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. The stochastic SEIR infectious diseases model with saturated incidence rate is studied in this paper. By

. constructing appropriate Lyapunov functions, we show that there is a stationary distribution for the
system and the ergodicity holds provided R > 1. In particular, we improve the results obtained by
previous studies greatly, condition in our Theorem is more concise and elegant.

The study of the epidemic models have long been and will continue to be one of the dominant themes in math-

ematical biology due to its importance at both understanding the spread and control of infectious diseases in

a community. Many researchers have made a significant progress on SIR models!~¢, where S, I, R denote the

fractions of the susceptibles, the infectives and the recovered hosts in the population respectively. SIR models
. assume the disease has no latent period. However, for some diseases, such as hepatitis B, AIDS, sometimes has to
be passed before an infected individual becomes infectious. Therefore, an extra class, the class of exposed hosts
. (E), should be added to the system, where E denotes the fraction of the exposed population. The model is called

SEIR (susceptible-exposed-infected-removed) model, and SEIR models were investigated by many researchers’=".
: On the other hand, the incidence rate palys an important role in the epidemics models. some authors employ
. the bilinear incidence rate 3SI'® ', After studying the cholera epidemic spread in Bari in 1973, Capasso and
. Serio' introduced a saturated incidence rate g(I)S into epidemic models, where g(I) tends to a saturation level
. when I gets large, i.e.

BIS
NS =
&0 1+ al

! measures the inhibition effect from the behavioral

. where SI measures the infection force of the disease and
N .
change of the susceptible individuals when their number increases or from the crowding effect of the infective

individuals. Then the SEIR model with a saturated incidence rate can be described as follows:

as = 0= gga,
1+ al
551
dE — — (dy + O)Edt,
[1 ol (dg + 0)E]
dl = [0 — (d, + 6 + )1,
dR = (yI — dgR)dt. (1.1)

The parameters in the model are positive constants and summarized in the following:
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\: the birth rate,
dg, dg, d}, dy: natural death rates of S, E, I, R, respectively,
6: additional disease caused rate suffered by the infectious individuals,
0: the rate at which the exposed individuals become infectious,
~: the recovery rate of infective individuals.

A6

Define the basic reproductive number R, = ENT AT st
S £\ v

. The dynamical behavior of model (1.1) is as fol-
lows ref. 13:

If Ry< 1, system (1.1) has a unique disease-free equilibrium B = (di, 0,0, 0), which is a global attractor in
the first octant. )

If Ry > 1, then model (1.1) has two equilibria, a disease-free equilibrium P; and an endemic equilibrium
P*={§* E* I*, R*}. P, is unstable and P* is a global attractor in the interior of the first octant.

Some authors take stochastic perturbation into account when they investigate the epidemics system'*!. In
this paper, we assume that the perturbation is of white noise type, that is, dg — dg + UlBl(t), dp — dp + O’ZBZ(l’),
d; — d; + 0B,(t),dy — dg + 0,B,(t), then we get the following stochastic system

as = (-
1+ al

— dS)dt + 0,SdB(t),

dE = | pst — (dg + O)Eldt + o,EdB,(t),

1+ al
dl = [0E — (d; + 6 + yIldt + oJdBy(t),
dR = (’YI — dRR)dt + %RdB4(t), (12)

where B(t), B,(t), B,(t), B,(t) are standard one-dimensional independent Wiener processes,
ofa; > 0), i = 1, 2, 3, 4 are the intensity of the white noise.

In ref. 17, Yang et al. show that there is a stationary distribution 4(-) for system (1.2) and it has ergodic prop-
erty provided the following conditions hold:

(H1) R, > 1;

(H2) min{k,$*%, k,E*, k;I*% k,R**} > p > 0,

ol(dg + ds + 0)*S*
dg(dg +6)
2
(dg — 20;), and

where (§*, E*, I*, R¥) is the interior equilibrium of system of (1.1), k; = dy — 0'12 —

dg+0 2 (dr+6+)(dg+0) 2 dp(d;+ 8 + ) (dg + 0)
k, = ”"4 — 0y ky = 1— Py E—d+ 6+ v —4o3)k, = F1———E 392:2 £

>

2
= 0

g+ ds+07S° (o8I
dy(d; + 6) d(1 + a%)
S*E* BS*E*I*
2 2dy(1 + o)
(d; + 6 + Ny + O
26*

T2 2
L STy + ds + 0) [1+ 8

+o7|E? +

2
+o3

49ds ds(l + o)

N ofdy(d; + 6 + 7)*(dg + )R
40272 :

The main aim of this paper is to deal with the existence of stationary distribution of system (1.2). By construct
new Lyapunov functions and rectangular set, instead of elliptical region, our results do not depend on the equilib-
rium P* of the deterministic system (1.1), which will improve the above result to a great extent.

Ergodic Properties

In order to show the existence of a stationary distribution, firstly, we cite a known result from ref. 22 as a lemma.
Let X(t) be a homogeneous Markov Process in E; (E; denotes  dimensional Euclidean space), and is described

by the following stochastic equation:

k
dX(t) = b(X)dt + (X)dB,(1).
2.8 2.1)

The diffusion matrix is defined as follows:
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A = (M), Ao = Zg (x)g] (x

Lemma 2.1. The Markov process X(t) has a unique ergodic stationary distribution ji(-) if there exists a bounded
domain U € E; with regular boundary I and

Ay: there is a positive number M such thatzl o1 AL > MIEP, x€ U, €€ R,

A,: there exist a nonnegative C*~function Vsuch that LV is negative for any E\U. Then

.1 T
Px{ Jim = [ foxopdr = [ | f(x)u(dx)} =1

for all x € E}, where f(-) is a function integrable with respect to the measure .

Theorem 2.1. Assume that
Y]

Ré:: 2 2 2
[ds+”71}[d,5+0+”72][d,+6+v+”73]

> 1,

then for any initial value (S(0), E(0), I(0), R(0)) € Rf, there is a stationary distribution pu(-) for system (1.2) and the
ergodicity holds.

Proof. First, we denote

3 GO
2 2
[dE+0+"72][d,+6+r+”73]

It is easy to see that b > 0. Constructing a C>~function Q: Rf — R, in the following form
Q(S, E, I, R) = p(—logS — c;logE — c,logl) + (S + E + I+ R)**!
— logS — logE — logR
= P+ N+ Vi+V,+ Y

where

2
ds + 2 ds + 2
—0_2) C2 —2>
dg+ 6+ = di+o6+r+ 73
p and p are constants satisfying the following condition respectively
2

2 2
_ a % /P
pb+A+d5+2+(dE+9)+2+dR+2_ 2, 2.2)

= A A + A — —ploy Vo, Voy Vo) >0,
(s N g 1 (dy 4+ ) A dy) = S0l V o7 V 2V ) 03
and A is determined in the following proof. It is easy to check that

liminf Q(S,E, I, R) = +o0,
k—00,(S,E,LR)ER{\U;

where [, = (%, k) X (%, k) X (%, k) X (%, k). Besides, Q(S, E, I, R) is a continuous function. Hence, Q(S, E, I,
R) must have a minimum point (S, Ey, I, R,) in the interior of Rjﬁ. Then we define a C*- and nonnegative function
V: R} — R, as following

V(S, E, I, R) = Q(S, E, I, R) — Q(Sy, Eqg, Iy, Rp).

According to Ité’s formula, we get

LVI:_[A_FCIﬂi_Fﬂ]_F BI

+dg+ c(dg + 0
S  (1+alE I T aldg +0)

1+«
2 2 2
gy + €05, + €,03

+odi+6+71)+ 5
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Applying inequalitya + b + ¢ > 34/abc, a, b, ¢ > 0, yields

1
v < _3[clc2)\,@9]3 + O d s d 4 0)

14+ al 1+ al
2 2 2
o + €0, + €,03

+od+6+71)+ 3

W[

2\2
/\ﬁe[ds + ”71]
= -3

2 2
[dE+9+%][d,+5+r+ ”73](1+a1)

2
dg+ 20| 4+ L

2 1+ al

+3

W=

3 ABO
2 2
[dE+9+"72][d,+6+r+"73(1+a1)

1
3 ,BI
2 1+al

(2.4)
Similarly,
LV, = (p+ DS +E+I+R’(\—dS—dE— (d + 8)I — diR)

1 _
+=plp+ DS +E+1+ Ry!
x (078> + 0 E* + oiI* + 0fR%)
(p+ DS +E+I+R"
X[(A = (dg A dg A (d; + 0) A dp)(S + E + I+ R))]

IN

+%p(p + DS+ E+IT+R" oV oV aiVay)

= XMp+1D)S+E+I+R)
—(p+ Ddg A dg A (d; + 8) A dy)

—%p(o—f Vg VaiVad|lS+E+I+R\H!

IN

1
A= Z(p+ DS +E+1+ Ry

1
A — —(p+ DFES" 4 B 4 17T 4 RO,
2(p f( ) (2.5)

where

A = sup {Mp+ DS +E+IT+R)f
S+E+I1+Re(0,00)

1
—E(p + 1S+ E+ 1+ R’ < o0,

and fis defined in (2.3). We also obtain that

2
=24 g A
S 1+al 2 (2.6)

BSI 2

O-
LV,=———— + (d; + 0) + =+
4 (1 + ol)E (dy +0) 2

(2.7)

and

R 2 (2.8)
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Therefore

36 1
Lv < —3p(ds+ )3 [( —~ p —~ )3
(dg+0+ )+ 6+r+ )1+ al)
1)81
g+ 2 ) 4 DB
1+ al
BSI 1 +1 +1 +1 +1 Aol
—— — —(p+ DfS"T+ET 4+ "+ RT) - = — —
1 olE (p )f( ) SR
0'2 0'2
+A +dg+ +(dE+6)+ 2+dR .
Consider the following bounded subset
D:{elsssl,qSIgi,engsi,ezgRsi ,
€ € € €

wheree,, €, > 0are sufficiently small numbers satisfying the following conditions

2

2
fpb+(p+1)ﬂq+A+d+ L4 (dg+0) + 2+d+4<71 (2.9)
1 2
—3+A+ds+(er )8 01 +(dy 4 0) + =+ % vdpt <,
€ 2 (2.10)
8 (p+ 1B ol
R — d+ +A+dg+ 2 4 (d+ 0
(1+Oé€l)€l P\ % a ST, (dg + 0)
2 2
0 0y
B g +% <,
Ty tat s (2.11)
1 2
T yplag+ O]+ 27 )ﬂ+A+ds+%+(dE+0)
61
2 2
0y Oy
2 4g 4+ % <,
ty et s (2.12)
+1 +1 2
—(p2€p+l)f+3pds+%‘ +%+A+ds+%+(dg+0)
1
2 2
0y Oy
2 g4+ % <,
Ty et (2.13)
1 2
—(p2t+l)f+3pds +W+A+d5+%+(d}g+a)
2 2
) Oy
2 oypd+ A<,
ty ARt S (2.14)
where
1
2 3
. 2)3
b= —3ldg+ L A8
[dE+0+"22][d+6+r+ 1+ ag)
zl
3
O
—|dg+ -

We note that for sufficiently small ¢, condition (2.9) holds due to (2.2). Then
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Ri\D: DU D, U - U Dg

where

IS
I

{(Sa Ea I> R) S R4a 0< S < 61},
D, = {(SSE LR €R!, 0<I<¢},

D, = {S,EELR)ER!, S>¢,1>¢, 0<E<e),
D, = {SSELR ER, I>¢, 0<R<e,),
Dy = (s,E,I,R)eRi,s>i},
€
Dy = {(S,E, I,R) € R}, I> i},
€
D, = (S,E,I,R)eR4,E>i},
&
Dy = (s,E,I,R)eR4,R>l}.
&

Therefore we consider the following eight cases:

Case 1. If (S, E, I, R)€D,,

2
v < —%+3pds+071 +A+ds+

P+ 1p
(0%

2

2 2
FO gt ) 2t

%
2

+a+dg @8
«

2
—i+3pds+%l

Sl

IN

2 2 2
9] ) Iy
2 b (g 0) + 2 4 dy +
y T Ot dt S
Then it follows from (2.10) that
LV < —1.

Case 2.If (S, E, I, R) € D,, we have

G0
2 2
(g + 6 + Z)(d; + 6+ r+ Z)(1 + al)

ol 2 1 621
LV < —3p(ds+ 71)3[( )3 — (dg + 71)3]

2 2 2
o+ DB+ A+ ds+ Ot (@ 0) + b dy

2 2 2
< —pb+(p+1)ﬂal+A+ds+%+(d5+9)+%2+dR+%4.

Using condition (2.9), we obtain
LV < —1.
Case 3.If (S, E, I, R) € D5, we obtain that

2

P S L

« (1 4+ ol)E

LV

IN

3p

2 2 2
+ds+%1+(dg+9)+%2+dza+%‘

2 2
< —L+3pds+a—‘ + A+ dg
(1 + ag)e, 2
1 2 2 2
TG/ O T R S A
a 2 2 2

Choosing
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€ = €], (2.15)

yields

+3pldg + | + A+ dg +

(p+ 1B
1+ ag)g 6%
2 2 2
0] 0y Iy
F by 0) + 2 dy +
2 (s +6) 2 R

The last inequality holds according to (2.11).

Case 4.If (S, E, I, R) € D,, condition (2.12) combining with (2.15) gives

LV < 3p|dg+ + A+ dg

(P+1)6 2
o R

2 2 2
[t &) [
L dp+ 0+ 2= Fdy+ 2
2 gy +9) 2 R
re z

——L + 3p|d
€

IN

D+ A+dg+

(p+ 13
«

2 2
T 0+ 2 Rt

IN

2
r 0
—6—2+3pd5+71 +A+ds+

1

(P + 1
a

2

2 2
FO [+ 6+ Tyt

94
2
< —1.

Case 5.If (S, E, I, R) € Ds, we obtain that

LV

IN

3pldg + @+QW“+A+%

(P + D8 1
a

2 2 02
+—1+(dE+0)+ >t =

_(p+Df

pt+1
2€]

2
a

Le+v8
«

IN

+ 3p|ds +

2 2 2
+ds+%+(dE+6)+%2+dR+U—

this together with (2.13), we derive that

LV < —1.
Case 6.If (S, E, I, R) € Dy,
v < 3p|dy+ I ¢ @ D8 %(p+1)ﬂp+l+A+ds
(%
0'2 0'2 0'2
+7‘+(d5+9)+72+dR+—
(p + Df (p+1)ﬁ
S—ZPH +3pd+ + A+ dg
0_2 2
+—1+(d +0)+ 2 +dg+ 2+
< —1,

which follows from (2.13).

Case 7.If (S, E, I, R) € D, it follows that
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2
LV < 3p|dg+ 2 +M—%(p+l)ﬂ§p+l+A
«
2 2 2
+d5+%+(dE+0)+%2+dR+a—4
1 ’ 1
< 0t g T BN g
2¢} ¢!
2 2 2

01 0, Oy
Fob o (dp+ 0) + 2+ dp + 2,
2 (d +6) 2 R

which together with (2.14) implies that

Lv < —1.

Case 8.If (S, E, I, R) € Dy, we obtain that

2
v < 3pds+% +M—%(p+l)fR”“+A+ds
(e}

2 2 2
a0y [¢p) gy
b+ 0) + 2+
y Tl O det

o+ 0f o fy o
ST 2

(p+1)p3
2¢57! e

IA

+ 3p + A+ dg

2 2 2
91 % 94
—~— +d;+0) +=+d, + =
2 (4 ) 2 K 2

Combining (2.14), yields

Lv < —1.

Based on the discussion of the above eight cases, we obtain

LV < -1, (S, E IR) € RA\D. (2.16)

Therefore, A, in Lemma 2.1 is satisfied. In addition, A, is also satisfied (see ref. 17). Theorem 2.2 is proved accord-
ing to Lemma 2.1. g

Remark 2.1. Yang et al.'” have studied system (1.2), in Theorem 3.3 they show that under conditions (H1) and
(H2), there is a stationary distribution £i(-) for the system. Comparing with Theorem 2.2 in our investigation, we
only need condition R; > 1, without other conditions imposed on the coefficients. That is to say, Theorem 2.2 in
large improves Theorem 3.3 in ref. 17. Moreover, we see thatif o;=0 (i=1, 2, 3, 4), the above condition is reduced
to Ry > 1, which is the condition for globally asymptotically stable of endemic equilibrium P* of system (1.1). And
R; is smaller than the basic reproduction number R, of system (1.1).
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