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Deep learning systems detect 
dysplasia with human‑like 
accuracy using histopathology 
and probe‑based confocal laser 
endomicroscopy
Shan Guleria1, Tilak U. Shah2,3, J. Vincent Pulido4,6, Matthew Fasullo2,3, Lubaina Ehsan5, 
Robert Lippman2, Rasoul Sali6, Pritesh Mutha2,3, Lin Cheng1, Donald E. Brown6 & 
Sana Syed5*

Probe-based confocal laser endomicroscopy (pCLE) allows for real-time diagnosis of dysplasia 
and cancer in Barrett’s esophagus (BE) but is limited by low sensitivity. Even the gold standard of 
histopathology is hindered by poor agreement between pathologists. We deployed deep-learning-
based image and video analysis in order to improve diagnostic accuracy of pCLE videos and biopsy 
images. Blinded experts categorized biopsies and pCLE videos as squamous, non-dysplastic BE, 
or dysplasia/cancer, and deep learning models were trained to classify the data into these three 
categories. Biopsy classification was conducted using two distinct approaches—a patch-level model 
and a whole-slide-image-level model. Gradient-weighted class activation maps (Grad-CAMs) were 
extracted from pCLE and biopsy models in order to determine tissue structures deemed relevant by 
the models. 1970 pCLE videos, 897,931 biopsy patches, and 387 whole-slide images were used to 
train, test, and validate the models. In pCLE analysis, models achieved a high sensitivity for dysplasia 
(71%) and an overall accuracy of 90% for all classes. For biopsies at the patch level, the model achieved 
a sensitivity of 72% for dysplasia and an overall accuracy of 90%. The whole-slide-image-level model 
achieved a sensitivity of 90% for dysplasia and 94% overall accuracy. Grad-CAMs for all models 
showed activation in medically relevant tissue regions. Our deep learning models achieved high 
diagnostic accuracy for both pCLE-based and histopathologic diagnosis of esophageal dysplasia and 
its precursors, similar to human accuracy in prior studies. These machine learning approaches may 
improve accuracy and efficiency of current screening protocols.

In patients with Barrett’s esophagus (BE) undergoing surveillance endoscopy, high-definition white light endos-
copy alone has poor overall sensitivity for dysplasia1. In order to increase the likelihood of identifying dysplasia, 
guidelines recommend the Seattle protocol, which involves taking four-quadrant random biopsies at 1–2 cm 
intervals2. However, this protocol does not permit real-time diagnosis or therapy and is labor-intensive, leading 
to low adherence3,4. Additionally, numerous studies have documented poor inter-observer agreement among 
pathologists when diagnosing both low-grade5–7 and high-grade dysplasia8, suggesting significant room for 
improvement in even the gold standard of histopathologic diagnosis. In fact, rates of progression from low-grade 
dysplasia to esophageal adenocarcinoma have been estimated as high as 11.4% in one study9, and missed cancer 
diagnosis (diagnosed within one year of endoscopy) rates are as high as 25%5.

Probe-based confocal laser endomicroscopy (pCLE) is a novel endoscopic imaging technique that permits 
real-time in-vivo histologic analysis of esophageal mucosa. It is based on the principle of illuminating a tissue 
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with a low-power laser and detecting the reflected light to provide in-depth images with a resolution of 1 micron, 
allowing for tissue architecture visualization10,11. In BE patients, previously published studies have documented 
high specificity for pCLE in identifying high-grade dysplasia and esophageal adenocarcinoma6. However, even 
among experts, the sensitivity of this technology for neoplasia is low, reported at 28% when interpreted blinded 
post-procedure and 12% when performed intra-procedurally12. Therefore, pCLE in its current iteration is not 
a suitable alternative to the Seattle protocol6. Additionally, pCLE is plagued by substantial motion artifact and 
requires specialized training to interpret, limiting its clinical utility13.

We suggest deploying deep-learning-based image recognition models, which offer the potential to improve 
accuracy of pCLE and histopathology and to recognize patterns that may have eluded human visual analysis. 
Within the field of gastroenterology, investigators (including our group) have applied deep learning imaging 
models to colonoscopy14–17, and capsule endoscopy data18,19. Such models have been also applied to whole-slide 
images of BE biopsies20 and to pCLE images to detect motion artifacts13.

In this study, we aim to determine the accuracy with which our deep learning models can classify BE and 
related diseases and indirectly compare these results to prior studies of human diagnostic accuracy. Second, 
we aim to determine the specific tissue structures on both pCLE and H&E-stained biopsy that the models are 
using for their decision-making process. Prior work done by this group has demonstrated some success in pCLE 
interpretation with the novel video deep learning models, but this question of which aspects of the pCLE videos 
were most relevant to the model remains unanswered21.

With regards to classification of biopsy images, there arises a problem specific to deep learning and other 
computer-based image recognition techniques. Deep-learning-based image recognition requires training a model 
on a labeled dataset consisting of images with their corresponding class labels in order for the model to learn 
the characteristics of abnormal tissue22. In other words, building these datasets usually involves tedious annota-
tions by humans, which create a high barrier to entry for researchers developing such models. Therefore, we 
additionally aimed to develop biopsy recognition models that limited the required amount of human annotation.

Methods
Participants and data collection.  pCLE videos.  pCLE videos were obtained from two prior prospec-
tively conducted studies in order to maximize data from each tissue class 6,23. In one study, patients undergoing 
surveillance of BE between 2014 and 2016 (Table 1) underwent high-definition white light imaging (HD-WLE) 
followed by narrow band imaging (NBI). All patients then underwent pCLE using a 2.5 mm gastroflex ultra-
high-definition probe (Cellvizio GI system, Mauna Kea, Paris, France) on any areas considered suspicious on 
HD-WLE or NBI, as well as in 4-quadrants at 1-cm intervals. Details regarding procedure techniques are pub-
lished elsewhere6. The pCLE videos were reviewed in real-time as well as by two experts [TS, PM – practicing 
gastroenterologists trained in endomicroscopy] blinded to all other patient data including histopathological di-
agnosis and patient characteristics. Disagreements were resolved by consensus between expert reviewers. Video 
sequences from a second clinical trial (2016–2018)23 were included to enrich the sample for normal squamous 
epithelium, which was lacking from the BE dataset. In this study, a 3-min pCLE video recording was obtained 
from each patient 6 cm above the top of the gastric folds in patients with refractory symptoms of gastroesopha-
geal reflux disease (GERD) and asymptomatic controls. The aim of this particular study was to assess whether 
time to visualize squamous cells on pCLE after visualization of fluorescein correlated with in vitro permeability, 
and predicted GERD vs. non-GERD. These videos were separated into five-second sequences for our pCLE 
models as outlined below.

Histopathology.  All patients in the prospective pCLE-BE study6 (2014–2016) underwent targeted biopsy or 
mucosal resection, as well as Seattle protocol biopsies. In an effort to increase the quantity of data, we also 
included patients who underwent standard of care biopsies during upper endoscopy for BE surveillance from 
2016–2019. These patients all underwent HD-WLE, NBI, and acetic acid chromoendoscopy followed by targeted 
biopsies/mucosal resection, and Seattle protocol biopsies. All biopsy specimens were fixed in formalin. Samples 
were embedded to exhibit full mucosal thickness. The paraffin blocks were sectioned into vertical sections of 3 
microns each to create biopsy slides that were stained with hematoxylin and eosin. All suspected diagnoses of 
dysplasia or malignancy required consensus of two or more pathologists. Pathology results were prospectively 
recorded.

pCLE deep learning video model design.  pCLE datasets.  In order to standardize the length of each 
pCLE video for analysis, the raw pCLE videos from each patient were divided into five-second sequences (at 24 
frames per second, so each sequence contained 120 frames), and those sequences that fell short of the 5 s were 
padded with blank frames. Each of these sequences was reviewed in a blinded fashion by two trained pCLE 
interpreters and annotated as one of 3 classes: squamous, Barrett’s (non-dysplastic intestinal metaplasia), and 
dysplasia/cancer. Disagreements were resolved by a third expert or by consensus. The frames with a high degree 
of noise (i.e. signals indiscernible by the annotator) were excluded from the dataset. In instances where there 
are two classes present in one five-second sequence, a protocol was created in which the sequence was labeled 
with the class of higher severity (i.e. dysplasia > Barrett’s > squamous). For example, if both dysplasia and Bar-
rett’s characteristics are present, then the annotator labeled the clip as “dysplasia.” These reviewed and annotated 
sequences represent the ground truth in order to calculate metrics of performance. The train/validation/test sets 
were split at the patient level and were randomly distributed in a 60/20/20 ratio, respectively (Table S1). Further 
details on the dataset transformation are supplied in the supplement.
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pCLE video classification models.  The primary issue in conducting the analysis of pCLE video sequences with 
these datasets is that, given the relative rarity of dysplasia compared to non-dysplastic Barrett’s or squamous 
tissue24, the dysplasia class represents less than 4% of the sequences in the complete pCLE dataset (Table S1). In 
order to circumvent this issue, we developed one model that uses traditional attention layers (Attn) and another 
that uses class-specific multi-module attention layers (MultiAttn) that would perform better with an imbalanced 
dataset21. The general architecture of the model consists of three sequential modules. First, the frame-level net-
work converts video frames into a 256-dimensional frame representation consisting of 1D embeddings. Second, 
the pooling network aggregates these frame-level representations into a video-level representation (this is where 
the Attn and MultiAttn models were employed). Lastly, the video-level representation was used to obtain prob-
abilities of the video sequence belonging to one of the three tissue classes. Further details for these methods are 
provided in the supplement (Fig. S1).

pCLE video model visualization.  In order to determine the tissue structures that the model used for its deci-
sion-making; we required a tool capable of visualizing the areas of most relevance to the models. Gradient-
weighted Class Activation Maps (Grad-CAMs) highlight regions of images that are relevant to the classification 
of that image25. They represent a means of providing model “explainability,” which enables the users to verify 

Table 1.   Basic patient characteristics. * Labeled train and test sets comprise a relatively small number of 
labeled patient data compared to the total (25 of 130 patients). The remaining data (n = 104) were used in 
the unlabeled training set for the patch-level semi-supervised learning model. Basic patient characteristics, 
subdivided by pCLE versus biopsy and by training versus validation versus test set for the models. Note that 
a given individual patients’ biopsy or pCLE data may have been placed into multiple datasets, but the specific 
sequences and biopsies in each dataset were unique and without crossover.

Biopsy Patients

Variable, mean 
(SD) Total (n = 130)* Train Set (n = 15) Test Set (n = 11)

Unlabeled Train Set 
(n = 104) p-value

Age, years 65 (8.4) 67.3 (8.7) 67.2 (11.0) 63.9 (8.0) 0.141

BMI 30.0 (7.0) 28.7 (5.8) 28.7 (3.2) 30.3 (7.5) 0.954

BE Length, Circum-
ferential, cm 2.1 (3.2) 1.9 (1.9) 3.5 (3.9) 1.9 (3.3) 0.353

BE Length, Maxi-
mal, cm 3.7 (3.2) 4.5 (2.6) 4.6 (3.6) 3.4 (3.3) 0.216

Duration of BE, 
years 5 (5.2) 5 (5.0) 8 (6.5) 5 (5.0) 0.340

Hiatal Hernia Size, 
cm 2.4 (2.0) 2.7 (2.1) 3.5 (2.5) 2.2 (1.9) 0.323

Variable, n (%) Total (n = 130)* Train Set (n = 15) Test Set (n = 11)
Unlabeled Train Set 
(n = 104)

Train vs. Test 
p-value

Train vs. Unlabeled 
p-value

Unlabeled vs. Test 
p-value

Male Gender 125 (96.1%) 15 (100%) 11 (100%) 99 (95.2%) 1.000 0.022 0.022

Caucasian Race 121 (93.1%) 14 (93.3%) 11 (100%) 96 (92.3%) 0.301 0.883 0.003

PPI Use 109 (83.8%) 14 (93.3%) 10 (90.9%) 85 (81.7%) 0.822 0.121 0.332

Current Smoker 30 (23.3%) 4 (26.7%) 1 (9.1%) 25 (24.3%) 0.220 0.844 0.115

Prior Smoker 91 (70.5%) 11 (73.3%) 6 (54.5%) 74 (71.8%) 0.319 0.903 0.269

pCLE Patients

Variable, mean 
(SD) Total (n = 79) Train Set (n = 68)

Validation Set 
(n = 65) Test Set (n = 63) p-value

Age, years 63 (8.1) 63 (8.3) 63 (8.3) 63 (8.4) 0.999

BMI 30.1 (6.8) 29.8 (6.8) 29.7 (6.7) 29.4 (6.5) 0.912

BE Length, Circum-
ferential, cm 1.7 (3.0) 1.4 (2.4) 1.4 (2.5) 1.4 (2.5) 0.984

BE Length, Maxi-
mal, cm 3.2 (3.1) 2.9 (2.5) 3.0 (2.6) 3.0 (2.5) 0.995

Duration of BE, 
years 5 (5.7) 5 (5.6) 5 (5.7) 5 (5.2) 0.934

Hiatal Hernia Size, 
cm 2.3 (2.4) 2.1 (2.2) 2.2 (2.2) 2.2 (2.2) 0.994

Variable, n (%) Total (n = 79) Train Set (n = 68)
Validation Set 
(n = 65) Test Set (n = 63)

Train vs. Validation 
p-value

Train vs. Test 
p-value

Validation vs. Test 
p-value

Male Gender 70 (90.9%) 62 (93.9%) 60 (93.8%) 59 (96.7%) 0.946 0.454 0.433

Caucasian Race 65 (84.4%) 56 (84.8%) 54 (84.4%) 50 (82.0%) 0.940 0.663 0.719

PPI Use 63 (80.8%) 53 (80.3%) 51 (79.7%) 51 (83.6%) 0.930 0.628 0.571

Current Smoker 24 (37.5%) 23 (42.6%) 22 (41.5%) 22 (43.1%) 0.910 0.955 0.867

Prior Smoker 48 (75.0%) 42 (75.0%) 39 (73.6%) 39 (73.6%) 0.866 0.866 1.000
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the features used by the model for classification, ideally the same features (or new ones) that pathologists use to 
make the same classification. In order to achieve a visual heat map of the areas of the pCLE frames that were of 
the highest relevance to the model, we first split the video sequences into individual frames as our Grad-CAMs 
require still images. We then extracted Grad-CAMs from these single frames of sample sequences from each 
class, with the sample frames being manually chosen to avoid frames that contained motion artifact and other 
distractors.

Biopsy deep learning model design.  Esophageal biopsy datasets.  A total of 387 whole-slide images 
from 130 unique patients were collected. As mentioned in the introduction, a significant issue for deep-learning-
based image analysis of whole-slide images is that computers are generally not as adept as humans at quickly 
scanning a large slide and discovering areas of relevance. In practice, this requires substantial manual annota-
tion of the whole-slide image in order to provide the models with patch-level labels of each class rather than 
simply labeling the entire whole-slide image with the diagnosis given by the pathologist. As such, a selection 
of the whole-slide images was manually annotated to highlight examples of each class (squamous, Barrett’s, 
and dysplasia) within each whole-slide image (Fig. 1). In total, among 387 whole-slide images, 68, 51, and 85 
areas of squamous, Barrett’s, and dysplastic tissue were annotated, respectively. The whole-slide images were 
then divided into 1000- × 1000-pixel patches, curated to remove patches with limited utility (see supplemental 
materials for additional pre-processing steps). These curated and labeled patches represent the ground truth for 
this model, allowing for the calculation of performance metrics. In total, the data were split into a training set 
and a test set at the patch level (i.e. not at the patient level), with the training set contained 2,849 labeled patches 
and 889,208 unlabeled patches, and the test set contained 2,645 labeled patches (the model was blinded to these 
labels) (Table S1). In the same fashion as with pCLE frames, we augmented the labeled and unlabeled datasets 
by performing horizontal and vertical rotation transformations. Slides stained with H&E are subject to subtle 
but significant differences in coloration depending on their age and the specific facility in which they were pro-
cessed. In order to ensure that the model learns based on tissue structure rather than these color variations, we 
color-normalized the patches by converting them digitally to grayscale using the standard grayscale transforma-
tion as follows: gray_pixel = 0.114 * blue_pixel + 0.299 * red_pixel + 0.587 * green_pixel. As the samples collected 
for this study came from the same institution and were collected within a short time frame, the effect of color 
variations was subtle and required only the standard RGB-to-grayscale transformation.

Esophageal biopsy image classification models.  Patch‑level model.  A patch-level model accomplishes two pri-
mary goals. First, it aims to classify 1000- × 1000-pixel patches without relying on a human to label hundreds 
of thousands of images. Second, such a model is capable of producing useful Grad-CAMs, allowing for insight 
into which features of the image were important to the model. A whole-slide model (as outlined below) cannot 
accomplish this task. Given the sheer number of patches extracted from the whole-slide images, we opted for 
a patch-level model that could be trained using a relatively small number of labeled data and a large number 
of unlabeled data. This approach is known as semi-supervised learning, and our specific approach known as 

Figure 1.   Example of the annotation process on a typical whole-slide image. Red, green, and yellow highlights 
indicate areas that were annotated and from which labeled patches were taken. Squamous tissue (black 
arrow), non-dysplastic Barrett’s with Goblet cells (black arrowhead), and dysplastic tissue with crowding and 
hyperchromasia (lower zoomed section) were all present within the same whole-slide image, demonstrating the 
value of annotation to avoid model confusion. Created using openslide 1.1.2 (https​://opens​lide.org/api/pytho​n/) 
and PIL 2.2.2 (https​://pypi.org/proje​ct/Pillo​w/2.2.2/).

https://openslide.org/api/python/
https://pypi.org/project/Pillow/2.2.2/
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MixMatch26. During the training process, two distinct processes, “pseudo-labeling” and “MixUp,” iteratively 
organize the unlabeled samples and cluster them with similarly labelled samples. The effect results in a method 
that creates an “illusion” of training on a fully-annotated dataset. Further details of this method are outlined in 
the Supplemental Methods section (Fig. S2). In order to cross-validate this model, we designated a fixed test 
set of patches and split the training set (consisting of both labeled and unlabeled patches) into five randomized 
groups. Each of these five training sets was used to train the model and then test against the fixed test set in order 
to demonstrate that the model is able to learn effectively across multiple training sets.

Esophageal Whole‑Slide‑Image‑Level Model.  In addition to a patch-level model, we also developed a model 
based on a convolutional auto-encoder that is capable of classifying the entire whole-slide image rather than 
independent patches, more closely aligning with how a human pathologist diagnoses a slide. Such models have 
shown success in other applications such as breast malignancy27, but to our knowledge this work is the first to 
apply them to whole-slide image classification in esophageal dysplasia.

The whole-slide classification model based on a deep convolutional auto-encoder5 was designed as a two-step 
clustering process in order to decrease the dimensionality of whole-slide images by extracting key features and 
preserving core information. In the first step, the whole-slide images were encoded as a histogram by applying a 
combination of an autoencoder and a clustering algorithm. In the second step, a classification model was trained 
on the encoded whole-slide images. The whole-slide images that were used to both train the autoencoder and 
construct the clusters in the first step were not used in the second step (training the classifier). A total of 387 
whole-slide images from 130 unique patients were collected, with the number of whole-slide images increased 
to 650 after pre-processing and cropping. From there, 115 whole-slide images from 10 patients were selected 
randomly to train the autoencoder to extract patch-level image features in the first step, and the rest of the dataset 
(535 whole-slide images from 120 patients) was used for training and evaluation of classification in the second 
step. After encoding these 535 whole-slide images, we employed five-fold cross-validation in which, in each fold, 
images from 24 patients were used as the test set with the images from the remaining patients as the training set. 
Further details of this method are described in the Supplemental Methods.

Esophageal biopsy model visualization.  As with pCLE analysis, visualization of the model’s output is crucial in 
order to determine the tissue structures that the model used for its decision-making and ultimately to obtain 
physician trust in these deep learning approaches. We extracted tissue feature activation heat maps – Grad-
CAMs – by applying an established deep learning methodology25,29. We extracted Grad-CAMs at the patch-level 
in order to visualize areas of the patch that were of the highest relevance to the model.

Ethical considerations.  This study was approved by the Hunter Holmes McGuire Veterans Affairs Medical 
Center Institutional Review Board and the University of Virginia Institutional Review Board for Health Science 
Research (IRB-HSR #21,328). All human tissue samples in this study were obtained in the two prior studies 
referenced above6,23, and all samples were obtained with patients’ informed consent in accordance with the 
Declaration of Helsinki.

Statistical analysis.  Statistical analysis was performed using MiniTab Express (version 1.5.3, MiniTab, LLC). 
Continuous data were compared with two-sample t  tests and one-way ANOVA. Categorical variables (e.g. 
demographic data such as gender ratios) were compared with two-way proportion tests. Differences between 
variables with a p-value < 0.05 were considered significant. The pCLE models were developed using Tensorflow 
version 1.14. The biopsy models were performed using Pytorch version 1.0.0 and Torchvision version 0.2.2. The 
primary programming language used was Python.

Results
Patient population.  This study included 387 whole-slide images from 130 patients with biopsy data and 
79 patients with pCLE data, and the patients were split into multiple individual datasets (as outlined below) with 
comparable basic characteristics (Table 1). For the biopsy models, labeled train and test sets comprise a relatively 
small number of labeled patient data compared to the total (26 of 130 patients). The data from the remaining 104 
patients were used in the unlabeled training set for the patch-level semi-supervised learning model. Additional 
details and prior analyses are published in previous work6.

Deep learning models differentiate pCLE videos of squamous tissue, non‑dysplastic BE, and 
dysplasia.  Our pCLE-based models were deployed to classify pCLE videos as representing squamous tissue, 
non-dysplastic BE, or dysplasia/cancer. The classification performances for the two pCLE models designed to 
detect dysplasia given its relative rarity in the dataset – the Attn and MultiAttn models – are outlined in Table 2 
and Fig.  2. Both Attn and MultiAttn had high specificity in diagnosing all three classes of tissue (weighted 
averages of 90% and 92%, respectively). MultiAttn demonstrated a much higher sensitivity for dysplasia (71%) 
compared to Attn (57%). Overall, the Attn model performed well with a weighted average accuracy of 96% for 
all classes compared to MultiAttn’s slightly lower average accuracy of 91%. Visualization of the models’ output 
via Grad-CAMs (Fig. 3) demonstrates that the models are capable of identifying medically relevant structures 
in each class, such as intrapapillary loops in squamous tissue or saw-toothed epithelium in dysplastic tissue (see 
Table 3 for additional dysplasia criteria).
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Deep learning models differentiate biopsies of squamous tissue, non‑dysplastic BE, and dys‑
plasia at two magnification levels.  Biopsy model performance at the 1000‑ × 1000‑pixel patch level.  Ta-
ble 2 summarizes the results of the patch-level model designed to differentiate between our three tissue types 
of interest using 1000- × 1000-pixel patches that represent small portions of whole-slide images. Our results 
demonstrate that the model can capably distinguish between normal squamous tissue, non-dysplastic BE, and 
dysplasia. The mean overall accuracy of the model is 90% (95% CI, 87–92%), and for dysplasia in particular it 
performs well with a mean sensitivity of 72% (95% CI, 61–83%) and specificity of 89% (95% CI, 85–93%). Grad-
CAMs for the three different classes demonstrate that the patch-level model is capable of highlighting features 
relevant to each class (Fig. 4). For example, Fig. 4C shows dysplasia Grad-CAMs with high activation in areas 
of pleomorphism and hyperchromasia (see Table 3 for additional dysplasia criteria and Table S2 for additional 
Grad-CAM examples for each class) and, importantly, low activation in areas that clearly do not represent dys-
plasia, such as connective tissue and nondysplastic BE.

Biopsy model performance at the whole‑slide‑image level.  Table 2 summarizes the results of the whole-slide-
image-level model, which demonstrate that this model can also distinguish between normal squamous tis-
sue, non-dysplastic BE, and dysplasia. The overall accuracy of the model is slightly higher than the patch-level 
model at 94% (95% CI, 92–97%). For dysplasia in particular it performs well with a sensitivity of 90% (95% CI, 
79–100%) and specificity of 96% (92–100%), but the confidence intervals tend to be wider given the relatively 
small number of whole-slide images compared to patches.

Table 2.   Performance metrics for deep learning models, Mean (95% CI) if applicable.

Modality Model Specificity Sensitivity PPV NPV Accuracy F1 Score

pCLE

Attn

Dysplasia 97% 57% 40% 98% 96% 47%

Barrett’s 88% 89% 94% 80% 89% 92%

Squamous 93% 90% 84% 96% 92% 87%

Weighted Aver-
age 90% 88% 89% 85% 90% 89%

MultiAttn

Dysplasia 92% 71% 23% 99% 91% 34%

Barrett’s 91% 81% 95% 70% 85% 88%

Squamous 93% 92% 85% 96% 93% 88%

Weighted Aver-
age 92% 84% 89% 79% 87% 86%

Biopsy

Patch-level

Dysplasia 89% (85–93) 72% (61–83) 31% (25–37) 98% (97–99) 88% (84–91) 43% (38–47)

Barrett’s 91% (89–93) 81% (74–88) 91% (89–92) 82% (77–88) 86% (83–89) 85% (82–89)

Squamous 100% (100–100) 92% (91–93) 99% (98–99) 94% (93–95) 96% (95–97) 95% (94–96)

Weighted Aver-
age 93% (91–95) 82% (75–88) 74% (76–90) 92% (89–94) 90% (87–92) 74% (71–77)

Whole-slide-image-level

Dysplasia 96% (92–100) 90% (79–100) 85% (58–100) 93% (80–100) 93% (90–97) 85% (70–100)

Barrett’s 93% (87–99) 94% (88–100) 86% (66–100) 94% (85–100) 93% (89–96) 89% (78–100)

Squamous 100% (100–100) 97% (95–99) 100% (100–100) 99% (98–100) 99% (99–100) 99% (97–100)

Weighted Aver-
age 97% (95–99) 93% (89–96) 94% (93–96) 92% (84–100) 94% (92–97) 93% (91–95)

Specificity =
TN

(FP+TN)

Sensitivity =
TP

(TP+FN)

PPV =
TP

(TP+FP)

NPV =
TN

(TN+FN)

Accuracy =
(TP+TN)

(TP+FP+FN+TN)

F1 = 2∗
PPV∗Sensitivity

(PPV+Sensitivity)

TP = True Posi-
tive
FP = False Posi-
tive
TN = True Nega-
tive
FN = False Nega-
tive
PPV = Positive 
Predictive Value
NPV = Negative 
Predictive Value
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Discussion
Diagnosis of BE with and without dysplasia is critical to the prevention and management of esophageal malig-
nancy, and the current state of diagnostic methodology leaves significant room for improvement. The goal of 
this investigation was to train deep learning models to classify both pCLE videos and whole-slide biopsies to 
model the gold standard of histopathological diagnosis4. Our deep learning models for pCLE achieved sensitivi-
ties for dysplasia as high as 71% with accuracy for dysplasia above 90%. In previous studies, reported human 
real-time pCLE sensitivity compared to pathological diagnosis is 60% for low-grade dysplasia and 67% for 
high-grade dysplasia/cancer, suggesting that our deep-learning-based models are indirectly comparable with 
human interpretation, although direct comparisons are needed to demonstrate this more clearly6. While these 
results are noteworthy of their own accord, one major issue plaguing the use of artificial intelligence in medi-
cine is the so-called “black box” of deep learning, an analogy which describes the lack of insight that humans 
have into how the models arrive at their decision-making30. Our effort to extract Grad-CAMs from our pCLE 
models helps illuminate this black box by demonstrating exactly which tissue structures the model uses to make 
its decisions. Our model’s predictions tend to be based on the same criteria that humans use for pCLE-based 
diagnosis, such as glandular crowding and pleomorphism to detect dysplasia, as demonstrated qualitatively by 
the selected Grad-CAMs. These findings may open the road for increased utilization of pCLE in bedside appli-
cations without requiring an expert interpreter, something currently under-investigated in the field of artificial 
intelligence in medicine30.

In an attempt to model the gold standard of histopathological diagnosis4, our biopsy-based deep learning 
models achieved an overall accuracy approaching that of expert humans as reported in previous studies31. We 

Figure 2.   Confusion matrices for the two pCLE models (Attn and MultiAttn) designed to detect dysplasia 
given its relative rarity. Attn (top left, top right) and the MultiAttn (bottom left, bottom right) models for pCLE 
classification. The matrices on the left represent normalized data in the form of percentages (e.g. the MultiAttn 
model correctly classified 71% of true dysplasia sequences). Darker colors indicate higher percentages in a given 
square. The matrices on the right represent the same data in the form of raw numbers of sequences in each 
class. Darker colors indicate higher numbers of sequences. The top-left to bottom-right diagonal represents 
accordance between the true classification and the classification predicted by the model. Created using 
matplotlib 3.3.2 (https​://matpl​otlib​.org/).

https://matplotlib.org/
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achieved superb specificity for all classes (squamous, non-dysplastic Barrett’s, and Barrett’s esophagus with 
dysplasia) and reasonably high sensitivity for dysplasia. In practice, high sensitivity for dysplasia translates to 
reduced risk of missed dysplasia progressing to cancer5,9. However, the low positive predictive values and high 
negative predictive values for dysplasia with both the pCLE models and the patch-level biopsy suggests that, 
in practice, these would perhaps be a more useful tool for ruling out suspected dysplasia rather than detecting 
dysplasia in non-suspicious areas. The whole-slide image model appeared to have somewhat higher sensitivity 
and positive predictive value for dysplasia, but relatively wide confidence intervals produced during the cross-
validation suggest that superiority of this model cannot be concluded with this small dataset.

As was the case with pCLE, utilizing deep learning to highlight areas of interest on biopsy images in the form 
of Grad-CAMs illuminates the otherwise black box of deep learning and provides much needed “explainability” 
for clinicians and researchers. Our Grad-CAMs support the idea that the model is discovering for itself the 
features that define each class of tissue. Continued improvements to these models may be able to sub-classify 

Figure 3.   Examples of pCLE images from each class (top row) and gradient-weighted Class Activation Maps 
(Grad-CAMs) that highlight regions of pCLE frames relevant to classification by the convolutional neural 
network models (bottom row). See 20-micron reference bar for resolution (bottom right). Red/orange coloration 
indicates high activation while blue/green coloration indicates low activation. Left column: an example of 
squamous tissue with the Grad-CAM clearly focusing on the intrapapillary loop in the center as the region of 
interest. Middle column: an example of Barrett’s esophagus with the goblet cells and columnar epithelium being 
highlighted as the regions of interest. Right column: an example of dysplasia with the Grad-CAM focusing on 
the poorly organized, saw-toothed epithelium without clear goblet cells that is indicative of dysplasia. Created 
using matplotlib 3.3.2 (https​://matpl​otlib​.org/).

Table 3.   Criteria for the diagnosis of dysplasia using probe-based confocal laser endomicroscopy (pCLE) and 
hematoxylin-and-eosin-stained biopsies.

pCLE Criteria for Dysplasia31,33 Biopsy Criteria for Dysplasia34

Enlarged, irregular cells Distorted gland architecture

Glands vary in size and spacing Gland crowding

Crowded glands Pleomorphism

Variable epithelium thickness Enlarged nuclei

Saw-toothed epithelium Mitotic activity

Relative lack of goblet cells Hyperchromasia

https://matplotlib.org/
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dysplasia as indefinite, low-grade, or high-grade, a notoriously tricky distinction to make in esophageal neoplasia. 
Grad-CAMs focused on this task may then be able to draw attention to previously unknown distinctions between 
the two severity subclasses of dysplasia and aid human pathologists’ in their diagnosis.

With regards to the multimodal nature of the study, which explored two pCLE video models as well as two 
distinct methods for biopsy analysis with deep learning, the goal was to present methodologies for classifying 
esophageal tissue using both minimally invasive (i.e. pCLE) and more traditionally invasive (i.e. biopsy) modali-
ties. Our results suggest that each modality has its strengths and limitations. For example, pCLE video analysis 
avoids the need for biopsy and could potentially be employed in real time during an endoscopy, which would not 
be possible for biopsy. However, its sensitivity for dysplasia is lower than the biopsy models, whole-slide image 
in particular, and it may be better suited for identifying Barrett’s in an at-risk individual presenting for first-time 
screening. When comparing biopsy models, our study also suggests that the whole-slide image biopsy analysis 
may have higher sensitivity for dysplasia in particular, but as each data point is an entire whole-slide image, it 
requires substantially larger datasets than the patch-level model in order to achieve narrow confidence intervals 
during validation. The multimodal nature of this study demonstrates proof of concept for each of these methods, 
opening the door for further exploration of each.

Major strengths of our study include the relatively large volume of data used to train the models, particularly 
in terms of patch-level biopsy analysis, and the wide variety of performance metrics (e.g. accuracy, sensitivity/
specificity, PPV/NPV, F1 score) used to assess the validity of said models, something often missing from work 
done on deep learning in medicine30. Typically, large volumes of data involve subsequently high time and effort 
costs to interpret the data. An additional strength of our study is that our biopsy classification tools used novel 
deep learning annotation augmentation techniques to minimize the amount of upfront annotation by clinicians 
and researchers. Moreover, our use of Grad-CAMs as heat maps for important tissue features will help increase 
user confidence in artificial-intelligence-based decision-making. The value of such an explainable artificial-
intelligence-based diagnostic tool would be to provide opportunity for physicians undertrained in pCLE to use 
it with confidence rather than requiring intensive training in pCLE interpretation6.

However, despite these strengths, we experienced limitations as well. Our primary limitation was the avail-
ability of dysplasia data, particularly for pCLE video sequences. This paucity of data also limited our ability to 
perform cross-validation studies for the pCLE results as we did for the biopsy models, limiting the generaliz-
ability of our pCLE results. In order to more definitively demonstrate the performance of such deep learning 
models, future studies will require larger and more balanced datasets. Although in reality, diseased tissue will 

Figure 4.   Gradient-weighted Class Activation Maps (Grad-CAMs) that highlight regions of biopsy images 
that are relevant to classification by the deep learning model (hematoxylin and eosin stain, 40 × magnification). 
Red/orange coloration indicates high activation while blue/green coloration indicates low activation. Created 
using matplotlib 3.3.2 (https​://matpl​otlib​.org/). (A) Grad-CAM (A1) and corresponding biopsy patch (A2) for 
an example of squamous tissue abutting intestinal tissue. The model clearly shows the highest activation in the 
squamous area while showing lower activation in the surrounding intestinal-like tissue with visible goblet cells 
(yellow arrow). (B) Grad-CAM (B1) and corresponding biopsy patch (B2) for an example of non-dysplastic 
Barrett’s. Here, the model shows the highest activation in the intestinal-like tissue with visible goblet cells (green 
arrow) and low activation in the surrounding connective tissue. (C) Grad-CAMs (C1 and C3) and corresponding 
biopsy patches (C2 and C4) for examples of dysplasia. Note that the regions of high activation are focused on 
areas of nuclear atypia and hyperchromasia while ignoring clearly non-dysplastic tissue (red arrows).

https://matplotlib.org/
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always be less common than healthy tissue, training deep learning models on large, balanced datasets will allow 
for improved testing performance on imbalanced test sets that better reflect the real world. Our study design 
also does not account for direct comparisons of human interpreters to our deep learning models, meaning that 
our comparisons to human results are indirect. Additionally, gastric tissue was not included in our analysis, 
somewhat limiting the ability of these models to be applied to any esophageal biopsy. Moreover, examples of 
tissue labeled as either “intestinal metaplasia” or “dysplasia” that appeared to be borderline or indefinite were 
excluded from the models’ training and testing sets in order to provide the clearest examples of each class as 
inputs for the model. In reality, these classes are not distinct and exist on a spectrum. Identifying dysplasia is 
further clouded by the fact that inflammation of the esophagus shares many features with dysplasia32, and our 
models did not account for these changes. Future analyses should aim to include even larger datasets, allowing 
for the incorporation of more ambiguous examples in order to hone the model’s accuracy and clinical utility, a 
task that is made easier using our specific approaches.

Conclusion
Deep learning models represent an exciting opportunity to improve upon the gold standard of diagnosis of 
esophageal dysplasia and its precursors, both in the form of classic histopathological diagnosis as well as by 
novel technologies such as pCLE. Our work indirectly suggests that these models may achieve similar accuracy 
as human interpreters, paving the way first for more direct comparisons of humans and deep learning models 
and then for increased clinical application of these technologies. Further work in this area will advance the 
clinical use of deep learning in medicine, improving the effectiveness and efficiency of patient care in the field 
of gastroenterology and beyond.

Received: 8 August 2020; Accepted: 15 February 2021

References
	 1.	 Sharma, P. et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: 

a prospective, international, randomised controlled trial. Gut 62, 15–21 (2013).
	 2.	 Shaheen, N. J., Falk, G. W., Iyer, P. G. & Gerson, L. B. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. 

Am. J. Gastroenterol. 111, 30 (2016).
	 3.	 Falk, G. W., Rice, T. W., Goldblum, J. R. & Richter, J. E. Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett’s 

esophagus with high-grade dysplasia. Gastrointest. Endosc. 49, 170–176 (1999).
	 4.	 Kariv, R. et al. The Seattle protocol does not more reliably predict the detection of cancer at the time of esophagectomy than a less 

intensive surveillance protocol. Clin. Gastroenterol. Hepatol. 7, 653–658 (2009).
	 5.	 Wani, S., Rubenstein, J. H., Vieth, M. & Bergman, J. Diagnosis and management of low-grade dysplasia in Barrett’s esophagus: 

expert review from the Clinical Practice Updates Committee of the American Gastroenterological Association. Gastroenterology 
151, 822–835 (2016).

	 6.	 Shah, T. et al. Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic 
surveillance of Barrett’s esophagus. Endosc. Int. Open 6, E414–E420 (2018).

	 7.	 Vennalaganti, P. et al. Discordance among pathologists in the United States and Europe in diagnosis of low-grade dysplasia for 
patients with Barrett’s esophagus. Gastroenterology 152, 564-570.e4 (2017).

	 8.	 Downs-Kelly, E. et al. Poor interobserver agreement in the distinction of high-grade dysplasia and adenocarcinoma in pretreatment 
Barrett’s esophagus biopsies. Am. J. Gastroenterol. 103, 2333–2340 (2008).

	 9.	 Montgomery, E. et al. Dysplasia as a predictive marker for invasive carcinoma in Barrett esophagus: a follow-up study based on 
138 cases from a diagnostic variability study. Hum. Pathol. 32, 379–388 (2001).

	10.	 ASGE Technology Committee. Confocal laser endomicroscopy. Gastrointest. Endosc. 80, 928–938 (2014).
	11.	 Muldoon, T. J., Anandasabapathy, S., Maru, D. & Richards-Kortum, R. High-resolution imaging in Barrett’s esophagus: a novel, 

low-cost endoscopic microscope. Gastrointest. Endosc. 68, 737–744 (2008).
	12.	 Bajbouj, M. et al. Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of 

neoplasia in Barrett’s esophagus. Endoscopy 42, 435–440 (2010).
	13.	 Aubreville, M. et al. Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images. Int. 

J. Comput. Assist. Radiol. Surg. 14, 31–42 (2019).
	14.	 Komeda, Y. et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: 

preliminary experience. Oncology 93, 30–34 (2017).
	15.	 Byrne, M. F. et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of 

unaltered videos of standard colonoscopy using a deep learning model. Gut 68, 94–100 (2019).
	16.	 Zhang, R. et al. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical 

domain. IEEE J. Biomed. Health Inform. 21, 41–47 (2017).
	17.	 Yu, L., Chen, H., Dou, Q., Qin, J. & Heng, P. A. Integrating online and offline three-dimensional deep learning for automated polyp 

detection in colonoscopy videos. IEEE J. Biomed. Health Inform. 21, 65–75 (2017).
	18.	 Zhou, T. et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method. Comput. 

Biol. Med. 85, 1–6 (2017).
	19.	 He, J.-Y., Wu, X., Jiang, Y.-G., Peng, Q. & Jain, R. Hookworm detection in wireless capsule endoscopy images with deep learning. 

IEEE Trans. Image Process. 27, 2379–2392 (2018).
	20.	 Tomita, N. et al. Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histo-

pathological slides. JAMA Netw. Open 2, e1914645 (2019).
	21.	 Pulido, J. V. et al. Screening for Barrett’s esophagus with probe-based confocal laser endomicroscopy videos. In 2020 IEEE 17th 

International Symposium on Biomedical Imaging (ISBI), 1659–1663 (2020).
	22.	 Deo, R. C. Machine learning in medicine. Circulation 132, 1920–1930 (2015).
	23.	 Mutha, P. et al. Probe-based confocal laser endomicroscopy predicts non-erosive reflux disease during routine upper endoscopy 

in humans: 370. Off. J. Am. Coll. Gastroenterol. ACG​ 113, S212–S213 (2018).
	24.	 Yousef, F. et al. The incidence of esophageal cancer and high-grade dysplasia in Barrett’s esophagus: a systematic review and meta-

analysis. Am. J. Epidemiol. 168, 237–249 (2008).



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5086  | https://doi.org/10.1038/s41598-021-84510-4

www.nature.com/scientificreports/

	25.	 Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 
IEEE International Conference on Computer Vision, 618–626 (2017).

	26.	 Berthelot, D. et al. Mixmatch: a holistic approach to semi-supervised learning. In Advances in Neural Information Processing 
Systems, 5050–5060 (2019).

	27.	 Feng, Y., Zhang, L. & Mo, J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/
ACM Trans. Comput. Biol. Bioinform. 17, 91–101 (2020).

	28.	 Birkhoff, G. et al. CBMS-NSF regional conference series in applied mathematics. (1989).
	29.	 Sali, R. et al. CeliacNet: celiac disease severity diagnosis on duodenal histopathological images using deep residual networks. 

ArXiv191003084 Cs Eess Q-Bio Stat (2019).
	30.	 Le Berre, C. et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 158, 76-94.e2 (2020).
	31.	 Gaddam, S. et al. Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of 

dysplasia in Barrett’s esophagus. Am. J. Gastroenterol. 106, 1961 (2011).
	32.	 Goldblum, J. R. Controversies in the diagnosis of Barrett esophagus and Barrett-related dysplasia: one pathologist’s perspective. 

Arch. Pathol. Lab. Med. 134, 1479–1484 (2010).
	33.	 Wallace, M. B. et al. Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s 

esophagus with probe-based confocal laser endomicroscopy. Gastrointest. Endosc. 72, 19–24 (2010).
	34.	 Booth, C. L. & Thompson, K. S. Barrett’s esophagus: a review of diagnostic criteria, clinical surveillance practices and new develop-

ments. J. Gastrointest. Oncol. 3, 232–242 (2012).

Acknowledgments
Research reported in this publication was supported by the National Institute of Diabetes and Digestive and 
Kidney Diseases of the National Institutes of Health under award number K23DK117061-01A1 (SS). No authors 
have any competing financial or non-financial interests to disclose.

Author contributions
The manuscript was written by S.G. with assistance from J.V.P. and R.S. J.V.P., R.S., and S.G. prepared Figs. 1, 2, 
3 and 4. Data analysis and model building were done by J.V.P. and R.S. All authors contributed to the conception 
and design of the study, and all authors reviewed the manuscript for final approval.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-84510​-4.

Correspondence and requests for materials should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-84510-4
https://doi.org/10.1038/s41598-021-84510-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning systems detect dysplasia with human-like accuracy using histopathology and probe-based confocal laser endomicroscopy
	Methods
	Participants and data collection. 
	pCLE videos. 
	Histopathology. 

	pCLE deep learning video model design. 
	pCLE datasets. 
	pCLE video classification models. 
	pCLE video model visualization. 

	Biopsy deep learning model design. 
	Esophageal biopsy datasets. 
	Esophageal biopsy image classification models. 
	Patch-level model. 
	Esophageal Whole-Slide-Image-Level Model. 

	Esophageal biopsy model visualization. 
	Ethical considerations. 
	Statistical analysis. 


	Results
	Patient population. 
	Deep learning models differentiate pCLE videos of squamous tissue, non-dysplastic BE, and dysplasia. 
	Deep learning models differentiate biopsies of squamous tissue, non-dysplastic BE, and dysplasia at two magnification levels. 
	Biopsy model performance at the 1000- × 1000-pixel patch level. 
	Biopsy model performance at the whole-slide-image level. 


	Discussion
	Conclusion
	References
	Acknowledgments


