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Abstract: A new type of quantum correction to the structure of classical black holes is investigated.
This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravita-
tional fields. The theoretical framework is provided by the theory of manifestly covariant quantum
gravity and the related prediction of an exclusively quantum-produced stochastic cosmological con-
stant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the
consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting,
the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional
surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent
transition region of radial width δr between internal and external subdomains. It is found that: (a) the
radial size of the stochastic region depends parametrically on the central mass M of the black hole,
scaling as δr ∼ M3; (b) for supermassive black holes δr is typically orders of magnitude larger than
the Planck length lP. Instead, for typical stellar-mass black holes, δr may drop well below lP. The
outcome provides new insight into the quantum properties of black holes, with implications for the
physics of quantum tunneling phenomena expected to arise across stochastic event horizons.

Keywords: covariant quantum gravity; cosmological constant; Schwarzschild–deSitter space-time;
event horizon; stochastic effects; tunneling phenomena
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1. Introduction

This paper is part of the research effort devoted to the quantum regularization of
singular classical black hole (BH) solutions. In fact, an ubiquitous property of classical
General Relativity (GR) is related to the occurrence of coordinate singularities in the
line-element representation of the space–time metric tensor solution of the Einstein field
equations (EFE). In the case of black hole geometry, this feature can identify either the
singularity at the black hole center (the so-called essential singularity) or the one at the
event horizon (EH) [1–3]. At present, the prevailing opinion is that space–time singularities
should be regarded as signatures of possible quantum effects occurring in the presence of
intense gravitational fields. This is indeed one of the main motivations that lies behind
the investigation of strong field regimes of gravity through the direct observation and
detection of gravitational waves and BHs. Such an occurrence is interpreted at the same
time as the manifestation of the limits of the theory of classical GR and its description of
gravitational field. This, ultimately, shows the necessity of recurring to a quantum gravity
theory for its consistent resolution [4–7].

A recent advance in this direction is the study proposed in reference [8]. Based on
the theory of manifestly covariant quantum gravity (CQG-theory, see [9–11]), it has been
proved that, provided a non-vanishing quantum cosmological constant (CC) is present, a
regular background space–time metric tensor can effectively be obtained starting from a
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singular one. This is reached by constructing suitable scale-transformed and conformal
solutions for the metric tensor. Accordingly, the conformal scale form factor is determined
by the quantum Hamilton equations underlying the quantum gravitational field dynamics
of CQG-theory.

However, in all black hole geometries, another kind of singular behavior actually
occurs at event horizons. Its origin is related to the very nature of event horizons in
GR: they are, in fact, deterministic two-dimensional surfaces which divide space–time
into mutually “incommunicable” (or impenetrable) subdomains. This is a very unnatural
behavior in quantum mechanics, where absolute barriers cannot exist. For this reason, EHs
might/should be regarded as a natural candidate for a variety of possible quantum effects.
The purpose of this investigation is to address one of them, related to the recent discovery
of the stochastic nature of the cosmological constant.

The nature of all EH singularities in classical GR is straightforward. For definite-
ness, let us consider a space–time represented by the differential manifold

{
Q4, ĝ(r)

}
in which Q4 is a time-oriented, 4−dimensional, Riemannian spacetime with signature
{1,−1,−1,−1}. Here, ĝ(r) denotes the “background” classical metric field tensor, which
is assumed to be smoothly parametrized with respect to the coordinate system r ≡ {rµ}
and is defined via its covariant and countervariant coordinate representations

{
ĝµν(r)

}
and {ĝµν(r)}. Then, the equation

A(r) = 0 (1)

prescribes an event horizon, with A(r) denoting the Riemannian quadratic form A(r) ≡
ĝµν(r)drµdrν. It may happen, accidentally, that some of the components of ĝµν(r) diverge,
thus giving rise to an apparent singularity. However, such occurrences can always be ruled
out (i.e., “regularized”) by means of suitable changes in GR-frame (coordinate system), i.e.,
local point transformations (LPT) of the type

r → r′ = r′(r), (2)

which leave the differential manifold of spacetime
{

Q4, ĝ(r)
}

unchanged. This happens
because they arise solely from the choice of coordinates and disappear by a suitable re-
definition of the coordinate system. In fact, the change in the signature of the quadratic form
A(r) can always be realized in such a way that the tensor ĝµν(r) remains finite. As a conse-
quence, EH singularities are commonly referred to as coordinate or apparent singularities.

On the other hand, in classical GR, the background metric tensor ĝ(r) is identified
with a solution to the Einstein field equations and, as such, it is deterministic. This
conclusion implies that Equation (1), i.e., the event horizon itself, necessarily identifies
a true physical space–time frontier with a well-defined deterministic character. Such a
feature can be viewed, in fact, as representative of a kind of singular behavior. This is
because, in classical GR, EHs effectively separate two neighboring, i.e., infinitely close but
absolutely “incommunicable”, regions of space–time with different metric signatures (i.e.,
respectively, A(r) < 0 and A(r) > 0). The question which arises is, therefore, whether the
concept of deterministic EH is at all compatible with quantum gravity.

It must be stressed that the very notion of EH has gained great attention in recent decades
among the scientific community (of theoretical and mathematical physicists in particular). In-
deed, challenging questions are several. These concern, for example, the nature and existence
of EHs, their mathematical description, the investigation of quantum and thermodynamics
phenomena that can occur in their surroundings, the interaction with particles and fields, and
the role of the gravitational field itself [12–14]. Finally, it is well known that event horizons
may be characterized by the occurrence of Hawking radiation [15–17], as well as energetic
particle phenomena and collective interactions [18–21]. For this reason, they are also expected
to provide the background for quantum field phenomena, like tunneling effects [22,23]. These
may ultimately involve the dynamics of the same gravitational field [24,25], the physics of
event horizons [26], as exemplified by particle emission and acceleration mechanisms [27],
and phenomena related to entropy creation/conservation [28–30].
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However, the debate on whether physical event horizons, i.e., those occurring in the
presence of quantum gravity effects, are really absolutely impenetrable (domains) or not
remains controversial. The task of this paper is to address such an issue.

A satisfactory, physically grounded answer could have relevant implications, both
for cosmology and field theories in general. The issue is intriguing because, ultimately,
it is about the fundamental question of “communication” across EHs, i.e., the possibility
of the transition of information and matter (either classical or quantum) across the same
space–time surfaces. On the other hand, from the quantum viewpoint, the very notion
of impenetrable surfaces like the EH appears intrinsically unphysical. This suggests that,
ultimately, EHs should manifest a quantum stochastic nature of some sort, possibly arising
in localized subdomains characterized by prescribed space, time and energy scales. As
recently discovered in reference [31], an instance of this type—which pertains the treatment
of the cosmological deSitter EH—is expected to occur in the framework of the manifestly
covariant theory of quantum gravity (CQG-theory). This refers to the crucial discovery of
the stochastic character of the cosmological constant, which, in the context of CQG-theory,
is produced by the non-linear graviton vacuum–Bohm interaction [32–34]. The conclusion
is determined by the stochastic character of the related self-consistent quantum PDF. This
yields corresponding stochastic quantum-modified Einstein field equations, which were
shown to admit a stochastic cosmological deSitter solution for the space–time metric tensor.
As a consequence, it was proved that, in such a setting, the location of the quantum-
modified deSitter EH becomes stochastic too. As a physical application, the expression
of the Hawking temperature defined on such a surface was carried out. This proved that
the stochastic behavior of quantum gravity can affect the thermodynamic description of
continuum gravitational field and the related particle-tunnelling effect that might arise
across the stochastic horizon boundary in a non-trivial way.

These premises suggest, at least, the obvious possibility that the radius of black hole
event horizons should not be regarded as a deterministic quantity. Rather, it should be
treated as having some sort of stochastic character. Such effects, it is understood, should
also occur when appropriately small scales are considered (e.g., in particular, a suitably
small neighborhood of the EH is considered). However, what these characteristic lengths
should be remains essentially unknown because of the lack of a reliable quantum physical
model. In this regard, it should be stressed that the Planck length might not be relevant at
this stage.

The basic consequence is, therefore, that regions with different metric signatures
should not be regarded as impenetrable, both for classical matter and radiation, and for
quantum particles and fields. Therefore, the conjecture arises whether stochastic, i.e.,
quantum effects, in the prescription of an (otherwise classical) event-horizon surface might
locally arise. This could give rise to a new kind of quantum tunnelling effect. In fact,
in such a case, a particle might have a finite probability density of simultanrously being
either “in” or “out” with respect to a stochastic surface which is no-longer prescribed as a
deterministic barrier.

Given these premises, this paper is intended to be a continuation of previous re-
search effort dealing with the investigation of the quantum modifications/corrections to
the structure of classical black holes and the physics of event horizons in the presence of
stochastic gravitational fields. The theoretical framework of reference is identified again
with the manifestly covariant theory of quantum gravity (CQG-theory) and the prescrip-
tion of a stochastic quantum PDF. The latter is associated with a stochastic cosmological
constant produced by the non-linear quantum-vacuum Bohm interaction among massive
gravitons, and is characteristic of CQG-theory. For this purpose, the specific case of the
Schwarzschild–deSitter geometry is considered, and the consequent stochastic modifica-
tions of the Einstein field equations and of its corresponding background space–time metric
tensor are investigated. The basic goals are as follows:

• To show that CQG-theory modifies the classical solution of the Schwarzschild–deSitter
configuration, characterized by spherical symmetry and generated by a central mass
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M and the coexistence of a stochastic quantum-generated cosmological constant Λ. In
such a setting, the black hole (inner) EH is no longer identified with a classical two-
dimensional surface separating internal and external subdomains. On the contrary,
it acquires a quantum stochastic character, giving rise to a transition region of radial
width δr between the same subdomains. Such a subdomain is referred to here as
stochastic EH belt;

• To show that, when measured in a co-moving frame originating in the center of the
BH, the typical radial size of the stochastic EH belt (δr) is not a universal constant or a
parameter-independent quantity. More precisely, the frame-dependent quantity δr
is shown to depend parametrically on the central mass M of the black hole and, in
particular, to scale as δr ∼ M3. We intend to show that δr differs generally from the
Planck length lP, which is an invariant length customarily claimed as the characteristic
size for the manifestation of black-hole quantum-gravity phenomena;

• To display explicit numerical estimates of the radial width δr in sample cases, which
demonstrate the occurrence of such a feature. These show, in particular, that in the
case of supermassive black holes with mass in the range M ∈

[
106 − 1010]M�, δr are

typically orders of magnitude larger that the Planck length lP. Then, lp . δr � lp for
intermediate-mass black holes with mass in the range M ∈

[
102 − 104]M�. Instead,

for typical stellar-mass black holes with mass M ∼ 10M�, δr may drop well below lP;
• To ascertain the possible existence of a quantum particle tunnelling phenomenon

across EHs occurring through the stochastic belt of width δr. Hence, the minimum
Lorentz γ-factor necessary to reach and eventually cross the tunneling region is
calculated for each black hole mass interval. To this aim, the case of classical point
particles with radial motion in the background of the Schwarzschild–deSitter metric
is considered. It is proved that, in contrast with the purely classical case, the Lorentz
factor required for the tunneling is not infinite, but acquires finite values scaling as
γ ∼ M−1;

• To ascertain, from the conceptual point of view, whether the presence of a stochastic cos-
mological constant is sufficient to give all black hole event horizons a stochastic character.

In conclusion, the present theory proposes the possible existence of a new type of
quantum tunneling phenomena that can arise in the surrounding of black hole event
horizons. The tunneling mechanism is based purely on the stochastic quantum nature of
the gravitational field predicted by CQG-theory. The important aspect to underline is that
the transition region does not remain constant and/or of the order of the Planck length,
and therefore independent of the physical properties of the background solution. This is
a consequence of the stochastic mechanism pointed out here and based on CQG-theory.
Instead, the resulting tunneling effect yields a background-dependent model which is
affected by the black hole mass, which, in turn, generates the curved space–time itself.

2. Stochastic Quantum Gravity

In this section, we discuss the fundamental features of the manifestly covariant quan-
tum gravity theory (CQG-theory) and its stochastic interpretation. We start recalling that
a crucial feature of CQG-theory lies in the distinction between the quantum tensor gµν,
which identifies the continuum Lagrangian coordinates carrying the quantum physical
properties of the gravitational field, and the background metric tensor ĝµν which instead
describes the geometry of space–time. By definition, the tensor gµν is such that gµνgµν 6= δ

µ
µ ,

while, identically, the normalization condition ĝµν ĝµν = 4 applies to the classical field.
Accordingly, the quantum field gµν is allowed to exhibit a quantum dynamical behavior
which deviates from ĝµν and acquire a non-vanishing quantum momentum Πµν.

The fundamental equation of CQG-theory is provided by the manifestly covariant 4−scalar
quantum-gravity wave equation (CQG-wave equation) obtained in references [10,11]. This
is parametrized in terms of an invariant proper-time parameter s defined with respect
to the background metric tensor ĝ as the proper-time associated with suitable classical
sub-luminal geodesic trajectories, namely through the differential identity ds2 = ĝµνdrµdrν
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(see Ref. [10]). The CQG-wave equation takes the form of the hyperbolic first-order
Eulerian PDE

i} d
ds

ψ(s) = H(q)
R ψ(s), (3)

with } being the reduced Planck constant, d
ds = d

ds

∣∣∣
s
+ ∂

∂s denoting the covariant s−derivative
in Eulerian form, where the first differential operator is the customary covariant derivative
evaluated at fixed s and the second one is a partial derivative acting on explicit proper-time
dependences. Then, H(q)

R represents a suitable self-adjoint quantum Hamiltonian operator
introduced in reference [10] and depending on the quantum momentum operator Πµν.
Furthermore, ψ(s) stands for ψ(s) ≡ ψ(g, ĝ, r, s) and denotes the 4−scalar quantum wave
function associated with a graviton particle, which is defined for arbitrary s belonging
to the time axis I ≡ R. Both explicit and implicit dependences on s are allowed, the
latter enter through the 4−position vector r ≡ rµ(s) of the background space–time. In
addition, a functional dependence on both g =

{
gµν

}
and ĝ =

{
ĝµν

}
are included, where

gµν is the quantum generalized-coordinate field, which spans the 10−dimensional real
vector space Ug ⊆ R10 of the same wave-function, i.e., the set on which the associated
quantum probability density function satisfying the Born rule, namely ρ(s) = |ψ(s)|2
(quantum PDF), is prescribed, while ĝµν is the background metric tensor. We notice that the
validity of the Born rule is strictly related to the manifestly-covariant nature of the relevant
quantum-wave equation (in this case identified with Equation (3)) as well as the validity in
the same context of the quantum unitarity principle.

The CQG-wave Equation (3) is equivalent to a set of quantum hydrodynamics equa-
tions obtained upon introducing an exponential representation for the complex field ψ(s),
i.e., the so-called Madelung representation

ψ(g, ĝ, r, s) =
√

ρ exp
{

i
}S

(q)
}

. (4)

The quantum fluid fields
{

ρ,S (q)
}
≡
{

ρ(g, ĝ, r, s),S (q)(g, ĝ, r, s)
}

identify, respec-
tively, the 4−scalar quantum PDF and quantum phase-function. As a result, the same
quantum fluid fields can be shown to satisfy a set of Bohmian equations, denoted as GR-
quantum hydrodynamic equations (CQG-QHE). These are identified with the continuity
and quantum Hamilton–Jacobi equations

dρ

ds
+

∂

∂gµν

(
ρVµν

)
= 0, (5)

dS (q)
ds

+ H(q) = 0, (6)

where Vµν ≡ 1
κ

∂S (q)
∂gµν is the tensor “velocity” field, with κ being a dimensional constant

which is related to the graviton mass estimate given in Ref. [10]. Equation (5), once
integrated on the relevant configuration domain, implies the conservation of probability
and hence validity of the said property of quantum unitarity. Furthermore, H(q) denotes
the effective quantum Hamiltonian density

H(q) =
1

2κ

∂S (q)
∂gµν

∂S (q)
∂gµν

+ VQM + Vo + VF, (7)

where Vo and VQM identify, respectively, the vacuum effective potential and quantum
Bohm interaction potential [35]. They are given by

Vo = κ

(
2− 1

4
gµνgµν

)
gαβR̂αβ, (8)
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VQM ≡
}2

8κ

∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
− }2

4κ

∂2ρ

ρ∂gµν∂gµν , (9)

where R̂αβ is the Ricci tensor evaluated in terms of the background metric tensor ĝαβ. In
addition, VF is the potential of external sources. In the case of the Schwarzschild–deSitter
space–time, this is associated with the central mass M generating the singular metric of the
Schwarzschild black hole.

We remark that Equation (6) can be proved to be equivalent to a set of 4−tensor
quantum Hamilton equations. They are intended as quantum hydrodynamic equations
associated with the quantum wave function ψ, and prescribed in terms of the Hamiltonian
hydrodynamic state x ≡ (gµν, Πµν), with Πµν = ∂S (q)

∂gµν
. Hence, the set

{
x, H(q)

}
defines a

quantum Hamiltonian structure. The resulting manifestly covariant quantum Hamilton
equations take the form of evolution equations in terms of the proper-time invariant
parameter s and are written as

d
ds

gµν =
Πµν

αL
, (10)

d
ds

Πµν = − ∂

∂gµν (Vo + VQM + VF). (11)

These are subject to generic initial conditions of the type x(so) = xo ≡ (gµν

(o) ≡
gµν(so), Π(o)µν ≡ Πµν(so)).

The fluid representation of CQG-theory cen be cast in terms of a trajectory-based
formulation. In the case of CQG-theory, this is provided by the Generalized Lagrangian
Path theory (GLP-theory) developed in reference [36]. In summary, this is achieved in
terms of a generalized Lagrangian-path (GLP) representation for the quantum Lagrangian
field gµν(s) of the form

gµν(s) = ∆gµν(α) + Gµν(s), (12)

where Gµν(s) denotes a suitably prescribed reference s−dependent quantum field. This
is associated with a Lagrangian Path

{
Gµν(s), s ∈ I

}
, which can effectively be treated as

deterministic if its initial value Gµν(so) is considered deterministic. Instead, the tensor
displacement field ∆gµν(α) is assumed as an arbitrary symmetric and s−independent
stochastic tensor field. It describes the stochastic fluctuations in the quantum field tensor
gµν with a given probability density ρα(s). The stochastic character of CQG-theory in
this representation emerges, therefore, as a natural consequence of Equation (12) and is
associated with ∆gµν(α). The meaning of Equation (12) is that, for each (deterministic)
Lagrangian trajectory

{
Gµν(s), s ∈ I

}
, there are infinite stochastic GLP’s

{
gµν(s), s ∈ I

}
. In

particular, the prescription of the tensor displacement field ∆gµν(α) is taken as having a
dependence of the form

∆gµν(α) = ∆gµν(α)
(
∆gµν, α, ĝµν

)
. (13)

Here, α ∈ [α0, α1] ⊆ R, with α0 < α1, is a real 4−scalar stochastic parameter independent
of gµν and s and with bounded support, while ∆gµν is a stochastic tensor independent of α

and subject to the condition d
ds ∆gµν = 0.

Based on these preliminaries, one can prove that the solution to the continuity equation
takes the form ρα(s) ≡ ρ(∆g(α), α, ĝ(s, α)), where

ρα(s) = ρG(s, α) exp

−
s∫

so

ds′
∂Vµ

ν (s′)
∂gµ

ν (s′)

. (14)



Entropy 2021, 23, 511 7 of 20

The tensor “velocity field” Vµ
ν (s) is assumed to be independent of α, and ρG(s, α) is

the shifted Gaussian PDF (denoted as α−Gaussian PDF) which is expressed in terms of the
stochastic tensor displacement ∆gµν(α) as

ρG(s, α) = K exp

{
− (∆g(α)− ĝ(s, α))2

r2
th

}
g(α, ε), (15)

with g(α, ε) denoting an in principle arbitrary 4−scalar stochastic PDF. In the following,
for definiteness g(α, ε) is identified with the Gaussian PDF

g(α, ε) = N exp
{
−α2

ε2

}
, (16)

with ordinarily finite support, so that α ∈ [α0, α1] ⊂ R, while N is a normalization constant
and ε is a suitably small dimensionless factor to be assumed ε� 1. In Equation (15), K is,
therefore, the normalization factor

K =

∫
Ug

d(∆g)
α1∫

α0

dα exp

{
− (∆g(α)− ĝ(s, α))2

r2
th

}
g(α, ε)

−1

. (17)

In Equation (15) the tensors ∆g(α) ≡ ∆gµν(α) and ĝ(s, α) ≡ ĝµν(s, α) identify the
generalized displacement tensor ∆gµν of GLP theory and the background metric tensor.
Both are now admitted to generally depend on α itself, while ĝ can also depend on the
proper-time s. Similarly, in the same equation, the exponent (∆g(α)− ĝ(s, α))2 stands for
the 4−scalar defined as (∆g(α)− ĝ(s, α))2 ≡

(
∆gµν(α)− ĝµν(s, α)

)
(∆gµν(α)− ĝµν(s, α)).

The solution ρα(s) in Equation (15) represents a probability density which is consistent
with the unitarity principle, so that, by construction

〈1〉 =
∫

Ug
d(∆g)

α1∫
α0

dαρα(s) = 1. (18)

This means that the quantum continuity Equation (5) preserves quantum unitar-
ity. In addition, it yields the second-type emergent-gravity feature of CQG-theory (see
reference [36]). Accordingly, the average expectation value of the stochastic tensor ∆gµν(α)
coincides with the background metric tensor, namely

〈
∆gµν(α)

〉
=
∫

Ug
d(∆g)

α1∫
α0

dα
[
∆gµν(α)ρα(s)

]
= ĝµν. (19)

Conversely, since the distribution of α is a Gaussian centered around zero and with
width ε, its stochastic average is identically null, namely

〈α〉 =
∫

Ug
d(∆g)

α1∫
α0

dα[αρα(s)] = 0. (20)

We further notice that different realizations of Equation (14) could be distinguished,
depending on the functional form of the half-width parameter ε, according to the discussion
reported in reference [31]. However, for the scope of the present work and without
limitations, in the following, we shall adopt the framework corresponding to assuming
ε = const.� 1 everywhere. This choice preserves the validity of the quantum continuity
equation and is, therefore, consistent with the unitary principle and, correspondingly, of a
quantum-unitary formulation of CQG-theory. In this picture, Equation (15) preserves its
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validity as a solution to the continuity equation, and the stochastic PDF (14) holds in the
whole space–time.

3. Stochastic Quantum-Modified Einstein Equations

In this Section, we detail the derivation of the Einstein field equations from the
stochastic formulation of CQG-theory and related quantum Hamilton equations. This
follows without performing the semiclassical limit h̄→ 0, by invoking Equations (10) and
(11) and imposing to the initial Hamiltonian state x(so) “equilibrium” initial conditions of
the type

x(so) =
(

gµν

(o) ≡ gµν(so), Π(o)µν ≡ 0
)

. (21)

In this way, the initial quantum tensor gµν coincides with the background one and its
corresponding momentum (i.e., essentially its covariant derivative) identically vanishes.
As a result, Equations (10) and (11) reduce to the single equation

∂

∂gµν (Vo + VQM + VF)

∣∣∣∣
gµν=ĝµν

= 0, (22)

which contains the information by the Hamiltonian potential.
Then, invoking the definitions (8) and (9) for the potential terms Vo and VQM, respec-

tively, it is straightforward to perform the differentiation with respect to gµν and evaluate
the result for gµν = ĝµν according to Equation (21). A similar calculation can be performed
on the external potential VF. This is assumed to be assigned and to correspond here to the
central point mass M located at the origin of the reference system, as is customary in the
well-known derivation of the classical Schwarzschild solution. This yields the following
form for the resulting Einstein field equations

R̂µν −
1
2

R̂ĝµν(s, α) = T(c)
µν + B(α)

µν , (23)

where T(c)
µν identifies the stress-energy tensor generated by classical sources (i.e., in the

present case, the central point mass). Instead, the symmetric tensor B(α)
µν carries the

α−stochastic quantum contribution arising from the Bohm potential. In the following,
Equation (23) will be referred to as α−stochastic quantum-modified EFE. In particular, the
stochastic tensor B(α)

µν is obtained as

B(α)
µν ≡ −

1
κ

∂

∂gµν VQM

∣∣∣∣
gµν=ĝµν

=
}2

κ2
f (s)
r4

th

(
∆gµν(α)− ĝµν(s, α)

)
, (24)

where f (s) is a suitably prescribed 4−scalar function depending on proper-time s and
satisfying a given differential equation determined in Ref. [32]. Its value for the initial
condition s = so is such that f (so) = 1. We define the proper-time-dependent cosmological
constant ΛCQG(s) arising due to the Bohm quantum vacuum interaction among massive
gravitons as

ΛCQG(s) =
}2

κ2
f (s)
r4

th
= ΛCQG(so) f (s), (25)

where

ΛCQG(so) =
h̄2

κ2
1

r4
th

(26)

is its constant initial value. Then, we can write Equation (23) in the explicit form

R̂µν −
1
2

R̂ĝµν(s, α) = T(c)
µν −ΛCQG(s)ĝµν(s, α) + ΛCQG(s)∆gµν(α), (27)
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where, on the rhs, the last tensor carries the stochastic contributions due to ∆gµν and α.
This function carries the proper-time dependence of the quantum-gravity cosmological
constant, which is, in this way, transferred to the metric tensor ĝµν.

Following the prescription reported in reference [31], we can introduce a convenient
representation for the tensor ∆gµν(α) which is also consistent with the constraints set by
the underlying quantum GLP theory by letting

∆gµν(α) = ∆gµν + αĝµν(s, α), (28)

in which the two contributions due to ∆gµν and α are decoupled. This shows that ∆gµν is
the tensorial term associated with the stochastic GLP fluid trajectories, while the term pro-
portional to α plays an analogous role to a stochastic pressure. Based on this representation,
we can now further elaborate the tensor Equation (27) following the procedure established
in reference [31]. Thus, in Equation (27), we first impose the deterministic LP-limit ∆gµν → 0,
corresponding to the collapse of the stochastic quantum GLP trajectories on the unique LP
trajectory. On the other hand, we retain the 4−scalar “pressure” contribution αĝµν, which
is, therefore, required not to vanish when the LP-limit is imposed. In this way, we have
singled out the 4−scalar α−stochastic contribution carried by ∆gµν(α). This is not related to
the GLP/LP parametrization of the quantum wave equation like ∆gµν is, but is associated
with an intrinsic stochastic effect admitted by the quantum PDF solution of the continuity
equation and, therefore, intrinsic to CQG-theory. Finally, collection of these requirements
yields the following representation for the α−stochastic quantum-modified EFE

R̂µν −
1
2

R̂ĝµν(s, α) = T(c)
µν −ΛCQG(s)(1− α)ĝµν(s, α), (29)

in which the stochastic term is made explicit through the 4−scalar parameter α. This
is the form of EFE that will be adopted below to determine a corresponding stochastic
space–time metric tensor in the Schwarzschild–deSitter geometry and the subsequent study
of stochastic effects across the black-hole event horizon.

4. Stochastic Schwarzschild–deSitter Background Solution

The virtue of the representations (28) and (29) is that the dependence on the stochastic
parameter α remains linearly proportional to the CQG expression of the cosmological
constant and to the space–time metric tensor ĝµν. If we identify the classical stress-energy

tensor T(c)
µν as being due to the central point mass M located at the origin of the coordinate

system rµ = rµ
o , then we can see that Equation (29) remains formally analogous to the

classical EFE generating the Schwarzschild–deSitter solution. The only difference is that
here, the CC Λ is replaced with the CQG 4−scalar ΛCQG(s) times the stochastic factor
(1− α). In the following, we denote for brevity Λ ≡ ΛCQG(s), so that, as a consequence, one
can identify the stochastic quantum-modified CC Λ(α) carrying the stochastic contribution
according to the following prescription

Λ(α) ≡ Λ(1− α). (30)

In order to warrant that Λ(α) > 0 and treating the parameter α as a quantum correction,
it is required that α ∈ [α0, α1]� 1, which is assumed to be characterized by the PDF given
by Equation (16). This is the only contribution that carries the stochastic effect generated by
quantum-gravity on the background metric tensor. The latter is, therefore, correspondingly
replaced with

ĝµν → ĝµν(s, α), (31)

where the explicit dependence on both the proper time and the stochastic parameter α
induced by Λ(α) are indicated. It follows that the stochastic Equation (29) necessarily admits
a corresponding stochastic Schwarzschild–deSitter solution depending on the cosmological
constant Λ and the parameter α.
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In particular, upon introducing generalized spherical coordinates (ct, r, ϑ, ϕ), as-
suming spherical symmetry, the background metric tensor can be written as ĝµν =

diag
{

B, B−1, r2, r2 sin2 ϑ
}

. The corresponding Riemann distance takes the form ds2 =
Bc2dt2 − B−1dr2 + r2dΩ2. Here, the 4−scalar function B is given by

B ≡ 1− Rs

r
− r2

A2
α

, (32)

so that the line element is written explicitly as

ds2 =

(
1− Rs

r
− r2

A2
α

)
c2dt2 − 1(

1− Rs
r −

r2

A2
α

)dr2 + r2dΩ2. (33)

The Schwarzschild radius Rs and the stochastic deSitter parameter A2
α are defined,

respectively, as

Rs ≡ 2GM
c2 , (34)

A2
α ≡ 3

Λ(α)
=

3
Λ(1− α)

. (35)

The Schwarzschild–deSitter space–time has two event horizons (EH), respectively, the
one analogous to the Schwarzschild metric and generated by the central BH, to be denoted
rEH , and the cosmological one analogous to the deSitter EH, to be denoted rdS. The location
of the two EHs is modified with respect to the pure Schwarzschild or deSitter separate
cases, because of the presence of the combined non-linear effect of the CC Λ(α) and the
central mass M. In spherical symmetry, the two EHs are represented by spherical surfaces
at different radii, so that their location can be obtained by solving the algebraic equation

g00 = 0. (36)

Invoking the line element (33) implies searching for the roots of the third-order equation

1− Rs

r
− r2

A2
α
= 0. (37)

Only two roots have physical meaning, and they are expressed as (see [37,38])

r± =
2√
Λ(α)

cos
[

π

3
± 1

3
arccos

(
3Rs

2

√
Λ(α)

)]
, (38)

where, respectively, r+ ≡ rEH and r− ≡ rdS. In the following subsections, we determine
asymptotic estimates for the two roots separately.

4.1. Black-Hole EH Asymptotic Estimate

Starting from the exact solution (38), we consider here the root r+ ≡ rEH identifying
the exact radial location of the black hole EH

rEH =
2√
Λ(α)

cos
[

π

3
+

1
3

arccos
(

3Rs

2

√
Λ(α)

)]
. (39)

In this section, we develop an approximation scheme to obtain an asymptotic estimate
of rEH suitable for later investigation of the new stochastic quantum-gravity contribution
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carried by the CC on the physical properties of the same event horizon. To this aim, we
first introduce the notation

ϕ ≡ arccos
(

3Rs

2

√
Λ(α)

)
, (40)

so that rEH can be written in the compact form

rEH =
2√
Λ(α)

cos
[π

3
+

ϕ

3

]
. (41)

Expressing the cosine in terms of the sum of the two arguments yields

rEH =
2√
Λ(α)

[
cos
(π

3

)
cos
( ϕ

3

)
− sin

(π

3

)
sin
( ϕ

3

)]
, (42)

where cos
(

π
3
)
= 1

2 and sin
(

π
3
)
=
√

3
2 . Substitution gives

rEH =
1√
Λ(α)

[
cos
( ϕ

3

)
−
√

3 sin
( ϕ

3

)]
. (43)

We then notice that, in Equation (40), the argument of arccos is a very small number,
being proportional to

√
Λ(α). Expanding in Taylor series the arccos function for small

argument gives up to the first order in the expansion

ϕ

3
' π

6
− Rs

2

√
Λ(α). (44)

Then, representing the cosine and sine functions in Equation (43) in terms of the sum
of the arguments yields

rEH =
2√
Λ(α)

sin
(

Rs

2

√
Λ(α)

)
. (45)

We now use the Taylor expansion for sine function. Retaining up to third-order
powers, so that sin(x) ' x− x3

6 , then yields

sin
(

Rs

2

√
Λ(α)

)
' Rs

2

√
Λ(α) −

1
6

(
Rs

2

√
Λ(α)

)3
. (46)

Finally, inserting into Equation (45) gives

rEH '
2√
Λ(α)

[
Rs

2

√
Λ(α) −

1
6

(
Rs

2

√
Λ(α)

)3
]
= Rs −

R3
s

24
Λ(α). (47)

We have thus obtained, as a result, the final asymptotic estimate

rEH = Rs

[
1− R2

s
24

Λ(α)

]
, (48)

in which the contribution due to the stochastic CC enters as a first-order correction. We
can see that the approximate solution recovers the correct value expected in the limit of
vanishing CC, namely the exact Schwarzschild solution

lim
Λ→0

rEH = Rs. (49)
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In addition, when the stochastic CC corrections are retained, the magnitude of rEH
is decreased with respect to the pure Schwarzschild case, as expected from the fact that
the same CC generates an expansion (it effectively decreases the energy content due to the
central mass, causing a decrement of the BH radius).

4.2. Cosmological EH Asymptotic Estimate

For completeness, here we also evaluate the modification of the cosmological deSitter
EH in the case of Schwarzschild–deSitter spacetime. We consider, therefore, the root
r− ≡ rdS given by

rdS =
2√
Λ(α)

cos
[

π

3
− 1

3
arccos

(
3Rs

2

√
Λ(α)

)]
. (50)

We proceed determining an appropriate asymptotic estimate for rdS. To this aim, we
first introduce again the notation in terms of ϕ given by Equation (40), so that rdS can be
written in the compact form as

rdS =
2√
Λ(α)

cos
[π

3
− ϕ

3

]
. (51)

Expressing the cosine in terms of the sum of the two arguments yields

rdS =
1√
Λ(α)

[
cos
( ϕ

3

)
+
√

3 sin
( ϕ

3

)]
. (52)

Representing, in Equation (52), the cosine and sine functions in terms of the sum of
the arguments, and rearranging them after some algebra, one obtains

rdS =
1√
Λ(α)

[√
3 cos

(
Rs

2

√
Λ(α)

)
− sin

(
Rs

2

√
Λ(α)

)]
. (53)

We now use the Taylor expansion for sine and cosine functions for small arguments,
so that cos(x) ' 1− x2

2 and sin(x) ' x− x3

6 . This gives respectively

cos
(

Rs

2

√
Λ(α)

)
' 1− 1

2

(
Rs

2

√
Λ(α)

)2
, (54)

sin
(

Rs

2

√
Λ(α)

)
' Rs

2

√
Λ(α) −

1
6

(
Rs

2

√
Λ(α)

)3
. (55)

Finally, inserting into Equation (53) and retaining corrections up to the second order gives

rdS =

√
3

Λ(α)

[
1− 1√

3
Rs

2

√
Λ(α) −

1
2

(
Rs

2

√
Λ(α)

)2
]

. (56)

In this case, we can see that the approximate solution recovers the correct value
expected in the limit of vanishing mass, or, equivalently, of vanishing Rs, namely

lim
M→0

rdS = lim
Rs→0

rdS =

√
3

Λ(α)
, (57)

which is the customary deSitter radius of the cosmological deSitter geometry with Λ 6= 0.
In addition, in this case, the magnitude of the cosmological EH rdS is decreased by the
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correction due to the central BH, as expected from the fact that the same mass contrasts
with the expansion of the CC and curves the universe.

5. Estimate of EH Belt Width

In this section, we show that the stochastic quantum-gravity corrections induced by
the α parameter on the Schwarzschild–deSitter metric tensor imply a radical change in
the structure of the black-hole EH. In fact, contrary to the purely classical solution, it is
proven that, in the framework of the stochastic quantum-gravity and, more precisely, in the
presence of a non-vanishing stochastic CC, the same EH is modified in a substantial way,
so that it acquires a width. Thus, instead of representing a 2D surface (spherical surface),
like in the classical case, the stochastic EH becomes now a region with prescribed width.
This is determined by the same parameter α and its stochastic domain of support defined
by the quantum PDF. This implies, in turn, that, due to stochastic quantum corrections, the
quantum EH is no longer an impenetrable deterministic barrier with a fixed location and
separating two “incommunicable” regions of space–time. Rather, it gives rise to a transition
region which can permit, in principle, the quantum transition from inner and outer regions,
i.e., particle tunneling phenomena. In the following, we shall denote this region as EH belt.

It must be stressed, however, that this quantity does not represent an invariant length,
namely a 4−scalar. Instead, the EH belt width arises as a frame-dependent scale according
to the choice of coordinate system. Therefore, the consequent feature to be mentioned is
that the occurrence of the characteristic EH belt width has an independent character of the
Planck length lP. In particular, it has no connection with the concept of “minimum length”,
usually adopted in the framework of the literature Generalized Uncertainty Principle
theories [39–41] (and typically identified with lP). The lack of an absolute minimal length is,
in fact, a characteristic of CQG-theory. However, this feature does not prevent the possible
existence of a characteristic physical EH belt width nor, as shown in reference [42], the
existence of an effective characteristic standard deviation for the proper-time scale-length
∆s (i.e., a 4−scalar characteristic scale length) which is associated with the corresponding
(proper-time-conjugate canonical momentum) Heisenberg inequality.

We want to prove the existence of this effect on the EH, which is induced uniquely by the
stochastic character of the quantum CC. In order to estimate the width of the EH belt, we start
from the approximate analytical solution for rEH determined above by Equation (48). Invoking
the definition of Λ(α) from Equation (30), we can express the equation of rEH , pointing out
the explicit contribution of the stochastic parameter α, yielding

rEH = Rs

[
1− R2

s
24

Λ(1− α)

]
. (58)

Given the Gaussian representation for the probability density of α, from the physical
perspective, the condition ε� 1 means that the same distribution is very peaked, with a
narrow half-width. Hence, one can reasonably assume that α varies randomly in the range
α ∼ [−ε,+ε]. This implies that the quantity (1− α) ∼ O(1) and remains positive.

The behavior of α implies the notable consequence that, similarly, the Schwarzschild–
deSitter BH event horizon acquires a width, which represents a stochastic quantum belt.
For an order-of-magnitude estimate, we can write rEH ∈

[
rmin

EH , rmax
EH
]
, where spherical

symmetry is assumed to hold. The evaluation of the extrema of such intervals can be
estimated from Equation (58). Thus, assuming α ∼ ε � 1, to leading-order in ε one
finds, respectively,

rmin
EH = Rs

[
1− R2

s
24

Λ(1 + |ε|)
]

, (59)

rmax
EH = Rs

[
1− R2

s
24

Λ(1− |ε|)
]

. (60)
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To further elaborate the expression, we denote by

rSdS
EH = Rs

[
1− R2

s
24

Λ
]

(61)

the value of the black hole EH of the classical “deterministic” Schwarzschild–deSitter metric,
namely, its value in the absence of quantum-gravity-induced stochastic dependences.
Therefore, the classical location rSdS

EH is subject to a maximum increase/decrease change
given by the factor δr, namely

rEH = rSdS
EH ± δr, (62)

where

δr =
R3

s
24

Λ|ε| (63)

is the measure of the maximum width that the EH belt can acquire according to the present
model. Inserting in the previous expression the definition of Rs from Equation (34) yields

δr =
1

24

(
2G
c2

)3
Λ|ε|M3. (64)

From this, it is evident that δr scales as

δr ∼ M3, (65)

i.e., it is proportional to the cubic of the central black-hole mass M.
We can now estimate the magnitude of δr for relevant cases of astrophysical interest.

The proportional constants in SI units are

G = 6.67408× 10−11 m3kg−1s−2,

c = 3× 108 ms−1,

Λ = 1.1056× 10−52 m−2,

while the mass M is expressed in units of the solar mass as M = ηM�, where M� =
2× 1030 kg. It then follows that

δr ' 1.2× 10−43|ε|η3, (66)

with δr being measured in meter. The value of the correction radius δr must then be
compared with the Planck length lp ' 1.6× 10−35 m. For practical numerical estimates,
we also set in the following ε = 10−2.

The following cases are then considered
(1) Stellar-mass black-holes with typical mass M ∼ 10M�. In this case we have η ∼ 10,

so that
δr ' 1.2× 10−42, (67)

and therefore δr � lp.
(2) Intermediate-mass black-holes with typical masses in the range M ∈

[
102 − 104]M�.

In this case η = 102 − 104, and therefore

δr ' 1.2×
(

10−39 − 10−33
)

, (68)

so that either δr � lp (higher bound) or lp . δr (lower bound).
(3) Supermassive black-holes with typical masses in the range M ∈

[
106 − 1010]M�.

In this last example η = 106 − 1010, implying

δr ' 1.2×
(

10−27 − 10−15
)

, (69)
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which means that δr � lp.
The following conclusions can be drawn:

• According to the present theoretical model based on the stochastic character of
the quantum CC predicted by CQG-theory, the black-hole EH of the stochastic
Schwarzschild–deSitter solution is identified with a transition region (between inter-
nal and external space-time domains) of width δr denoted EH belt, inside which the
horizon is stochastically located. The typical radial size of the stochastic EH belt δr
is not a constant. It differs generally from the Planck length lP, which is customarily
claimed as the characteristic size for the manifestation of black-hole quantum-gravity
and tunneling phenomena. More precisely, δr is shown to depend parametrically on
the central mass M of the black hole and, in particular, to scale as δr ∼ M3;

• The numerical estimates given above of the radial width δr show that, in the case of
supermassive black holes, this is typically orders of magnitude larger that the Planck
length lP. One finds instead that lp . δr � lp for intermediate-mass black holes,
while for typical stellar-mass black holes, δr may drop well below lP.

6. The Tunneling Lorentz Factor

In this section, we investigate the implications of the stochastic quantum-gravity
solution obtained above and the prediction of the existence of the stochastic EH belt on
the particle tunneling phenomenon. More precisely, we consider here the dynamics of
classical particles, assumed to have a pure radial motion in the Schwarzschild–deSitter
metric. In such a framework, we are interested in investigating the dependence of the
Lorentz γ−factor, which is defined as

γ ≡ 1
√

g00
. (70)

Invoking Equation (33), we obtain the expression

γ =
1√(

1− Rs
r −

r2

A2
α

) , (71)

which applies in the general stochastic picture.
On the other hand, in the particular case of the classical deterministic solution, the space–

time metric tensor is characterized by a unique deterministic EH located at radial distance
rEH |α=0, namely, setting α = 0 in the analytical solution for rEH given by Equation (39). If we
evaluate the Lorentz γ-factor on such a classical EH, we obtain

γ|r=rEH |α=0
= ∞. (72)

This expresses the characteristic feature of the classical EH of representing an impene-
trable barrier. In such a framework, it is, therefore, meaningful to estimate the minimum
Lorentz γ-factor required for classical particles to reach the domain associated with the EH
belt in the stochastic quantum-gravity solution. There, one can expect particle tunneling
phenomena to take place, to be induced by the same quantum nature of the gravitational
field. For this reason, we refer to such a γ-factor as the tunneling Lorentz factor. Particles
that possess this Lorentz factor are possible candidates to reach the stochastic EH belt and
can take part in the new type of quantum-gravity tunneling mechanism generated by the
stochastic character of the same EH due to the stochastic CC.

Let us, therefore, consider the stochastic Schwarzschild–deSitter quantum gravity
solution and the properties of the corresponding black-hole EH belt. Assuming a small
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stochastic correction, the precise representation can be obtained by Taylor expansion of the
exact analytical solution (39), namely, of the form

r = rEH |α=0 + α
∂rEH

∂α

∣∣∣∣
α=0

+ O
(

α2
)

. (73)

The estimate of the linear α−correction can be identified with the EH width obtained
in previous section. Thus, invoking Equation (62) and assuming that α varies randomly
in the range α ∼ [−ε,+ε], we can take the maximum width amplitude. For the present
calculation, we are interested in the “increased” solution and we can write

r ' rEH |α=0 + δr, (74)

where the absolute value of δr is given by Equation (63). Inserting Equation (74) into Equa-
tion (71), and approximating only in the correction terms rEH |α=0 with rSdS

EH given by
Equation (61), ignoring corrections of O

(
R2

s Λ
)

we obtain

γ ' 1√
δr
Rs

=

√
Rs

δr
. (75)

We notice that the same result can be equivalently obtained by introducing the asymp-
totic approximation

γ =
1√(

1− Rs
(rEH |α=0+δr) −

(rEH |α=0+δr)2

A2
α

) ' 1√(
1− Rs

(Rs+δr)

) ' 1√
δr
Rs

. (76)

In fact, one can start from the exact definition (71) using the expansion (74) and
approximating rEH |α=0 with the expression rSdS

EH given by Equation (61). Upon neglecting
terms of O

(
R4

s Λ2) and O
(

R6
s Λ3), an explicit calculation brings the following expression

γ ' 1√
R2

s
24 Λ|ε|

. (77)

Replacing the definition of Rs, we can obtain the explicit dependence of γ on the
various parameters

γ =

√
24

R2
s Λ|ε| =

c2

GM

√
6

Λ|ε| =
c2
√

6
G

Λ−1/2|ε|−1/2M−1. (78)

This shows that the γ-factor is inversely proportional to the mass of the BH, namely, it
scales as γ ∼ M−1.

We can now estimate the numerical values of γ from Equation (78) for the three cases
of black-hole mass intervals considered above, assuming again ε = 10−2

(1) Case of stellar-mass black-holes with M ∼ 10M�:

γ ' 1.57× 1023; (79)

(2) Intermediate-mass black-holes with M ∈
[
102 − 104]M�:

γ ' 1.57×
[
1022 − 1020

]
; (80)
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(3) Supermassive black-holes with M ∈
[
106 − 1010]M�:

γ ' 1.57×
[
1018 − 1014

]
. (81)

We conclude that, contrary to the classical expectation that predicts the Lorentz factor
to be infinite at the EH, the stochastic quantum gravity effect induced by the stochastic CC
makes the Lorentz factor necessary to reach the stochastic black-hole EH belt finite. Particles
able to enter the same stochastic belt are then candidates to generate particle tunneling
phenomena across the EH. In fact, the EH is stochastic too, and therefore it cannot be
located in a deterministic way at a fixed radial value. The fact that this tunneling effect
is induced solely by the CC makes it very weak. The reason for this is that the stochastic
behavior of the CC is maximum at the deSitter EH and, therefore, on cosmological scales,
is then transferred to operate on local and much smaller black-hole scales of the order
of Rs. Nevertheless, these calculations are enough to prove the possible existence of this
phenomenon. This remains independent of other quantum-gravity mechanisms expected
to operate at the Planck scale and predicted in the framework of other quantum gravity
theories, like loop quantum gravity.

7. Conclusions

The theory of General Relativity is characterized by the occurrence of classical singular-
itites in the space–time metric tensor solution of the Einstein field equations. In the case of
black-hole geometries, singularities can characterize either the black hole center or the event
horizon. In classical GR the latter is identified with a deterministic two-dimensional surface
which separates two neighboring, internal and external to the same surface, space-time
subdomains. These are regarded as truly incommunicable regions. Although the nature of
such singularities is different, it is generally believed that its appropriate treatment and
eventual resolution (i.e., regularization) can only be reached by means of a quantum theory
of the gravitational field.

In this paper, the subject of investigation is the quantum modifications of the classi-
cal black hole structure induced by stochastic quantum gravity. The focus refers, more
precisely, to the physical properties of the quantum-modified black-hole event horizon.
This has been accomplished in the framework of the stochastic formulation of the man-
ifestly covariant quantum gravity theory. The latter predicts the existence of massive
gravitons whose vacuum quantum interaction is described by the Bohm potential, which
ultimately generates an exclusively quantum-produced stochastic cosmological constant in
the Einstein field equations.

The main physical implication reached here is the expectation that actual black hole
event horizons, in general, are not deterministic, due to the stochastic character of the
quantum-produced cosmological constant. The result, which is an obvious implication of
the theory developed here, has been investigated in detail in the case of the Scwarzschild–
deSitter metric. According to the customary picture arising in classical GR, event horizons
are represented by impenetrable two-dimensional surfaces of space–time. In contrast, we
have shown that event horizons acquire a stochastic quantum character. This is inherited
from the stochastic behavior of the quantum-produced cosmological constant. The basic
implication is that, due the presence of such a kind of stochastic quantum effect, it is no
longer possible to assign the event horizon a deterministic (i.e., unique) physical location in
the space-time. The corresponding deterministic two-dimensional surface must be replaced
by an effective, finite-size, stochastic domain. The notion of a classical event horizon surface
must, therefore, be replaced by the new concept of stochastic event horizon belt. This
realizes a transition region of frame-dependent radial width δr between internal and
external subdomains, inside which the horizon has a certain probability of existence. The
notable feature is that the probability distribution can be shown to be uniquely prescribed
by quantum gravity theory itself, together with the related stochastic quantum-modified
Einstein field equations.
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An interesting physical implication of the theory developed here is that, based on
estimates of the stochastic cosmological constant determined by CQG-theory, the amplitude
of the frame-dependent radial size (δr) characteristic of the stochastic belt is not a model-
independent quantity. Unlike most of the current phenomenological theories of quantum-
gravity, it appears to be unrelated to the Planck length.

Instead, the typical width of the stochastic region surrounding the deterministic event
horizon depends parametrically on the central mass M of the black hole, scaled as δr ∼ M3.
Thus, as a consequence, it is found that, in the case of supermassive black holes, with mass
in the range M ∈

[
106 − 1010]M�, typically δr, can be estimated to be orders of magnitude

larger than the Planck length lP. Then, for intermediate-mass black holes with mass in
the range M ∈

[
102 − 104]M�, it is found that lp . δr � lp. Finally, for typical stellar-

mass black holes with mass M ∼ 10M�, δr may drop well below lP. From the physical
point of view, the existence of the stochastic event horizon belt has been interpreted as
supporting the onset of particle tunneling phenomena across the same horizon. Then, as a
related result, we calculated the minimum Lorentz γ-factor required for classical particles
with a radial motion in the Schwarzschild–deSitter metric to reach the stochastic belt and,
therefore, to enter the space–time domain where the tunneling effect has a non-vanishing
probability to occur. Contrary to the classical case which predicts the Lorentz factor to be
infinite on the horizon, in the quantum stochastic framework considered here, the same
Lorentz factor has a finite value. It depends on the mass of the central black-hole and scales
as γ ∼ M−1.

The conclusions drawn in this work provide new insight into the quantum properties
of black holes and might have crucial implications for the physics of quantum tunneling
phenomena that are expected to arise across stochastic event horizons. The conceptual
implications of the solution considered in the paper are challenging and provide a new
quantum-gravity mechanism for the treatment of black-hole event horizons. In fact, it has
been shown that these can exhibit a quantum stochastic nature. This is ultimately induced
by the ubiquitous existence of a quantum cosmological constant predicted by the manifestly
covariant quantum gravity theory and arising from the fundamental nonlinear Bohm
interaction among massive gravitons. The novel picture discussed in the paper provides
a physically meaningful framework for the possible generation and emission of massive
gravitons, particle or fields across black-hole subdomains. The conclusions reached here
are, therefore, meaningful in the context of quantum gravity, theoretical astrophysics and
cosmology. Their potential physical relevance concerns the characterization of quantum
phenomena and tunnelling effects that can occur in the surroundings of event horizons.
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