mixing the speech audio with white
noise at various SNRs. We adopted noise-dependent training
for this experiment (Yang et al., 2019), i.e., we use the same
SNR for both train data and test data. The SNN classifier chip
achieves reasonably high accuracy across 0 to 40 dB SNR levels
for both GSCD and HeySnips datasets as shown in Figure 11C.
The configurability of the thresholds of different layers in the
SNN classifier architecture allows us to change the data precision
after deployment. Recall that changing the threshold in the
hidden layers of the SNN has the same effect as changing the
precision of the activations in a deep neural network with the
same network structure and that activation is spike rate coded
in our SNN. This can be used to trade-off accuracy for power
savings. Figure 11D shows the measured accuracy and the
power consumed by the SNN chip when the precision of the
activations is varied for the HeySnips dataset. At higher activation
precision the error is lower, but the power consumption is higher
and at lower activation precision the error is higher, but the
power consumption is lower. We chose a precision of 6-bit
which is a good compromise between the power consumption
and the accuracy.

We also measured the impact of temperature on the leakage
power dissipation and the speed of our circuits. We placed our
SNN chip and other testing hardware in a temperature chamber
for our measurements. Figure 12A shows the leakage power of
the circuit while Figure 12B shows the clock frequency of the
circuit at different supplies as the temperature is varied. The
margin we provide to the length of the ring oscillator helps
us avoid timing failure due to temperature, supply and process
variation to a certain extent. While our design does not have a
mechanism to dynamically tune the supply voltage or frequency,
it is beneficial to operate the circuit at a lower supply when the
temperature is high and at a higher supply when the temperature
is low, to obtain the needed performance while keeping the power
consumption low.

On the other hand, Figure 13 shows the variation in
the neuron clock frequency among approximately 50 cores
across 10 chips at a supply of 0.52 V. From the figure
we can see that the mean is 63.2 KHz and the standard
deviation is 7.45 KHz. The variation in the clock frequency
is due to both the difference in the layout of the ring
oscillators across cores and chip-to-chip variation. The chip-to-
chip variation among the cores is not uniform. The standard

TABLE 1 | Comparisons with recent KWS hardware.

This work Shan et al. (2020) Guo et al. (2019) Giraldo and Marian (2018)

Technology (nm) 65 28 65 65

Algorithm SNN DSCNN RNN LSTM

Area (mm2) 1.99 0.23 6.2 1.035

VDD (V) 0.52–1 0.41 0.9–1.1 0.575

Clock frequency 70 kHz @ 0.52 V 40 kHz 75 MHz 250 kHz

Benchmark 1 GSCD (4 Keywords) GSCD (2 Keywords) GSCD (10 Keywords) TIMIT (4 Keywords)

Accuracy (%) 91.8 94.6 90.2 92.0

Benchmark 2 HeySnips (1 Keyword) GSCD (1 Keyword) HeySnips (1 Keyword) N/A

Accuracy (%) 95.8 98.0 91.9 N/A

Power 75–220 nW* 510 nW** 134 µW 5 µW

*Power consumption scales with input rate; **feature extraction circuits included.

TABLE 2 | Comparisons with recent SNN hardware.

This work Koo et al. (2020) Park et al. (2019) Chen et al. (2018) TrueNorth

Technology (nm) 65 90 65 10 28

Neuron count 650 1 410* 4096 1M

Synapse count 67k 1 N/A 1M 256M

Area (mm2) 1.99 0.15 10.08 1.72 430

Clock frequency 70 kHz @ 0.52 V 37.5 MHz 20 MHz 105 MHz @ 0.5 V N/A

MNIST classification

Power 305 nW 282.8 mW† 23.6 mW 9.42 mW** 63 mW

Accuracy (%) 97.6 92.3 97.8 97.9 97.6***

Throughput (inf/s) 2 N/A 100K N/A N/A

Energy per inference (nJ) 195 N/A 236 1700 N/A

Energy per SOP (pJ) 1.5 8.4 pJ/1.84 pJ†† N/A 3.8 26

*Input layer not included; **estimated from neuron’s power dissipation; ***estimated from Hsin-Pai Cheng et al., IEEE DATE 2017; †power reported in Koo et al. (2020)
based on network size and power for one neuron and synapse; ††energy with sequencing circuits / Energy without sequencing circuits.
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deviation of the clock frequency varies from 5.6 to 9.5 KHz based
on the specific core. If we use the average of the clock frequency of
cores within a chip as being indicative of the chip’s performance,
the chip used for comparison and reporting other measurements
has a performance that is about average.

DISCUSSION

Prior works on SNN hardware have focused on non-always-on
application (Akopyan et al., 2015; Chen et al., 2018; Davies et al.,
2018), support for on-chip training (Chen et al., 2018; Davies
et al., 2018; Park et al., 2019) and support for both deep learning
and neuromorphic workloads (Pei et al., 2019). The absence
of any prior work on SNNs for targeting always-on hardware
motivated us to explore a new architecture for SNNs.

We presented a fully spike-event-driven SNN classifier for
an always-on intelligent function. We employed a fine-grained
clock and power-gating to take advantage of the input signal
sparsity, low leakage SRAM and a fixed priority arbiter to achieve
a very low standby power of 75 nW. We trained the SNN
for multiple always-on functions, notably multi- and single-
keyword spotting benchmarks, achieving competitive accuracies.
The average power consumption of the SNN chip scales with
the input activity rate. It ranges from 75 nW with no input
activity and 220 nW with the maximum input activity for
the KWS benchmarks.

Table 1 summarizes the comparison of our work with other
recent KWS accelerators. Our design achieves 2.3–6.8X power
savings compared to Shan et al. (2020) among KWS accelerators.
If we scale the area of our design to 28 nm it would be 0.37
mm2 which is still slightly higher than Shan et al. (2020). The
higher area usage of our work is possibly because it does not adopt
time-sharing in neuron hardware.

Our work does not have feature extraction circuits. They
would increase the area and power when included. We can
consider two feature extraction circuits (Yang et al., 2019, 2021a),
as candidates for the analog front end for our chip. Yang et al.
(2021a) is the improved version of Yang et al. (2019). We used
the software model of the analog front end presented in Yang
et al. (2019). The power consumed by the analog front end and
the feature extraction circuits is 50 nW in the improved version
and 380 nW in the older version.

The use of multiple supplies (VDD = 0.52 V and VDDH = 0.8
V) in our work can add some hardware and power overhead.
There would be a significant increase in power consumption
if we use only 0.8 V as the power supply for our chip.
For example, if we assume that power consumption increases
quadratically with VDD, then the power increases by 2.4X.
We can consider two scenarios that can provide two different
supplies and avoid a large increase in power. In one scenario,
we assume an external DC-DC converter provides VDD while
we can generate VDDH using a capacitor-based charge pump

circuits (Kim et al., 2021). The current load of the VDDH is not
high since it is used in only a small part of SRAM. Therefore,
even if the charge pump efficiency is not high, the overall
impact is small. In the other scenario, we assume an external
DC-DC converter provides VDDH and then we can generate
VDD using an on-chip digital LDO. This LDO would have a
power efficiency of 65% (VDD/VDDH), which increases total
chip power dissipation by 53.8%.

Table 2 summarizes the comparison of our design with other
SNN hardware work (TrueNorth’s power is estimated from
Cheng et al., 2017). Our design achieves over 30,000X power
savings compared to Chen et al. (2018) in Table 2. Our design is
optimized for ultra-low power always-on functions while others
are optimized for a balance between higher throughput and
energy efficiency. High-performance SNN accelerators generally
assume that input will be presented at a much higher rate,
therefore, the time interval between spike events would be
much smaller, limiting the benefit of fine-grained clock gating.
Our design achieves competitive accuracies among both KWS
and SNN hardware works and contributes to a growing body
of literature that supports SNNs as an attractive low-power
alternative to deep learning based hardware architectures.
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