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Associations between changes in population mobility in 
response to the COVID-19 pandemic and socioeconomic 
factors at the city level in China and country level worldwide: 
a retrospective, observational study
Yonghong Liu*, Zengmiao Wang*, Benjamin Rader, Bingying Li, Chieh-Hsi Wu, Jason D Whittington, Pai Zheng, Nils Chr Stenseth, 
Ottar N Bjornstad, John S Brownstein, Huaiyu Tian

Summary
Background Until broad vaccination coverage is reached and effective therapeutics are available, controlling population 
mobility (ie, changes in the spatial location of a population that affect the spread and distribution of pathogens) is one 
of the major interventions used to reduce transmission of SARS-CoV-2. However, population mobility differs across 
locations, which could reduce the effectiveness of pandemic control measures. Here we assess the extent to which 
socioeconomic factors are associated with reductions in population mobility during the COVID-19 pandemic, at both 
the city level in China and at the country level worldwide.

Methods In this retrospective, observational study, we obtained anonymised daily mobile phone location data for 
358 Chinese cities from Baidu, and for 121 countries from Google COVID-19 Community Mobility Reports. We 
assessed the intra-city movement intensity, inflow intensity, and outflow intensity of each Chinese city between Jan 25 
(when the national emergency response was implemented) and Feb 18, 2020 (when population mobility was lowest) 
and compared these data to the corresponding lunar calendar period from the previous year (Feb 5 to March 1, 2019). 
Chinese cities were classified into four socioeconomic index (SEI) groups (high SEI, high–middle SEI, middle SEI, 
and low SEI) and the association between socioeconomic factors and changes in population mobility were assessed 
using univariate and multivariable linear regression. At the country level, we compared six types of mobility 
(residential, transit stations, workplaces, retail and recreation, parks, and groceries and pharmacies) 35 days after the 
implementation of the national emergency response in each country and compared these to data from the same day 
of the week in the baseline period (Jan 3 to Feb 6, 2020). We assessed associations between changes in the six types of 
mobility and the country’s sociodemographic index using univariate and multivariable linear regression.

Findings The reduction in intra-city movement intensity in China was stronger in cities with a higher SEI than in 
those with a lower SEI (r=–0·47, p<0·0001). However, reductions in inter-city movement flow (both inflow and 
outflow intensity) were not associated with SEI and were only associated with government control measures. In the 
country-level analysis, countries with higher sociodemographic and Universal Health Coverage indexes had greater 
reductions in population mobility (ie, in transit stations, workplaces, and retail and recreation) following national 
emergency declarations than those with lower sociodemographic and Universal Health Coverage indexes. A higher 
sociodemographic index showed a greater reduction in mobility in transit stations (r=–0·27, p=0·0028), workplaces 
(r=–0·34, p=0·0002), and areas retail and recreation (r=–0·30, p=0·0012) than those with a lower sociodemographic 
index.

Interpretation Although COVID-19 outbreaks are more frequently reported in larger cities, our analysis shows that 
future policies should prioritise the reduction of risks in areas with a low socioeconomic level—eg, by providing 
financial assistance and improving public health messaging. However, our study design only allows us to assess 
associations, and a long-term study is needed to decipher causality.
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Introduction
By May 2, 2021, more than 152 million confirmed cases of 
COVID-19 and more than 3 million deaths had been 
reported across 192 countries and regions.1 So far, most 

countries have adopted a series of non-pharmaceutical 
interventions (NPIs) in an attempt to contain the spread 
of the virus, such as closing schools, prohibiting public 
and private gatherings, imposing travel restrictions, 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(21)00059-5&domain=pdf
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implementing stay-at-home requirements, and closing 
workplaces.2,3 Among these NPIs, movement restrictions 
have been shown to be one of the most robust across 
130 countries and territories.4

Population movement is a key factor in the trans
mission of infectious diseases, and movement patterns 
have been carefully investigated in the study of several 
communicable diseases.5,6 Since the year 2010, the 
widespread use of smartphones has made it possible to 
describe population mobility (ie, changes in the spatial 
location of a population that affect the spread and 
distribution of pathogens) patterns in an accurate and 
scalable way that was previously inconceivable.6 During 
the early pandemic spread of COVID-19, reductions in 
population mobility, assessed using geo-located mobile 
phone data, were shown to substantially mitigate the 
spread of SARS-CoV-2.7,8 Mobile phone data also showed 
that a mobility reduction of 20–60% in Chinese cities 
had a notable effect on controlling the spread of 
COVID-19.9 The COVID-19 burden has also affected 
risk perception, which might have triggered increased 
population mobility responses.10,11 Studies have shown 
that levels of population mobility in response to the 
COVID-19 pandemic were related to income and 
socioeconomic status in the USA12,13 and France.14 
These three studies each focused on one country and all 
considered only a small number of factors. However, 
changes in population mobility were highly varied among 

regions, which motivated our more comprehensive 
analysis.

The ability of cities and countries with differing 
socioeconomic characteristics to cope with emergencies 
varies greatly. To identify factors related to the 
heterogeneity in changes in population mobility, we 
aimed to collect daily mobile phone location data from 
Baidu location-based services for all Chinese cities. From 
these data, we aimed to extract the intra-city movement 
intensity (ie, the proportion of people travelling within 
cities), inflow intensity (ie, the size of the inflow 
population), and outflow intensity (ie, the size of the 
outflow population) for each city. These three types of 
movement intensity reflect differences in population 
mobility in cities in response to the national emergency. 
To expand our analysis internationally, we also aimed to 
obtain mobility data for other countries from Google 
COVID-19 Community Mobility Reports. Identifying 
factors that contribute to the heterogeneity in changes in 
population mobility will help policy makers to improve 
NPI strategies based on specific city-level and country-
level factors.

Methods
Study design
In this retrospective, observational study, we assessed 
changes in population mobility in response to the 
COVID-19 pandemic using mobile phone geolocation 

Research in context

Evidence before this study
The extent to which socioeconomic factors are associated with 
changes in mobility and social mixing during a pandemic are 
currently unknown. The COVID-19 pandemic provides a valuable 
opportunity to investigate this issue to better inform policy. 
We searched Google Scholar, PubMed, and medRxiv for articles 
in English published up to Nov 20, 2020, relating to population 
mobility across sociodemographic contexts during the first wave 
of the COVID-19 pandemic using the search terms “COVID-19”, 
“SARS-CoV-2”, “coronavirus”, “socioeconomic development”, 
“mobility”, “travel”, and “social distancing”, and “physical 
distancing”. The search yielded 336 publications. Most of these 
publications investigated how population mobility related to the 
spread of SARS-CoV-2. Four studies reported a relationship 
between population mobility and socioeconomic factors. One of 
these studies considered only income in the USA and another 
was restricted to France. Two other studies described the effect of 
global inter-relationships and social connections from Facebook 
on population mobility. These studies showed that the 
heterogeneity in changes of population mobility were related to 
socioeconomic factors.

Added value of this study
We did a comprehensive analysis, involving multiple types of 
movement, and studied a range of socioeconomic factors at 

two scales (ie, at the city level in China and the country level 
worldwide). Our results show that the change in intra-city 
movement intensity in response to the COVID-19 pandemic 
was significantly associated with socioeconomic index (SEI). 
Between Jan 25 and Feb 18, 2020, intra-city movement 
intensity in areas with a higher SEI declined more than in areas 
with a lower SEI. However, the change in inter-city flows was 
not associated with SEI. Socioeconomic factors and changes in 
population mobility were associated at both city and country 
levels. 

Implications of all the available evidence
Our study shows that changes in population mobility in 
response to the COVID-19 pandemic were strongly 
differentiated by socioeconomic factors. The success of efforts 
to reduce population mobility declined in areas with a lower 
socioeconomic level. Global prevention and control 
interventions should therefore be prioritised in such areas in 
preparation for future pandemic waves. However, our study 
design shows only an association between changes in 
mobility and socioeconomic factors; a long-term study will be 
needed to decipher causality.

For Google Mobility Reports see 
https://www.google.com/

covid19/mobility/

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/


Articles

www.thelancet.com/digital-health   Vol 3   June 2021	 e351

data and identified socioeconomic factors associated with 
these changes at the city level in China and at the country 
level worldwide.

For city-level analyses in China, we assessed three types 
of population mobility data (ie, intra-city movement 
intensity, inflow intensity, and outflow intensity) for 
358 cities following the declaration of the national 
emergency response (Jan 25, 2020) and compared these to 
data from the corresponding period in 2019. Cities were 
divided into four socioeconomic index (SEI) groups based 
on 17 covariates related to COVID-19 (lockdown and 
cumulative number of COVID-19 cases), demographics 
(percentage of population with a post-secondary education 
level, urbanisation rate, population growth, population 
density, and population age group), the economy (gross 
regional product, gross regional product per capita, 
agricultural sector per capita, industrial sector per 
capita, and service sector per capita) and fiscal capacity 
(public budget revenue and expenditure, expenditure for 
science and technology, and expenditure for education; 
appendix p 16).

To identify factors associated with changes in 
population mobility on a country level, we assessed 
differences in population mobility between our baseline 
period and after the national emergency response was 
declared in each of 121 countries. Two socioeconomic 
indices were considered to examine the association with 
movement reduction: the sociodemographic index (SDI)15 
and Universal Health Coverage (UHC) index.16

Data collection
In China, population movements were anonymously 
collected at the city level with mobile phone data, through 
location-based services used by Baidu applications. We 
collected three types of population movement data 
(ie, intra-city movement intensity, inflow intensity, and 
outflow intensity) for each Chinese city (n=358, excluding 
Hong Kong, Macau, and Taiwan) from the Baidu 
migration flows database between Jan 1, 2019, and 
March 6, 2020.

At the international level, we analysed mobility for 
121 countries (ie, countries that had mobile data available 
and had implemented interventions for COVID-19; 
appendix pp 17–21) from Google Mobility Reports (based 
on geolocated mobile phone data) from Feb 15 to 
Oct 6, 2020. Six types of mobility are included in this 
database: residential, transit stations, workplaces, retail 
and recreation, parks, and groceries and pharmacies. 
The baseline period was defined as Jan 3 to Feb 6, 2020.

Population sizes and socioeconomic data for Chinese 
cities were obtained from the China City Statistical 
Yearbook. The SDI for each of the 121 countries was 
obtained from the Institute for Health Metrics and 
Evaluation.17 SDI is defined as a composite average of the 
rankings of per capita income, average education level, 
and fertility rate, ranging from 0 to 1. Countries were 
classified into five categories: high SDI, high–middle 

SDI, middle SDI, low–middle SDI, and low SDI. The 
UHC index for each country was obtained from WHO.

We collected epidemiological data on COVID-19 
from the official reports of the health commission of 
358 Chinese city-level units (appendix p 22). Only 
laboratory-confirmed cases of COVID-19 were used. Data 
for the country-level analysis were obtained from the 
Oxford COVID-19 Coronavirus Government Response 
Tracker (OxCGRT).18

Data for the national emergency response (eg, dates 
when curfews were imposed, cities were locked down, 
and mass gatherings were prevented) in China were 
based on previous work by Huaiyu Tian and colleagues.19 
At the country level, information on government 
declarations was obtained from both official websites 
and OxCGRT (appendix pp 17–21).18 Since OxCGRT only 
collects the date of a specific government response (such 
as closing schools or travel bans), we collected the date of 
the emergency response in each of the 121 countries from 
official national websites and news. If there was no 
specific government declaration, the earliest date of 
any intervention implemented (such as closing schools 
or workplaces, cancelling public events, restricting 
gatherings, closing public transport, implementing stay-
at-home orders, or restrictions on domestic travel) was 
obtained from OxCGRT.

Statistical analysis
To assess population mobility at the city level in China 
following introduction of the national emergency 
response on Jan 25, 2020, we focused on mobility data 
between Jan 25 and Feb 18, 2020 (when mobility intensity 
was the lowest). We compared population mobility (intra-
city movement intensity, inflow intensity, and outflow 
intensity) during this period to mobility data from 
Feb 5 to March 1, 2019 (the corresponding lunar calendar 
period from the previous year).

The SEI for each city was calculated by collecting 
17 socioeconomic variables and conducting principal 
component analysis. We calculated the weighted average 
for each city of the first seven principal components and 
standardised this to a value between 0 and 1. We then 
divided cities into four categories: high SEI, high–middle 
SEI, middle SEI, and low SEI.

To identify socioeconomic factors associated with 
reductions in population mobility we did univariate and 
multivariable linear regression analyses (appendix p 3). We 
treated all variables that were significant in the univariate 
analysis as candidate variables for the multivariate 
analysis. To avoid the multicollinearity in the multiple 
linear regression, we used the following procedure: first, 
we calculated the variance inflation factor (VIF) for the 
variables in the candidate pool and only retained 
the variables with a VIF score of less than 5; second, for 
the retained variables, we calculated pair-wise correlations 
for these variables. If the correlation between two variables 
was larger than 0·5, we removed the variable that 

See Online for appendix

For Baidu migration data see 
http://qianxi.baidu.com

For more on Google Mobility 
Reports see https://www.
google.com/covid19/mobility

For more on the China City 
Statistical Yearbook see 
http://olap.epsnet.com.cn

For more on WHO universal 
health coverage see https://
www.who.int/health-topics/
universal-health-coverage

http://qianxi.baidu.com
http://qianxi.baidu.com
https://www.google.com/covid19/mobility
http://olap.epsnet.com.cn
http://olap.epsnet.com.cn
https://www.who.int/health-topics/universal-health-coverage
http://qianxi.baidu.com
https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
http://olap.epsnet.com.cn
https://www.who.int/health-topics/universal-health-coverage
https://www.who.int/health-topics/universal-health-coverage
https://www.who.int/health-topics/universal-health-coverage
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correlated with Y (ie, the change in population mobility) 
with the smaller correlation score. After this procedure, 
we selected six variables for intra-city movement, 
four variables for inflow movement, and five variables for 
outflow movement. We also plotted the scatter plot 
between SEI and change in intra-city movement intensity 
across cities in China from Feb 19 to March 6, 2020 
(appendix p 11). This analysis was done because during 
the period when control measures were relaxed the 
mobility reduction in cities with a high SEI was still large 
(figure 1D).

At the country level, we compared the change in 
mobility in each country 35 days after the national 
emergency response for each country to the median 
baseline value from the corresponding day of the week in 
the baseline period (Jan 3 to Feb 6, 2020). There were two 
reasons why the timeframe of 35 days was used; first, 
mobility reached its lowest value at an average of 26·8 
(95% CI 24·8–28·8) days after the national emergency 
response in most countries and, second, the baseline 
length was 35 days. We did the univariate regression for 
the SDI, UHC, and the cumulative number of COVID-19 
cases. Due to the high correlation between SDI and 
UHC, the SDI was included in the multivariable 

regression. The stay-at-home order was also incorporated 
into the multivarible regression.

Considering the biases in mobile data and the small 
number of NPIs implemented in the 121 countries 
analysed, additional analyses were done: first, we 
removed the African countries (91 countries in total) and 
did the univariate and multivariable regression using the 
remaining countries. Second, we used the COVID-19 
Government Response Stringency Index (SI) instead of 
the stay-at-home order (appendix p 4). To further support 
the hypothesis that human mobility responses to 
COVID-19 are indeed differentiated by socioeconomic 
development, we did a similar analysis on mobility 
changes that occurred before the implementation of the 
first NPI at the country level. Specifically, we calculated 
the average mobility changes in the week before the 
introduction of the first NPI for each of the six types of 
movement. Countries with a time interval of less than a 
week between the date of the outbreak and the date of the 
first NPI were excluded from this analysis. Standard 
R packages (version 4.0.2) were used for all analyses. No 
custom code was developed.

Role of the funding source
The funders had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report.

Results
Changes in movement between 2019 and the period 
following introduction of the COVID-19 national 
emergency response in China display clear geographical 
differences between cities (figure 1). The average change 
in intra-city movement intensity ranged from –71·97% 
to –3·85% (figure 1A). The average change in movement 
inflow intensity ranged from –92·42% to –41·81% 
(figure 1B), and the average change in movement outflow 
intensity ranged from –91·62% to –52·87% (figure 1C). 
The changes in inflow and outflow intensities were very 
similar, with a correlation of 0·80 (ie, the greater the 
decrease in movement inflow intensity, the greater the 
decrease in movement outflow intensity; appendix p 5).

A weak spatial autocorrelation was detected (reduction 
in intra-city movement intensity [Moran’s I=0·27, 
p<0·0001]; reduction in inflow intensity [0·12, p<0·0001]; 
and reduction in outflow intensity [0·12, p<0·0001]). The 
percentage changes in the three types of movement 
negatively correlated with the cumulative number of 
confirmed COVID-19 cases across the 358 cities (intra-city 
movement intensity [r=–0·52, p<0·0001], inflow intensity 
[–0·42, p<0·0001], and outflow intensity [–0·37, 
p<0·0001]; appendix p 6).

There were 41 cities in the high SEI category, 74 in the 
high–middle SEI category, 150 in the middle SEI category, 
and 88 in the low SEI category. There were regular changes 
in intra-city movement intensity for each of the four SEI 
groups. Intra-city movement data show an abrupt shift 
after the national emergency response for all four SEI 

Figure 1: Heterogeneity in population mobility changes in China following the COVID-19 national emergency 
response
Maps show changes in intra-city movement intensity (A), movement inflow intensity (B), and movement outflow 
intensity (C) in the period following the COVID-19 national emergency response compared with the corresponding 
lunar calendar period from 2019. The black border indicates Hubei province and Wuhan city. (D) Change in daily 
intra-city movement between Jan 1 and March 6, 2020 (the first wave of COVID-19 in China outside Wuhan city). 
Thin lines are raw data and thick lines are smoothed values from a generalised additive model. A positive value 
indicates that the intra-city movement intensity is greater than values measured for 2019, whereas a negative 
value indicates that the intra-city movement intensity is less than the values measured for 2019. The association 
between socioeconomic index and changes in population mobility after national emergency response across cities 
of China (n=358; E). Each point represents a city.
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EstimateUnivariate analysis Multivariable analysis95% CI

Fiscal capacity
Expenditure for education
Expenditure for science and technology
Public budget expenditure
Public budget revenue
Economy
Service sector (per capita)
Industrial sector (per capita)
Agricultural sector (per capita)
GRP per capita
GRP
Demographics
Education level
Urbanisation rate
Population growth
≥60 years (%)
40–59 years (%)
20–39 years (%)
Population density
Population
COVID-19
Lockdown
COVID-19 cases

1·20
–3·32
0·45

–4·32

–5·08
–4·63

2·02
–5·09
–4·44

–6·43
–5·32
0·51
0·69

–2·20
–3·77
–3·99
–3·87

–11·37
–6·84

–0·15
–4·64
–0·91
–5·60

–6·33
–5·90
0·68

–6·34
–5·72

–7·61
–6·56
–0·85
–0·66
–3·54
–5·07
–5·29
–5·16

–14·92
–8·00

 
2·56

–2·01
1·81

–3·04

–3·83
–3·36

3·36
–3·84
–3·17

–5·24
–4·07

1·87
2·05

–0·86
–2·47
–2·70
–2·57

–7·83
–5·69

Estimate 95% CI p valuep value

–0·33

3·36

–1·35
–3·04

–4·74
–5·03

A Intra–city movement

Fiscal capacity
Expenditure for education
Expenditure for science and technology
Public budget expenditure
Public budget revenue
Economy
Service sector (per capita)
Industrial sector (per capita)
Agricultural sector (per capita)
GRP per capita
GRP
Demographics
Education level
Urbanisation rate
Population growth
≥60 years (%)
40–59 years (%)
20–39 years (%)
Population density
Population
COVID-19
Lockdown
COVID-19 cases

B Movement inflow

Fiscal capacity
Expenditure for education
Expenditure for science and technology
Public budget expenditure
Public budget revenue
Economy
Service sector (per capita)
Industrial sector (per capita)
Agricultural sector (per capita)
GRP per capita
GRP
Demographics
Education level
Urbaniasation rate
Population growth
≥60 years (%)
40–59 years (%)
20–39 years (%)
Population density
Population
COVID-19
Lockdown
COVID-19 cases

C Movement outflow

–1·41

–4·91

–2·79
–4·64

–7·92
–6·27

 

0·76

–1·82

0·08
–1·44

–1·55
–3·80

 
1·12

–0·28
0·70

–0·72

–1·04
–1·12
–0·02
–1·19
–0·46

–1·18
–1·41
–0·64
–0·22
–0·78
–0·26
–0·41
–0·43

–7·90
–3·14

 
0·34

–1·07
–0·09
–1·51

–1·82
–1·90
–0·81
–1·97
–1·25

–1·96
–2·19
–1·43
–1·01
–1·56
–1·04
–1·19
–1·22

–9·91
–3·86

1·90
0·50
1·49
0·06

–0·26
–0·34

0·77
–0·42

0·33

–0·40
–0·64

0·14
0·57
0·00
0·53
0·38
0·35

–5·89
–2·42

 
0·45

–0·60

–5·23
–1·98

–0·51

–1·33

–7·40
–2·83

1·40

0·13

–3·07
–1·12

–0·45
–1·14
–0·55
–0·74

–0·83
–0·99

0·42
–0·93
–0·87

–0·61
–0·52
–0·78

1·13
0·54

–1·11
–0·61
–0·61

–7·62
–3·17

–1·17
–1·85
–1·27
–1·47

–1·55
–1·71
–0·30
–1·65
–1·59

–1·33
–1·24
–1·51
0·41

–0·19
–1·83
–1·34
–1·33

–9·46
–3·82

 
0·28

–0·42
0·18

–0·02

–0·10
–0·27

1·15
–0·21
–0·15

0·12
0·21

–0·06
1·85
1·26

–0·39
0·11
0·12

–5·79
–2·52

–0·67

–0·56

1·43

–4·21
–3·30

–1·46

–1·22

0·81

–6·06
–4·16

 

0·13

0·10

2·05

–2·36
–2·44

Greater reduction Less reduction Greater reduction Less reduction

0–10 –5–15 5 0–10 –5 5

0·0821
<0·0001

0·5178
<0·0001

<0·0001
<0·0001

0·0034
<0·0001
<0·0001

<0·0001
<0·0001

0·4631
0·3168
0·0014

<0·0001
<0·0001
<0·0001

<0·0001
<0·0001

0·0051
0·4794
0·0818
0·0721

0·0096
0·0051
0·9589
0·0028
0·2532

0·0032
0·0004
0·1094
0·5815
0·0522
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Figure 2: Univariate and 
multivariable analyses for 
the association between 
socioeconomic factors and 
changes in population 
mobility following the 
COVID-19 national 
emergency response among 
358 cities in China
Univariate and multivariable 
analysis for intra-city 
movement intensity (A), 
movement inflow 
intensity (B), and movement 
outflow intensity (C). Solid 
circles represent significant 
(ie, p<0·05) values. Bars show 
the 95% CI. GRP=gross 
regional product.
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groups (figure 1D). Cities with a higher SEI had a greater 
reduction in intra-city movement intensity than did cities 
with a lower SEI (figure 1E). We found a highly negative 
correlation between SEI and mobility change (r=–0·47, 
p<0·0001). However, there was no similar variation in 
inflow or outflow intensity between different SEI groups 
(appendix p 7).

To identify the specific factors associated with changes 
in population mobility, we did univariate and multi
variable linear analyses for the three types of movement 
(figure 2). In univariate analysis, the average reduction 
in intra-city movement intensity in each city increased 
with the number of reported COVID-19 cases and 
implementation of lockdown. We also observed 
significant associations between changes in population 
mobility (ie, reduction in intra-city movement intensity) 
and socioeconomic factors (figure 2A). For example, for 
age groups between 20 and 39 years and between 40 and 
59 years, there was a negative correlation with change in 
intra-city movement intensity (ie, the greater the 
proportion of the population with these age groups, the 
greater the decrease in intra-city movement intensity).

The percentage of the population with a post-secondary 
education qualification also correlated negatively with 
the change in intra-city movement intensity. Other 
factors significantly associated with changes in intra-city 
movement intensity in the univariate analysis included 
urbanisation rate, gross regional product, gross regional 

product per capita, and factors related to industry and 
public service (ie, agricultural sector per capita, industrial 
sector per capita, service sector per capita, public budget 
revenue, and expenditure for science and technology). 
Considering the collinearity among the various 
socioeconomic indicators, we selected six variables on 
the basis of variance inflation factor for inclusion in the 
multivariable linear regression. Most of the variables 
were significantly associated with changes in intra-city 
movement intensity, except agricultural sector (per capita) 
and proportion of people in the 40–59 years age group 
(figure 2A).

Changes in movement inflow intensity correlated nega
tively with cumulative number of confirmed COVID-19 
cases and lockdown status (figure 2B). Similar results 
were seen for change in movement outflow intensity 
(figure 2C). However, we did not observe consistent 
associations with socioeconomic factors for these two 
types of movement, except for an association between the 
proportion of people aged 60 years and older and change 
in outflow intensity.

To get a broader understanding of the effects of 
socioeconomic factors on reduction of movement at the 
city level in China, we did univariate and multivariable 
analyses for each SEI group (appendix p 8). These 
analyses show that the cumulative number of confirmed 
COVID-19 cases was significantly associated with 
intracity movement intensity in the middle and 

Figure 3: Change in daily mobility before and after implementation of NERs across 121 countries worldwide
Change in daily mobility before and after NERs in workplaces (A), transit stations (B), retail and recreation areas (C), residential areas (D), parks (E), and groceries and 
pharmacies (F). Thin lines represent raw data. Thick lines represent smoothed values from a generalised additive model. Global population mobility data were 
obtained from Google Community Mobility Reports. The selected observation time period was the first 35 days after the NER was declared. The baseline is the median 
value for the corresponding day of the week from Jan 3 to Feb 6, 2020. NER=national emergency response. SDI=sociodemographic index.
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high-middle SEI groups. In the high SEI group and the 
low SEI group, the cumulative number of confirmed 
COVID-19 cases was not significant, meaning that the 
number of COVID-19 cases was not significantly 
associated with changes in movement intensity in these 
SEI groups. The proportion of people with a post-
secondary education qualification was significantly 
associated with changes in intra-city movement intensity 
in the middle and low SEI groups, but not in the high or 
high–middle SEI groups.

The percentage of the population with a post-secondary 
education qualification was 28·36% (95% CI 26·86–29·86) 
in the high and high–middle SEI groups, compared 
with 17·50% (16·85–18·15) in the middle and low SEI 
groups. In multivariable analysis, the effect size of 
education level was –11·04 in the low SEI group and –5·51 
in the middle SEI group. To test whether the coefficients 
of education level differed significantly between different 
SEI groups, pairwise SEI group comparisons were done 
using multivariable regression with the interaction term 
between SEI group and education level. No significant 
differences were observed between the low SEI group and 
the middle SEI group (p=0·14). We did not find an 
association between socioeconomic factors and reduction 
in inflow and outflow intensities in the four SEI groups 
(appendix pp 9–10).

We plotted the scatter plot between SEI and change in 
intra-city movement intensity across cities in China from 
Feb 19 to March 6, 2020 (appendix p 11). SEI negatively 
correlated with mobility change. There was a greater 
reduction in mobility in cities with higher SEI. We also 
did a similar analysis for change in intra-city movement 
intensity between Feb 19 and March 6, 2020, and found 
that education level was negatively associated with 
mobility change (appendix p 12).

In the country-level analysis, five of the six types of 
movement analysed (ie, movement occurring in parks, 
workplaces, retail and recreation, transit stations, and 
groceries and pharmacies) showed a reduction in 
mobility intensity in response to COVID-19, with 
movement in residential areas showing increased 
mobility intensity (figure 3). Population mobility 
responses were heterogeneous between countries 
(figure 4, appendix p 13): countries with a higher SDI 
showed a greater reduction in mobility in transit 
stations (r=–0·27, p=0·0028), workplaces (r=–0·34, 
p=0·0002), and areas of retail and recreation (r=–0·30, 
p=0·0012) than those with a lower SDI. Moreover, those 
countries with a higher UHC index had a higher 
reduction in mobility (appendix p 15) in transit stations 
(r=–0·44, p<0·0001), workplaces (r=–0·45, p<0·0001), 
retail and recreation (r=–0·51, p<0·0001), parks 

Figure 4: Association between change in population mobility and sociodemographic index at a global scale
The association between changes in population mobility and SDI at a global scale that were significant (A–C), including workplaces (A), transit stations (B), and retail 
and recreation (C), and not significant (D–F), including residential areas (D), parks (E), and groceries and pharmacies (F). The size of the dot represents the cumulative 
number of confirmed COVID-19 cases up to 35 days after implementation of the national emergency response. SDI=sociodemographic index.
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(r=–0·39, p<0·0001), and groceries and pharmacies 
(r=–0·20, p=0·0449) than those with a lower UHC 
index, but had increased level of staying at home 
(r=0·33, p=0·0011).

We also compared mobility changes between country 
groups (appendix p 14). The average reduction in 
population mobility in transit stations in high, high–
middle, and middle SDI groups was 56·04% (95% CI 
52·61–59·47), which was 1·2 times larger than that 
measured in the low–middle and low SDI groups 
(47·04%; 40·47–53·62). For workplaces, the average 
reduction in population mobility in the high, 
high–middle, and middle SDI groups was 44·10% 
(40·67–47·5), which was 1·32 times larger than that in 
the low–middle and low SDI groups (33·40%; 
27·06–39·73). For retail and recreation areas, the average 
mobility reduction in the high, high–middle, and middle 
SDI groups was 54·63% (50·82–58·44), which was 
1·24 times larger than that in the low–middle and low 
SDI groups (43·96%; 37·27–50·66). For residential 
areas, parks, and groceries and pharmacies, we did not 
observe a significant association between change in 
mobility and SDI.

Similarly to the previous analysis at the city level, a 
linear regression was done for the six categories of 
movement reduction (appendix pp 23–24). Changes in 
mobility in each country were not significantly 
associated with the cumulative number of confirmed 
COVID-19 cases. Here, we considered two variables: 
stay-at-home order and SDI. Considering the biases in 
mobile data and the limited number of NPIs 
implemented in the 121 countries analysed, additional 
analyses were done (appendix pp 4, 23–24) to check 
whether our conclusion still held or not. The results 
from these analyses showed that our conclusion was 
consistent with the previous one (ie, that the SI and SDI 
are negatively associated with the mobility reduction in 
workplaces, transit stations, and areas of retail and 
recreation).

49 countries had an interval of more than 1 week 
between the date of the COVID-19 outbreak and the 
introduction of a first NPI. Univariate linear regression 
showed that higher SDIs were significantly associated 
with greater mobility reduction in park areas (r=0·34, 
p<0·0001) and groceries and pharmacies (r=0·33, 
p<0·0001), whereas there were no significant 
differences for the other four categories of movement 
in the week before the first NPI. For the UHC index, 
we did not observe a significant association with 
mobility changes in any of the six movement categories 
in the week before the introduction of the firt NPI 
(appendix p 25).

Discussion
Using empirical data from 358 cities in China and 
121 countries globally, we analysed population mobility 
data before and after emergency responses were 

introduced to mitigate the spread of COVID-19 and 
identified socioeconomic factors related to reduced 
population mobility. A large number of studies have 
found an association between decreased levels of mobility 
and reduced transmissibility of COVID-19 worldwide.8,20 
Population mobility data should therefore be taken into 
account to inform future policy on containing the 
ongoing COVID-19 pandemic. Our findings provide 
additional evidence that can inform policy relating to 
COVID-19 containment.

In our study, we found that several factors were 
associated with reduced intra-city movement intensity, 
including a high proportion of people in age groups 
between 20 and 39 years, socioeconomic factors 
(ie, education level), and COVID-19-related factors 
(ie, lockdown status and number of COVID-19 cases). 
These findings are consistent with studies done in the 
USA12,13 and France.14 For inflow and outflow intensity, 
socioeconomic factors were not associated with reduced 
mobility. However, the sociodemographic factor of the 
percentage of people aged 60 years and older was 
associated with reduced outflow intensity.

Our study showed that the socioeconomic status of 
cities in China was also negatively associated with change 
in intra-city movement intensity. We expanded our 
analysis to a global level and found a similar pattern, and 
these results were broadly in line with previous findings12 
at a regional scale. Cities and countries with a higher 
socioeconomic level had a greater change in population 
mobility in response to COVID-19. Moreover, in regions 
with lower socioeconomic levels, changes in population 
mobility responses were weak. One reason for this 
finding could be that people with lower incomes rely on 
public transport and cannot follow population mobility 
guidelines as easily as people with higher incomes. 
People on lower incomes might also be unable to work 
remotely because of the nature of their work (eg, 
occupations in services, retail, cleaning, or agricultural 
labour). Moreover, it seems that cities with higher SEIs 
still follow the national emergency response guidelines 
during relaxation of control measures while the regions 
with lower SEIs did not (figure 1D).

The detailed analyses by SEI group at the city level also 
provided meaningful insights. Previous studies have 
shown that the number of COVID-19 cases affects risk 
perception, resulting in voluntary changes in population 
mobility.10 When the number of confirmed cases in cities 
is high, members of the public are more aware of the 
seriousness of the epidemic and thus reduce unnecessary 
trips. However, these findings might not be true for 
regions with lower socioeconomic levels. In our analysis, 
we found that the cumulative number of confirmed 
COVID-19 cases correlated negatively with intra-city 
movement intensity in the high–middle and middle SEI 
groups, but this was not the case for the high and low 
SEI groups. People in regions with a lower SEI might 
have lacked awareness of the pandemic, or might have 
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been affected by other lifestyle barriers preventing them 
from following population mobility guidelines. Further 
investigation is needed for high and low SEI groups. 
Another important finding from our study was that 
education level is related to population mobility in the 
middle and low SEI groups, but not in the high and 
high–middle SEI groups. Previous studies have shown 
that human behaviour is strongly related to level of 
education.21–23 From our perspective, education level 
seems to be associated with response to the COVID-19 
pandemic. However, there could be a threshold effect 
above which education level is no longer associated with 
COVID-19 responses. This hypothesis is supported by 
our finding that education level in the high and 
high–middle SEI groups was significantly higher than in 
the middle and low SEI groups. We also checked whether 
the effect size of education level in the low SEI group was 
larger than that in the middle SEI group, and no 
difference was found. Nevertheless, by improving public 
understanding of the pandemic, increasing testing 
availability, and providing more financial support for 
regions with a lower SEI, policy makers can not only 
contain the spread of COVID-19 more effectively at the 
local scale, but could also benefit other regions as a 
result.

Our study has several limitations. First, data from 
Baidu did not clarify the location properties of a trip, so 
we could not distinguish between low-risk trips and 
high-risk trips. For example, multiple trips to the park (a 
location associated with low risk of transmission) alone 
might be less risky than one trip to the mall (a location 
associated with high risk of transmission) alone. Second, 
some countries did not have a national emergency 
response, such as Brazil, where the authority to declare 
interventions was delegated to local authorities. In such 
cases, the intervention date varied across the country and 
the earliest date might have only been representative of a 
small region of a country, which would have resulted in 
an underestimation of the reduction in movement. 
Third, because of the low availability of data, it was 
challenging to obtain standardised socioeconomic factors 
for city-level data and country-level data. We therefore 
chose comprehensive indexes (SEI for cities and SDI for 
countries), which indicated socioeconomic level, to make 
conclusions derived from the city-level and country-level 
data comparable.

Fourth, population age groups and education level in 
our study came from census data, which might not reflect 
current demographic characteristics. Fifth, ownership of 
devices that were capable of location tracking is a function 
of resources. Therefore, the observed differences in 
mobility by aggregate socioeconomic status might instead 
have reflected regional contrasts only among individuals 
who were wealthy enough to contribute data. In addition, 
Baidu and Google do not have exactly the same market 
share in each region analysed in our study; studies show 
that Baidu has an 89·1% market share in China24 and has 

200 million daily users of its apps.25 With more than 
2·5 billion active Android devices in 2019, Google location 
data are available for an increasing percentage of the 
world.26 We therefore believe that these two datasets are 
adequate to reflect population mobility for all countries 
included in our study. There were some biases and spatial 
heterogeneity in these datasets, but the effects of these 
biases are likely to be small. One study27 compared two 
parallel datasets (one based on mobile phone data and 
one based on survey data) and found that mobility 
estimates based on mobile phone data were surprisingly 
robust against the substantial biases in mobile phone 
ownership across different geographical and socio
economic groups. We believe that our findings are also 
robust, but the effect sizes for socioeconomic factors could 
be affected by these biases.

Sixth, the extent of mobility change measured in the 
cities included in our study could have been related to 
their respective distances from Wuhan. We calculated that 
the number of confirmed COVID-19 cases in each city was 
significantly negatively correlated with the distance from 
Wuhan (r=–0·69, p<0·0001), so we did not consider this 
factor in the model. Seventh, within a city, socioeconomic 
factors might differ between communities. We did the 
analysis at the city level because it is difficult to obtain data 
on socioeconomic factors for units smaller than a city and 
because the mobility data were collected at the city level. 
Although heterogeneous socioeconomic patterns exist 
within cities, we believe that our conclusion that mobility 
reduction is greatest in regions with higher socioeconomic 
levels is still supported. Eighth, although it is better 
to compare mobility data between 2020 and 2019, 
country-level mobility data for 2019 were not released by 
Google. We also could not use the same time interval to 
study changes in mobility in different countries because 
the dates of national emergency response varied 
substantially among countries (eg, March 15, 2020, in 
Australia, vs March 26, 2020, in Thailand). Therefore, a 
better strategy was to compare mobility for a defined 
period after the national emergency response.

Lastly, concerning the heterogeneity in intra-city 
movement intensity, we compared changes in the ratio of 
the travelling population to the resident population in 
each city rather than changes in different regions within 
the city. In addition, workers who commuted into the city 
to work might not have returned to work on time after 
the Spring Festival holiday (also known as the Chunyun 
period) because of COVID-19, which could partly explain 
the reduction in mobility in cities with a higher SEI. 
According to the Ministry of Industry and Information 
Technology, as of Feb 26, 2020, the average operating rate 
of industrial enterprises with an annual main business 
income of 20 million yuan or more in China was 88·9% 
(except in Hubei),28 indicating that a large proportion of 
people had returned to work. The effect of the Chunyun 
period on our study is likely to be small. However, future 
research is needed to confirm this.
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Our results show that socioeconomic, demographic, 
and other population characteristics were associated 
with changes in population mobility following the 
national emergency response in China and other 
countries. Although we cannot infer causality, our study 
provides some insights into how NPIs could be 
customised on the basis of the socioeconomic 
characteristics of each city or country. Socioeconomic 
factors should be modelled to predict the risk of 
COVID-19 in different regions in future analyses. 
Intervention support could be strengthened in areas 
with a low socioeconomic level to reduce transmission, 
including deepening public understanding of the virus, 
improving self-health management, and increasing 
testing availability. Considering the high prevalence of 
asymptomatic SARS-CoV-2 infection29 and the risk of 
additional waves of COVID-19, it is important to 
maximise the effects of NPIs to contain the spread of 
COVID-19 in regions with low amounts of funding, as 
well as other regions.
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